1A, Low Voltage, Low Dropout Regulator with Reversed-Battery Protection

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/20005834A-html.html
background image

 2017 Microchip Technology Inc.

DS20005834A-page 1

MIC39100/1/2

Features

• Fixed and Adjustable Output Voltages to 1.24V
• 410 mV Typical Dropout at 1A Load

- Best Recommended for 3.0V to 2.5V Conver-

sion

- Best Recommended for 2.5V to 1.8V Conver-

sion

• 1A Minimum Guaranteed Output Current
• 1% Initial Accuracy
• Low Ground Current
• Current-Limiting and Thermal-Shutdown 

Protection

• Reversed-Battery and Reversed-Leakage 

Protection

• Fast Transient Response
• Low Profile SOT-223 Package
• Power SO-8 Package

Applications

• LDO Linear Regulator for PC Add-In Cards
• High-Efficiency Linear Power Supplies
• SMPS Post Regulator
• Multimedia and PC Processor Supplies
• Battery Chargers
• Low Voltage Microcontrollers and Digital Logic

General Description

The MIC39100, MIC39101, and MIC39102 are 1A low
dropout linear voltage regulators that provide low
voltage, high current output from an extremely small
package. The MIC39100/1/2 offers extremely low
dropout (typically 410 mV at 1A) and low ground
current (typically 11 mA at 1A).
The MIC39100 is a fixed output regulator offered in the
SOT-223 package. The MIC39101 and MIC39102 are
fixed and adjustable regulators, respectively, in a
thermally enhanced 8-lead SOIC package.
The MIC39100/1/2 is ideal for PC add-in cards that
need to convert from standard 5V to 3.3V, 3.3V to 2.5V,
or 2.5V to 1.8V. A guaranteed maximum dropout
voltage of 630 mV over all operating conditions allows
the MIC39100/1/2 to provide 2.5V from a supply as low
as 3.13V and 1.8V from a supply as low as 2.43V.
The MIC39100/1/2 is fully protected with overcurrent
limiting, thermal-shutdown, and reverse-battery
protection. Fixed voltages of 5.0V, 3.3V, 2.5V, and 1.8V
are available on MIC39100/1 with adjustable output
voltages to 1.24V on MIC39102.

Package Types

MIC39100-

XX

 (F

IXED

)

SOT-223 (S)

(Top View)

1

2

3

IN

GND OUT

GND

TAB

MIC39101-

XX

 (F

IXED

)

SOIC-8 (M)

(Top View)

MIC39102 (A

DJ

.)

SOIC-8 (M)

(Top View)

1

EN

IN

OUT

FLG

8 GND

GND

GND

GND

7

6

5

2

3

4

1

EN

IN

OUT

ADJ

8 GND

GND

GND

GND

7

6

5

2

3

4

1A, Low Voltage, Low Dropout Regulator

with Reversed-Battery Protection

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/20005834A-html.html
background image

MIC39100/1/2

DS20005834A-page 2

 2017 Microchip Technology Inc.

Typical Application Circuits

2.5V/1A Regulator

IN

2.5V

V

IN

3.3V

10μF
TANTALUM

OUT

GND

MIC39100

2.5V/1A Regulator with Error Flag

IN

R1

100kŸ

2.5V

ERROR FLAG
OUTPUT

V

IN

3.3V

10μF
TANTALUM

EN

OUT

FLG

GND

MIC39101

ENABLE

SHUTDOWN

1.5V/1A Adjustable Regulator

IN

R1

1.5V

R2

EN

OUT

ADJ

GND

MIC39102

ENABLE

SHUTDOWN

V

IN

2.5V

10μF
TANTALUM

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/20005834A-html.html
background image

 2017 Microchip Technology Inc.

DS20005834A-page 3

MIC39100/1/2

Functional Block Diagrams

18V

O.V. I

LIMIT

1.240V

IN

OUT

GND

MIC39100

REFERENCE

THERMAL

SHUTDOWN

MIC39100 Fixed Regulator

18V

1.240V

1.180V

E N

IN

FL G

GND

OUT

MIC39101

O.V. I

LIMIT

THERMAL

SHUTDOWN

REFERENCE

18V

1.240V

E N

IN

GND

OUT

ADJ

MIC39102

O.V. I

LIMIT

THERMAL

SHUTDOWN

REFERENCE

MIC39101 Fixed Regulator

with Flag and Enable

MIC39102 Adjustable Regulator

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/20005834A-html.html
background image

MIC39100/1/2

DS20005834A-page 4

 2017 Microchip Technology Inc.

1.0

ELECTRICAL CHARACTERISTICS

Absolute Maximum Ratings †

Supply Voltage (V

IN

).................................................................................................................................... –20V to +20V

Enable Voltage (V

EN

) ................................................................................................................................................+20V

ESD Rating ............................................................................................................................................................

Note 1

Maximum Power Dissipation (P

D(MAX)

) ..................................................................................................................

Note 2

Operating Ratings ‡

Supply Voltage (V

IN

)................................................................................................................................. +2.25V to +16V

Enable Voltage (V

EN

) ................................................................................................................................................+16V

 Notice: Stresses above those listed under “Absolute Maximum Ratings” may cause permanent damage to the device.

This is a stress rating only and functional operation of the device at those or any other conditions above those indicated
in the operational sections of this specification is not intended. Exposure to maximum rating conditions for extended
periods may affect device reliability.
‡ Notice:

 The device is not guaranteed to function outside its operating ratings.

Note 1:

Devices are ESD sensitive. Handling precautions are recommended. Human body model, 1.5 kΩ in series
with 100 pF.

2:

P

D(MAX)

 = (T

J(MAX)

 – T

A

) ÷ θ

JA

, where θ

JA

 depends upon the printed circuit layout (see 

Application Informa-

tion

).

TABLE 1-1:

ELECTRICAL CHARACTERISTICS

Electrical Characteristics:

 V

IN

 = V

OUT

 + 1V; V

EN

 = 2.25V; T

J

 = +25°C, bold values indicate –40°C ≤ T

J

 ≤ +125°C, 

unless noted. 

Note 1

Parameter

Symbol

Min.

Typ.

Max.

Units

Conditions

Output Voltage

V

OUT

–1

1

%

I

OUT

 = 10 mA

–2

2

10 mA ≤ I

OUT

 ≤ 1A, 

V

OUT

 +1V ≤ V

IN

 ≤ 8V

Line Regulation

0.06

0.5

%

I

OUT

 = 10 mA, 

V

OUT

 + 1V ≤ V

IN

 ≤ 16V

Load Regulation

0.2

1

%

V

IN

 = V

OUT

 + 1V, 

10 mA ≤ I

OUT

 ≤ 1A

Output Voltage Temperature 
Coefficient

∆V

OUT

/

∆T

40

100

ppm/°C

Note 2

Dropout Voltage, 

Note 3

V

DO

140

200

mV

I

OUT

 = 100 mA, ∆V

OUT

 = –1%

250

275

I

OUT

 = 500 mA, ∆V

OUT

 = –1%

300

500

I

OUT

 = 750 mA, ∆V

OUT

 = –1%

410

550

I

OUT

 = 1A, ∆V

OUT

 = –1%

630

Ground Current, 

Note 4

I

GND

400

µA

I

OUT

 = 100 mA, V

IN

 = V

OUT

 + 1V

4

mA

I

OUT

 = 500 mA, V

IN

 = V

OUT

 + 1V

6.5

I

OUT

 = 750 mA, V

IN

 = V

OUT

 + 1V

11

20

I

OUT

 = 1A, V

IN

 = V

OUT

 + 1V

Current Limit

I

OUT(LIM)

1.8

2.5

A

V

OUT

 = 0V, V

IN

 = V

OUT

 + 1V

Enable Input

Enable Input Voltage

V

EN

0.8

V

Logic LOW (Off)

2.25

Logic HIGH (On)

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/20005834A-html.html
background image

 2017 Microchip Technology Inc.

DS20005834A-page 5

MIC39100/1/2

Enable Input Current

I

EN

1

15

30

µA

V

EN

 = 2.25V

75

2

V

EN

 = 0.8V

4

Flag Output

Output Leakage Voltage

I

FLG(LEAK)

0.01

1

µA

V

OH

 = 16V

2

Output Low Voltage

V

FLG(DO)

210

300

mV

V

IN

 = 2.250V, I

OL

 = 250 µA, 

Note 5

400

Low Threshold

V

FLG

93

%

% of V

OUT

High Threshold

99.2

% of V

OUT

Hysteresis

1

MIC39102 Only

Reference Voltage

1.228

1.240

1.252

V

I

OUT

 = 10 mA

1.215

1.265

1.203

1.277

Note 6

Adjust Pin Bias Current

40

80

nA

120

Reference Voltage 
Temperature Coefficient

20

ppm/°C —

Adjust Pin Bias Current 
Temperature Coefficient

0.1

nA/°C

Note 1:

Specification for packaged product only.

2:

Output voltage temperature coefficient is ∆V

OUT(WORST CASE)

 ÷ (T

J(MAX)

 – T

J(MIN)

), where T

J(MAX)

 = 

+125°C and T

J(MIN)

 = –40°C.

3:

V

DO

 = V

IN

 – V

OUT

 when V

OUT

 decreases to 99% of its nominal output voltage with V

IN

 = V

OUT

 + 1V. For 

output voltages below 2.25V, dropout voltage is the input-to-output voltage differential with the minimum 
input voltage being 2.25V. Minimum input operating voltage is 2.25V.

4:

I

GND

 is the quiescent current (I

IN

 = I

GND

 + I

OUT

).

5:

For a 2.5V device, V

IN

 = 2.250V (device is in dropout).

6:

V

REF

 ≤ V

OUT

 ≤ (V

IN

 – 1V), 2.25V ≤ V

IN

 ≤ 16V, 10 mA ≤ I

L

 ≤ 1A, T

J

 = T

MAX

.

TABLE 1-1:

ELECTRICAL CHARACTERISTICS (CONTINUED)

Electrical Characteristics:

 V

IN

 = V

OUT

 + 1V; V

EN

 = 2.25V; T

J

 = +25°C, bold values indicate –40°C ≤ T

J

 ≤ +125°C, 

unless noted. 

Note 1

Parameter

Symbol

Min.

Typ.

Max.

Units

Conditions

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/20005834A-html.html
background image

MIC39100/1/2

DS20005834A-page 6

 2017 Microchip Technology Inc.

TEMPERATURE SPECIFICATIONS (

Note 1

)

Parameters

Sym.

Min.

Typ.

Max.

Units

Conditions

Temperature Ranges
Junction Operating Temperature 
Range

T

J

–40

+125

°C

Storage Temperature Range

T

S

–65

+150

°C

Lead Temperature

+260

°C

Soldering, 5s

Package Thermal Resistances
Thermal Resistance SOT-223

JC

15

°C/W

Thermal Resistance SOIC-8

JC

20

°C/W

Note 1:

The maximum allowable power dissipation is a function of ambient temperature, the maximum allowable 
junction temperature and the thermal resistance from junction to air (i.e., T

A

, T

J

JA

). Exceeding the 

maximum allowable power dissipation will cause the device operating junction temperature to exceed the 
maximum +125°C rating. Sustained junction temperatures above +125°C can impact the device reliability.

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/20005834A-html.html
background image

 2017 Microchip Technology Inc.

DS20005834A-page 7

MIC39100/1/2

2.0

TYPICAL PERFORMANCE CURVES

FIGURE 2-1:

Power Supply Rejection 

Ratio. 

FIGURE 2-2:

Power Supply Rejection 

Ratio.

FIGURE 2-3:

Power Supply Rejection 

Ratio.

FIGURE 2-4:

Power Supply Rejection 

Ratio.

FIGURE 2-5:

Dropout Voltage vs. Output 

Current.

FIGURE 2-6:

Dropout Voltage vs. 

Temperature.

Note:

The graphs and tables provided following this note are a statistical summary based on a limited number of
samples and are provided for informational purposes only. The performance characteristics listed herein
are not tested or guaranteed. In some graphs or tables, the data presented may be outside the specified
operating range (e.g., outside specified power supply range) and therefore outside the warranted range.

PSRR (dB)

80

60

40

20

0

10

100

1K

10K

100K

1M

V

IN

 = 5V

V

OUT

 = 3.3V

I

OUT

 = 1A

C

OUT

 = 10μF

C

IN

 = 0μF

FREQUENCY (Hz)

0

20

40

60

80

1E+1 1E+2 1E+3

1E+4

1E+5 1E+6

PSRR (dB)

FREQUENCY (Hz)

V

IN

 = 5V

V

OUT

 = 3.3V

I

OUT

 = 1A

C

OUT

 = 47μF

C

IN

 = 0μF

10

100

1K

10K

100K

1M

0

20

40

60

80

1E+1 1E+2 1E+3

1E+4

1E+5 1E+6

PSRR (dB)

FREQUENCY (Hz)

V

IN

 = 3.3V

V

OUT

 = 2.5V

I

OUT

 = 1A

C

OUT

 = 10μF

C

IN

 = 0μF

10

100

1K

10K

100K

1M

0

20

40

60

80

1E+1 1E+2 1E+3

1E+4

1E+5 1E+6

PSRR (dB)

FREQUENCY (Hz)

V

IN

 = 3.3V

V

OUT

 = 2.5V

I

OUT

 = 1A

C

OUT

 = 47μF

C

IN

 = 0μF

10

100

1K

10K

100K

1M

2.5V

200

300

400

500

1E+2 1E+3

1E+4

1E+5 1E+6

DROPOUT VOLTAGE (mV)

OUTPUT CURRENT (mA)

T

A

 = 25°C

0

250

500

750

1000 1250

150

250

350

450

50

0

100

3.3V

1.8V

2.5V

450

500

550

600

DROPOUT VOLTAGE (mV)

TEMPERATURE (°C)

I

LOAD

 = 1A

350

300

400

3.3V

1.8V

1E+2 1E+3

1E+4

1E+5

–40 –20 0

20 40 60 80 100 120

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/20005834A-html.html
background image

MIC39100/1/2

DS20005834A-page 8

 2017 Microchip Technology Inc.

FIGURE 2-7:

Dropout Characteristics 

(2.5V).

FIGURE 2-8:

Dropout Characteristics 

(3.3V).

FIGURE 2-9:

Ground Current vs. Output 

Current.

FIGURE 2-10:

Ground Current vs. Supply 

Voltage (2.5V).

FIGURE 2-11:

Ground Current vs. Supply 

Voltage (2.5V).

FIGURE 2-12:

Ground Current vs. Supply 

Voltage (3.3V).

2.2

2.4

2.6

2.8

OUTPUT VOLTAGE (V)

SUPPLY VOLTAGE (V)

I

LOAD

 = 100mA

1.8

1.6

2.0

1E+2 1E+3

1E+4

2

2.3

2.6

2.9

3.5

I

LOAD

 = 750mA

I

LOAD

 = 1A

3.2

1.4

OUTPUT VOLTAGE (V)

SUPPLY VOLTAGE (V)

I

LOAD

 = 100mA

I

LOAD

 = 750mA

I

LOAD

 = 1A

3.2

3.4

3.6

2.8

2.6

3.0

1E+2 1E+3

1E+4

2.8

3.2

3.6

4.0

4.4

2.4

GROUND CURRENT (mA)

OUTPUT CURRENT (mA)

1.8V

3.3V

2.5V

8

10

12

4

2

6

0

200

400

600

800

0

1000

14

GROUND CURRENT (mA)

SUPPLY VOLTAGE (V)

I

LOAD

 = 100mA

I

LOAD

 = 10mA

0.8

1.0

1.2

0.4

0.2

0.6

0

2

4

6

8

0

2.0

1.4

1.6

1.8

GROUND CURRENT (mA)

SUPPLY VOLTAGE (V)

I

LOAD

 = 1A

10

15

5

0

2

4

6

8

0

35

20

25

30

GROUND CURRENT (mA)

SUPPLY VOLTAGE (V)

I

LOAD

 = 100mA

I

LOAD

 = 10mA

0.8

1.0

1.2

0.4

0.2

0.6

0

2

4

6

8

0

1.4

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/20005834A-html.html
background image

 2017 Microchip Technology Inc.

DS20005834A-page 9

MIC39100/1/2

FIGURE 2-13:

Ground Current vs. Supply 

Voltage (3.3V).

FIGURE 2-14:

Ground Current vs. 

Temperature.

FIGURE 2-15:

Ground Current vs. 

Temperature.

FIGURE 2-16:

Ground Current vs. 

Temperature.

FIGURE 2-17:

Output Voltage vs. 

Temperature

.

FIGURE 2-18:

Short-Circuit vs. 

Temperature

.

GROUND CURRENT (mA)

SUPPLY VOLTAGE (V)

I

LOAD

 = 1A

40

50

20

10

30

0

2

4

6

8

0

GROUND CURRENT (mA)

TEMPERATURE (°C)

I

LOAD

 = 10mA

0.8

1.0

0.4

0.2

0.6

–40 –20

0

20 40

0

60 80 100 120

3.3V

2.5V

1.8V

GROUND CURRENT (mA)

TEMPERATURE (°C)

I

LOAD

 = 500mA

4.5

5.0

3.5

3.0

4.0

–40 –20

0

20 40

2.5

60 80 100 120

3.3V

2.5V

1.8V

1.5

2.0

0.5

1.0

0

GROUND CURRENT (mA)

TEMPERATURE (°C)

I

LOAD

 = 1A

15

20

10

–40 –20

0

20 40

60 80 100 120

3.3V

2.5V

1.8V

5

0

OUTPUT VOLTAGE (V)

TEMPERATURE (°C)

3.40

3.30

3.35

–40 –20

0

20 40

60 80 100 120

TYPICAL 3.3V DEVICE

3.25

3.20

SHORT-CIRCUIT CURRENT (A)

TEMPERATURE (°C)

2.5

2.0

–40 –20

0

20 40

1.5

60 80 100 120

3.3V

2.5V

1.8V

0.5

1.0

0

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/20005834A-html.html
background image

MIC39100/1/2

DS20005834A-page 10

 2017 Microchip Technology Inc.

FIGURE 2-19:

Error Flag Voltage vs. 

Pull-Up Resistor Value.

FIGURE 2-20:

Enable Current vs. 

Temperature.

FIGURE 2-21:

Flag-Low Voltage vs. 

Temperature.

FIGURE 2-22:

Load Transient Response.

FIGURE 2-23:

Load Transient Response.

FIGURE 2-24:

Line Transient Response.

FLAG VOLTAGE (V)

RESISTANCE (Ÿ)

6

5

10

100

1K 10K 100K

4

1M 10M

V

IN

 = 5V

FLAG HIGH (OK)

FLAG LOW (FAULT)

2

3

0

1

ENABLE CURRENT (μA)

V

IN

 = V

OUT

 + 1V

V

EN

 = 2.4V

TEMPERATURE (°C)

12

8

10

–40 –20 0 20 40 60 80 100 120

6

4

140

2

0

FLAG VOLTAGE (mV)

V

IN

 = 2.25V

R

PULL-UP

 = 22kŸ

TEMPERATURE (°C)

250

150

200

–40 –20 0 20 40 60 80 100 120

100

50

140

0

FLAG-LOW 
VOLTAGE

V

OUT

 = 2.5V

C

OUT

 = 10μF

OUTPUT

VOLTAGE

(200mV/div)

LOAD

CURRENT

(500mA/div)

TIME (250μs/div)

100mA

1A

V

OUT

 = 2.5V

C

OUT

 = 47μF

OUTPUT

VOLTAGE

(200mV/div)

LOAD

CURRENT

(500mA/div)

TIME (500μs/div)

10mA

1A

V

OUT

 = 2.5V

C

OUT

 = 10μF

OUTPUT

VOLTAGE

(50mV/div)

INPUT

VOLTAGE

(2V/div)

TIME (25μs/div)

Maker
Microchip Technology Inc.