2.5V to 3.3V, Low-Skew, 1:4 Differential PECL Fanout Buffer

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/20005543B-html.html
background image

 2016 Microchip Technology Inc.

DS20005543B-page 1

PL138-48

Features

• Four Differential 2.5V/3.3V LVPECL Output Pairs
• Output Frequency: ≤800 MHz
• Two Selectable Differential Input Pairs
• Translates Any Standard Single-Ended or 

Differential Input Format to LVPECL Output. It 
Can Accept the Following Standard Input Formats 
and More:
- LVPECL, LVCMOS, LVDS, HCSL, SSTL, 

LVHSTL, CML

• Output Skew: 25 ps (typ.)
• Part-to-Part Skew: 140 ps (typ.)
• Propagation Delay: 1.5 ns (typ.)
• Additive Jitter: <100 fs (max.)
• Operating Supply Voltage: 2.375V ~ 3.63V
• Operating Temperature Range from –40

°

C to 

+85

°

C

• Package Availability: 16-Pin QFN and 20-Pin 

TSSOP

General Description

The PL138-48 is a high performance low-cost 1:4
outputs differential LVPECL fanout buffer.
Microchip’s family of differential LVPECL buffers are
designed to operate from a single power supply of 2.5V
±5% or 3.3V ±10%. The differential input pairs are
designed to accept most standard input signal levels,
using an appropriate resistor bias network, and
produce a high quality set of outputs with the lowest
possible skew on the outputs, which is guaranteed for
part-to-part or lot-to-lot skew.
Designed to fit in a small form-factor package, the
PL138-48 offers up to 800 MHz of output operation with
very low-power consumption and lowest additive jitter
of any comparable device.

Block Diagram

2.5V to 3.3V, Low-Skew, 1:4 Differential PECL Fanout Buffer

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/20005543B-html.html
background image

PL138-48

DS20005543B-page 2

 2016 Microchip Technology Inc.

1.0

ELECTRICAL CHARACTERISTICS

Absolute Maximum Ratings †

Supply Voltage (V

DD

) ...............................................................................................................................................+4.6V

Input Voltage, DC (V

I

)..........................................................................................................................–0.5V to V

DD

+0.5V

Output Voltage, DC (V

O

) .....................................................................................................................–0.5V to V

DD

+0.5V

ESD Protection (HBM) ...............................................................................................................................................2 kV

 Notice: Stresses above those listed under “Absolute Maximum Ratings” may cause permanent damage to the device.
This is a stress rating only and functional operation of the device at those or any other conditions above those indicated
in the operational sections of this specification is not intended. Exposure to maximum rating conditions for extended
periods may affect device reliability.

DC ELECTRICAL CHARACTERISTICS

Specifications: V

CC

 = 3.3V; V

EE

 = 0V. Input and output parameters vary 1:1 with V

CC

 when V

CC

 varies ±10%.

Parameters

Symbol

Min.

Typ.

Max.

Units

Conditions

Output High Voltage, (

Note 1

)

V

OH

2.215

2.320

2.420

V

At –40°C

2.275

2.350

2.420

At +25°C

2.275

2.350

2.420

At +85°C

Output Voltage Low, (

Note 1

)

V

OL

1.470

1.610

1.745

V

At –40°C

1.490

1.585

1.680

At +25°C

1.490

1.585

1.680

At +85°C

Input High Voltage

V

IH

2.075

2.420

V

At –40°C

2.135

2.420

At +25°C

2.135

2.420

At +85°C

Input Low Voltage

V

IL

1.470

1.890

V

At –40°C

1.490

1.825

At +25°C

1.490

1.825

At +85°C

Output Voltage Reference, 
(

Note 2

)

V

BB

1.86

1.98

V

At –40°C

1.92

2.04

At +25°C

1.92

2.04

At +85°C

Input High Voltage Common 
Mode Range, (

Note 3

Note 4

)

V

CMR

1.2

3.3

V

At –40°C

1.2

3.3

At +25°C

1.2

3.3

At +85°C

Input High Current, (

Note 5

)

I

IH

75

µA

At –40°C

75

At  +25°C

75

At  +85°C

Input Low Current, (

Note 5

)

I

IL

–75

µA

At –40°C

–75

At +25°C

–75

At +85°C

Note 1: Outputs terminated with 50Ω to V

CCO

–2V.

2: Single-ended input operation is limited to VCC ≥ 3V in LVPECL mode.
3: Common mode voltage is defined as V

IH

.

4: For single-ended applications, the maximum input voltage for CLK-INx, CLK-INxB is V

CC

+0.3V.

5: CLK-IN0, CLK-IN1; CLK-IN0B, CLK-IN1B.

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/20005543B-html.html
background image

 2016 Microchip Technology Inc.

DS20005543B-page 3

PL138-48

DC ELECTRICAL CHARACTERISTICS

Specifications: V

CC

 = 2.5V; V

EE

 = 0V. Input and output parameters vary 1:1 with V

CC

 when V

CC

 varies ±5%.

Parameters

Symbol

Min.

Typ.

Max.

Units

Conditions

Output High Voltage, (

Note 1

)

V

OH

1.415

1.520

1.620

V

At –40°C

1.475

1.550

1.620

At +25°C

1.475

1.550

1.620

At +85°C

Output Voltage Low, (

Note 1

)

V

OL

0.670

0.810

0.945

V

At –40°C

0.690

0.785

0.880

At +25°C

0.690

0.785

0.880

At +85°C

Input High Voltage

V

IH

1.275

1.620

V

At –40°C

1.335

1.620

At +25°C

1.335

1.620

At +85°C

Input Low Voltage

V

IL

0.670

1.090

V

At –40°C

0.690

1.025

At +25°C

0.690

1.025

At +85°C

Input High Voltage Common 
Mode Range, (

Note 2

Note 3

)

V

CMR

1.2

2.5

V

At –40°C

1.2

2.5

At +25°C

1.2

2.5

At +85°C

Input High Current, (

Note 4

)

I

IH

60

µA

At –40°C

60

At +25°C

60

At +85°C

Input Low Current, (

Note 4

)

I

IL

–60

µA

At –40°C

–60

At +25°C

–60

At +85°C

Note 1: Outputs terminated with 50Ω to V

CCO

–2V.

2: Common mode voltage is defined as V

IH

.

3: For single-ended applications, the maximum input voltage for CLK-INx, CLK-INxB is V

CC

+0.3V.

4: CLK-IN0, CLK-IN1; CLK-IN0B, CLK-IN1B.

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/20005543B-html.html
background image

PL138-48

DS20005543B-page 4

 2016 Microchip Technology Inc.

AC ELECTRICAL CHARACTERISTICS

V

CC

 = –3.8V to –2.375 or V

CC

 = 2.375V to 3.8V; V

EE

 = 0V; T

A

 = –40°C to +85°C. All parameters are measured at 

f ≤ 800 MHz unless otherwise noted.

Parameters

Symbol

Min.

Typ.

Max.

Units

Conditions

Output Frequency

f

MAX

800

MHz

At all temperatures

Propagation Delay, (

Note 1

)

t

PD

600

680

750

ps

At –40°C

650

725

790

At +25°C

690

790

890

At +85°C

Output Skew, (

Note 2

Note 4

)

t

SK(O)

25

37

ps

At all temperatures

Part-to-Part Skew, (

Note 3

Note 4

)

t

SK(PP)

85

225

ps

At all temperatures

Buffer Additive Phase Jitter, 
RMS

t

APJ

0.10

ps

At all temperatures; refer to 

Noise Characteristics

 

section

Peak-to-Peak Input Voltage
(Differential Configuration)

V

PP

150

800

1200

mV

At all temperatures

Peak-to-Peak Output Voltage

V

SWING

470

800

950

mV

At –40°C

600

800

930

At +25°C

600

800

930

At +85°C

Output Rise/Fall Time

t

R

/t

F

200

550

ps

At all temperatures; 20% to 
80% at full output swing.

Note 1: Measured from the differential input crossing point to the differential output crossing point.

2: Defined as skew between outputs at the same supply voltage and with equal load conditions. Measured at 

the output differential cross points.

3: Defined as skew between outputs on different devices operating at the same supply voltages and with 

equal load conditions. Using the same type of inputs on each device, the outputs are measured at the dif-
ferential cross points.

4: This parameter is defined in accordance with JEDEC Standard 65.

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/20005543B-html.html
background image

 2016 Microchip Technology Inc.

DS20005543B-page 5

PL138-48

TEMPERATURE SPECIFICATIONS (

Note 1

)

Parameters

Sym.

Min.

Typ.

Max.

Units

Conditions

Temperature Ranges
Ambient Operating Temperature

T

A

–40

+85

°C

Note 2

Junction Temperature 

T

J

+110

°C

Storage Temperature Range

T

S

–65

+150

°C

Soldering Temperature

+260

°C

10 sec.

Note 1: The maximum allowable power dissipation is a function of ambient temperature, the maximum allowable 

junction temperature, and the thermal resistance from junction to air (i.e., T

A

, T

J

JA

). Exceeding the 

maximum allowable power dissipation will cause the device operating junction temperature to exceed the 
maximum +125°C rating. Sustained junction temperatures above +125°C can impact the device reliability.

2: Operating temperature is guaranteed by design for all parts (commercial and industrial), but tested for 

commercial grade only.

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/20005543B-html.html
background image

PL138-48

DS20005543B-page 6

 2016 Microchip Technology Inc.

2.0

PIN DESCRIPTIONS

FIGURE 2-1:

Pin Configuration, 16-Pin QFN.

FIGURE 2-2:

Pin Configuration, 20-Pin TSSOP.

The descriptions of the pins are listed in 

Table 2-1

TABLE 2-1:

PIN FUNCTION TABLE

Pin Number

QFN-16

Pin Number

TSSOP-20

Pin Name

Type

Description

4

1

V

EE

P

Power supply pin connection.

16

2

CLK-EN

I

Synchronizing clock enable.
When HIGH, clock outputs follow clock input. When LOW, Q 
outputs are forced low, QB outputs are forced high. 
LVTTL/LVCMOS interface levels.
50 kΩ internal pull-up resistor.

3

CLK-SEL

I

Clock select input. When HIGH, selects CLK1 input. When 
LOW, selects CLK0 input.
LVTTL/LVCMOS interface levels.
50 kΩ internal pull-down resistor.

2

4

CLK-IN0

I

True part of differential clock input signal. 75 kΩ internal 
pull-down resistor.

3

5

CLK-IN0B

I

Complementary part of differential clock input signal. 
100 kΩ internal pull-up and pull-down resistors.

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/20005543B-html.html
background image

 2016 Microchip Technology Inc.

DS20005543B-page 7

PL138-48

6

CLK-IN1

I

True part of differential clock input signal. 75 kΩ internal 
pull-down resistor.

7

CLK-IN1B

I

Complementary part of differential clock input signal. 
100 kΩ internal pull-up and pull-down resistors.

1, 5

8, 9

DNC

Do Not Connect.

8, 13

10, 13, 18

V

CC

P

Power supply pin connection.

6, 9, 11 ,14

11, 14, 16, 19

QB0 ~ QB3

O

LVPECL Complementary output.

7, 10, 12, 15

12, 15, 17, 20

Q0 ~ Q3

O

LVPECL True output.

TABLE 2-1:

PIN FUNCTION TABLE (CONTINUED)

Pin Number

QFN-16

Pin Number

TSSOP-20

Pin Name

Type

Description

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/20005543B-html.html
background image

PL138-48

DS20005543B-page 8

 2016 Microchip Technology Inc.

3.0

NOISE CHARACTERISTICS

When a buffer is used to pass a signal, the buffer adds a little bit of its own noise. The phase noise on the output of the
buffer will be a little bit more than the phase noise of the input signal. To quantify the noise addition in the buffer we
compare the Phase Jitter numbers from the input and the output. The difference is called "Additive Phase Jitter". The
formula for the Additive Phase Jitter is as follows:

EQUATION 3-1:

FIGURE 3-1:

PL138-48 Additive Phase Jitter Plot, 622 MHz.

TABLE 3-1:

PL138-48 NOISE CHARACTERISTICS

Parameters

Symbol

Min.

Typ.

Max.

Units Conditions

Additive Phase Jitter

t

APJ

20

40

fs

V

DD

 = 3.3V, Frequency = 622.08 MHz

Offset = 12 kHz ~ 20 MHz

50

100

V

DD

 = 3.3V, Frequency = 156.25 MHz

Offset = 12 kHz ~ 20 MHz

50

100

V

DD

 = 3.3V, Frequency = 50 MHz

Offset = 1 kHz ~ 1 MHz

50

100

V

DD

 = 3.3V, Frequency = 25 MHz

Offset = 1 kHz ~ 1 MHz

AdditivePhaseJitter

OutputPhaseJitter

2

InputPhaseJitter

2

=

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/20005543B-html.html
background image

 2016 Microchip Technology Inc.

DS20005543B-page 9

PL138-48

4.0

PARAMETER MEASUREMENT INFORMATION

FIGURE 4-1:

Output Waveform Test 

Circuit.

FIGURE 4-2:

Part-to-Part Skew.

FIGURE 4-3:

Output Rise/Fall Time.

FIGURE 4-4:

Differential Input Level.

FIGURE 4-5:

Output Skew.

FIGURE 4-6:

Propagation Delay.

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/20005543B-html.html
background image

PL138-48

DS20005543B-page 10

 2016 Microchip Technology Inc.

5.0

APPLICATION INFORMATION

5.1

Input Logic Configurations

The following circuits show different configurations for different input logic type signals. For good signal integrity at the
PL138 input, the signals need to be properly terminated according to the logic type requirements. The signals need to
be presented at the PL138 input according to V

CMR

, V

PP

, and other input requirements.

FIGURE 5-1:

CLK-IN Input Driven by a 

3.3V LVPECL Driver.

FIGURE 5-2:

3.3V LVPECL Driver, 

Alternative Termination.

FIGURE 5-3:

CLK-IN Input Driven by a 

CML Driver.

FIGURE 5-4:

CLK-IN Input Driven by an 

SSTL Driver.

FIGURE 5-5:

CLK-IN Input Driven by an 

LVDS Driver.

FIGURE 5-6:

LVDS Driver, Alternative 

AC-Coupling.

This circuit is for compatibility only. AC-coupling is not
really required for LVDS. The V

CMR

 range of the PL138

reaches low enough that LVDS signals can be
connected directly to the PL138 input like in the circuit
in 

Figure 5-5

.

FIGURE 5-7:

CLK-IN Input Driven by a 

CMOS Driver.

Maker
Microchip Technology Inc.
Datasheet PDF Download