18-Bit ADC with I2C Interface and Onboard Reference DS

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/20005519A-html.html
background image

 2016 Microchip Technology Inc.

DS20005519A-page 1

Features

• 10 to 450V input voltage range
• <1.3 mA supply current
• >1 MHz clock
• 49% maximum duty version

Applications

• Off-line high frequency power supplies
• Universal input power supplies
• High density power supplies
• Very high efficiency power supplies
• Extra wide load range power supplies

Description

HV9120 and HV9123 are Switch-Mode Power Supply
(SMPS) controllers suitable for the control of a variety
of converter topologies, including flyback and forward
converter. 

Using an internal, high-voltage regulator, HV9120 and
HV9123 can derive a bias supply for starting-up and
powering a converter from a variety of power sources,
such as a 12V battery or the rectified AC (230 VAC)
line. 

HV9120/HV9123 controllers include all essentials for a
power-converter design, such as a bandgap reference,
an error amplifier, a ramp generator, a high-speed
PWM comparator, and a gate driver. A shutdown latch
provides on/off control. Device power consumption is
less than 6 mW when shutdown.

HV9120 offers 50% maximum duty and HV9123 offers
nearly 100% duty.

Package Types

See 

Table 3-1

 for pin information

16-lead SOIC

16-lead PDIP

16

16 

HV9120/HV9123

High-Voltage, Current-Mode, PWM Controller

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/20005519A-html.html
background image

HV9120/HV9123

DS20005519A-page 2

 2016 Microchip Technology Inc.

Block Diagram HV9120

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/20005519A-html.html
background image

 2016 Microchip Technology Inc.

DS20005519A-page 3

HV9120/HV9123

Block Diagram HV9123

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/20005519A-html.html
background image

HV9120/HV9123

DS20005519A-page 4

 2016 Microchip Technology Inc.

1.0

 ELECTRICAL CHARACTERISTICS

ABSOLUTE MAXIMUM RATINGS

 

Input voltage, V

IN 

.................................................................................................................................................... 450V

Device supply voltage, V

DD

.................................................................................................................................... 15.5V

Logic input voltage ........................................................................................................................... -0.3V to V

DD 

+ 0.3V

Linear input voltage .......................................................................................................................... -0.3V to V

DD 

+ 0.3V

High-voltage regulator input current (continuous), I

IN

.......................................................................................... 2.5 mA

Operating temperature range................................................................................................................ -40°C to +125°C
Storage temperature range ................................................................................................................... -65°C to +150°C
Power dissipation: 16-Lead SOIC ...................................................................................................................... 900 mW

16-Lead PDIP .................................................................................................................... 1000 mW

† Notice: Stresses above those listed under “Maximum Ratings” may cause permanent damage to the device. This is 
a stress rating only and functional operation of the device at those or any other conditions above those indicated in the 
operational listings of this specification is not implied. Exposure to maximum rating conditions for extended periods 
may affect device reliability.

ELECTRICAL CHARACTERISTICS

Electrical Specifications: V

DD 

= 10V, V

IN 

= 48V, V

DISC

= 0V, R

BIAS

 = 390 kΩ, R

OSC

 = 330 kΩ, T

A

= 25°C, unless oth-

erwise noted. 

Parameter

Symbol

Min

Typ

Max

Units

Conditions

Reference
Output voltage

V

REF

3.92

4.00

4.08

V

R

L

= 10 MΩ

3.84

4.00

4.16

R

L

= 10 MΩ,

T

A

= -40°C to +125°C

Output impedance

Z

OUT

15

30

45

kΩ

(

Note 1

)

Short circuit current

I

SHORT

-

125

250

μA

V

REF

= GND

Change in V

REF

 with temperature

∆V

REF

-

0.25

-

mV/°C T

A

= -40°C to +125°C (

Note 1

)

Oscillator
Oscillator frequency

f

MAX

1.0

3.0

-

MHz

R

OSC

= 0Ω

Initial accuracy

f

OSC

80

100

120

kHz

R

OSC

= 330 kΩ (

Note 2

)

160

200

240

R

OSC

= 150 kΩ (

Note 2

)

VDD regulation

-

-

-

15

%

9.5V< V

DD

<13.5V

Temperature coefficient

-

-

170

-

ppm/°C T

A

= -40°C to +125°C (

Note 1

)

PWM
Maximum duty cycle

HV9120

D

MAX

49.0

49.4

49.6

%

(

Note 1

)

HV9123

95

97

99

Dead time

HV9123

D

MIN

-

225

-

ns

HV9123 only (

Note 1

)

Minimum duty cycle

-

-

0

%

Pulse width where pulse drops 
out

-

80

125

ns

(

Note 1

)

Current Limit
Maximum input signal

V

LIM

1.0

1.2

1.4

V

V

FB

= 0V

Delay to output

t

D

-

80

120

ns

V

CS

= 1.5V, V

COMP

≤ 2.0V 

(

Note 1

)

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/20005519A-html.html
background image

 2016 Microchip Technology Inc.

DS20005519A-page 5

HV9120/HV9123

Note 1: Design guidance only; Not 100% tested in production.

2: Stray capacitance on OSC in pin must be ≤ 5 pF.

Error Amplifier
Feedback voltage

V

FB

3.92

4.00

4.08

V

FB shorted to COMP

Input bias current

I

IN

-

25

500

nA

V

FB

= 4.0V

Input offset voltage

V

OS

nulled during trim

-

Open loop voltage gain

A

VOL

60

80

-

dB

(

Note 1

)

Unity gain bandwidth

GB

1.0

1.3

-

MHz

(

Note 1

)

Output source current

I

SOURCE

-1.4

-2.0

-

mA

V

FB

= 3.4V

Output sink current

I

SINK

0.12

0.15

-

mA

V

FB

= 4.5V

High-voltage Regulator and Start-up
Input voltage

V

IN

10

-

450

V

I

IN

< 10 µA; V

CC

> 9.4V

Input leakage current

I

IN

-

-

10

μA

V

DD

> 9.4V

Regulator turn-off threshold 
voltage

V

TH

8.0

8.7

9.4

V

I

IN

= 10 µA

Undervoltage lockout

V

LOCK

7.0

8.1

8.9

V

Supply
Supply current

I

DD

-

0.75

1.3

mA

C

L

< 75 pF

Quiescent supply current

I

Q

-

0.55

-

mA

V

NSD 

= 0V

Nominal bias current

I

BIAS

-

20

-

μA

Operating range

V

DD

9.0

-

13.5

V

Shutdown Logic
Shutdown delay

t

SD

-

50

100

ns

C

L

= 500 pF, V

CS

= 0V (

Note 1

)

NSD pulse width

t

SW

50

-

-

ns

(

Note 1

)

RST pulse width

t

RW

50

-

-

ns

(

Note 1

)

Latching pulse width

t

LW

25

-

-

ns

V

NSD

, V

RST

 =0V(

Note 1

)

Input low voltage

V

IL

-

-

2.0

V

Input high voltage

V

IH

7.0

-

-

V

Input current, input high voltage

I

IH

-

1.0

5.0

μA

V

IN

= V

DD

Input current, input low voltage

I

IL

-

-25

-35

μA

V

IN

= 0V

Output
Output high voltage

V

OH

V

DD

0.25

-

-

V

I

OUT

= 10 mA

V

DD

0.3

-

-

I

OUT

= 10 mA,

T

A

= -40°C to 125°C

Output low voltage

V

OL

-

-

0.2

V

I

OUT

= -10 mA

-

-

0.3

I

OUT

= -10 mA,

T

A

= -40°C to 125°C 

Output resistance

Pull up

R

OUT

-

15

25

I

OUT

= ±10 mA

Pull down

-

8.0

20

Pull up

-

20

30

I

OUT

= ±10 mA,

T

A

= -40°C to 125°C

Pull down

-

10

30

Rise time

t

R

-

30

75

ns

C

L

= 500 pF (

Note 1

)

Fall time

t

F

-

20

75

ns

C

L

= 500 pF(

Note 1

)

ELECTRICAL CHARACTERISTICS (CONTINUED)

Electrical Specifications: V

DD 

= 10V, V

IN 

= 48V, V

DISC

= 0V, R

BIAS

 = 390 kΩ, R

OSC

 = 330 kΩ, T

A

= 25°C, unless oth-

erwise noted. 

Parameter

Symbol

Min

Typ

Max

Units

Conditions

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/20005519A-html.html
background image

HV9120/HV9123

DS20005519A-page 6

 2016 Microchip Technology Inc.

1.1

Truth Table

  

TEMPERATURE SPECIFICATIONS

Parameter

Symbol

Min

Typ

Max

Units Conditions

Temperature Ranges
Operating Temperature

-40

125

°C

Storage Temperature

-65

150

°C

Package Thermal Resistances

Thermal Resistance, SOIC

θ

ja

83

°C/W

Thermal Resistance, PDIP

θ

ja

51

°C/W

TRUTH TABLE

SHUTDOWN

RESET

OUTPUT

H

H

Normal operation

H

H → L

Normal operation, no change

L

H

Off, not latched

L

L

Off, latched

L → H

L

Off, latched, no change

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/20005519A-html.html
background image

 2016 Microchip Technology Inc.

DS20005519A-page 7

HV9120/HV9123

2.0

TYPICAL PERFORMANCE CURVES

FIGURE 2-1:

Typical Performance Curves

Output Switching Frequency

vs. Oscillator Resistance

10k                                            100k                                           1M

R

OSC 

(Ω)

f

OUT 

(Hz)

1M

100k

10k

PSRR -  Error Amplifier and Reference

10               100               1K               10K             100K            1M

80

70

60

50

40

20

10

0

-10

Error Amplifier Open Loop Gain/Phase

Gain (dB)

Phase (

O

C)

180

120

60

0

-60

-120

-180

Frequency (Hz)

10

6

10

5

10

4

10

3

10

2

10

1.0

0.1

Error Amplifier Output Impedance (Z

0

)

0

-10

-20

-30

-40

-50

-60

-70

-80

Bias Resistance (Ω)

10

5

                                              10

6

                                             10

7

Bias Current (μA)

V

DD 

= 10V

PSRR (dB)

Frequency (Hz)

Z

(Ω)

100               1K               10K              100K            1M              10M

Frequency (Hz)

V

DD 

= 10V

100                1K                  10K                100K             1M

100

10

1.0

HV9120

HV9123

R

DISCHARGE 

vs. t

OFF 

(HV9123 only)

R

DISCHARGE 

(Ω)

t

OFF 

(nsec)

R

OSC 

= 10k

R

OSC 

= 1.0k

R

OSC 

= 100k

10

-1

         10          10

1

         10

2

         10

3

         10

4

          10

5

         10

6

10

4

10

3

10

2

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/20005519A-html.html
background image

HV9120/HV9123

DS20005519A-page 8

 2016 Microchip Technology Inc.

3.0

 

PIN DESCRIPTION

The locations of the pins are listed in 

Features

.

 

 

TABLE 3-1:

PIN DESCRIPTION 

Pin #

Symbol HV9120

Symbol HV9123

Description

1

V

IN

V

IN

High-voltage, V

DD

 regulator input

2

NC

NC

No connect

3

NC

NC

No connect

4

CS

CS

Current-sense input

5

GATE

GATE

Gate-drive output

6

GND

GND

Ground

7

VDD

VDD

High-voltage, V

DD

 regulator output

8

OSCO

OSCO

Oscillator output

9

OSCI

OSCI

Oscillator Input

10

NC

DISC

Oscillator discharge, current set

11

VREF

VREF

4V Reference output
Reference voltage level can be over-
ridden by an externally-applied volt-
age source.

12

NSD

NSD

Active low input to set shutdown latch

13

RST

RST

Active high input to reset shutdown 
latch

14

COMP

COMP

Error-amplified output

15

FB

FB

Feedback-voltage input

16

BIAS

BIAS

Internal bias, current set

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/20005519A-html.html
background image

 2016 Microchip Technology Inc.

DS20005519A-page 9

HV9120/HV9123

4.0

TEST CIRCUITS

The test circuits for characterizing error-amplifier output impedance, Z

OUT

, and error-amplifier, power-supply rejection

ration, PSRR, are shown in 

Figure 4-1

.

FIGURE 4-1:

Test Circuits

+

60.4k

40.2k

1.0V swept 100Hz - 2.2MHz 

Tektronix

P6021

(1 turn

secondary)

0.1μF

+10V

(V

DD

)

GND

(-V

IN

)

(FB)

Error Amp Z

OUT

+

Reference

V

2

10.0V

4.0V

100k 1%

100k 1%

PSRR

0.1μF

0.1V swept 10Hz - 1.0MHz 

V

1

V

2

V

1

Reference

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/20005519A-html.html
background image

HV9120/HV9123

DS20005519A-page 10

 2016 Microchip Technology Inc.

5.0

DETAILED DESCRIPTION

5.1

High-Voltage Regulator

The high-voltage regulator included in HV9120 and
HV9123 consists of a high-voltage, n-channel, deple-
tion-mode DMOS transistor, driven by an error ampli-
fier, providing a current path between the V

IN

 terminal

and the V

DD

 terminal. The maximum current, about 20

mA, occurs when V

DD 

= 0, with current reducing as V

DD

rises. This path shuts off when V

DD

 rises to somewhere

between 7.8 and 9.4V. So, if V

DD

 is held at 10 or 12V

by an external source, no current other than leakage is
drawn through the high voltage transistor. This mini-
mizes dissipation.

Use an external capacitor between V

DD

 and GND to

store energy used by the chip in the time between shut-
off of the high voltage path and the V

DD

 supply’s output

rising enough to take over powering the chip. This
capacitor should have a value of 100X or more the
effective gate capacitance of the MOSFET being
driven, as well as very good high-frequency character-
istics. See the equation below. Ceramic caps work well.
Electrolytic capacitors are generally not suitable.

The device uses a resistor divider string to monitor V

DD

for both the under voltage lockout circuit and the shutoff
circuit of the high voltage FET. Setting the under volt-
age sense point about 0.6V lower on the string than the
FET shutoff point guarantees that the under voltage
lockout releases before the FET shuts off.

5.2

Bias Circuit

HV9120 and HV9123 require an external bias resistor,
connected between the BIAS pin and GND

,

 to set cur-

rents in a series of current mirrors used by the analog
sections of the chip. The nominal external bias current
requirement is 15 to 20 µA, which can be set by a 390
kΩ to 510 kΩ resistor if V

DD

 = 10V, or a 510 kΩ to 680

kΩ resistor if V

DD

 = 12V. A precision resistor is not

required, ±5% meets the device requirements.

5.3

Clock Oscillator

The clock oscillator of the HV9120 and HV9123 con-
sists of a ring of CMOS inverters, timing capacitors, and
a capacitor-discharge FET. A single external resistor
between the OSCI and OSCO sets the oscillator fre-
quency (see 

Figure 2-1

, Output Switching Frequency

vs Oscillator Resistance).

HV9120 includes a frequency-dividing flip-flop that
allows the part to operate with a 50% duty limit. Accord-
ingly, the effective switching frequency of the power

converter is half the oscillator frequency (see 

Figure 2-

1

, Output Switching Frequency vs Oscillator Resis-

tance).
An internal, discharge FET resets the oscillator ramp at
the end of the oscillator cycle. The FET is internally
connected to GND in HV9120 (50% max duty version).
Whereas, the FET is externally connected to GND, by
way of a resistor, in the HV9123 (100% duty version).
The resistor programs the oscillator dead time at the
end of the oscillator period in HV9123 applications.
The oscillator turns off during shutdown to reduce sup-
ply current by about 150 μA.

5.4

Reference

The reference of the HV9120 and HV9123 consists of
a band-gap reference, followed by a buffer amplifier,
which scales the voltage up to 4.0V. The scaling resis-
tors of the buffer amplifier are trimmed during manufac-
ture so that the output of the error amplifier, when
connected in a gain of -1 configuration, is as close to
4.0V as possible. This nulls out the input offset of the
error amplifier. As a consequence, even though the
observed reference voltage of a specific part may not
be exactly 4.0V, the feedback voltage required for
proper regulation will be 4.0V.

An approximately 50 kΩ resistor is located internally
between the output of the reference buffer amplifier
and the circuitry it feeds–reference output pin and non-
inverting input to the error amplifier. This allows overrid-
ing the internal reference with a low impedance voltage
source  ≤6.0V. Using an external reference reinstates
the input offset voltage of the error amplifier. Overriding
the reference should seldom be necessary. 

The reference of the HV9120 and HV9123 is a high
impedance node, and usually there will be significant
electrical noise nearby. Therefore, a bypass capacitor
between the reference pin and GND is strongly recom-
mended. The reference buffer amplifier is compen-
sated to be stable with a capacitive load of 0.01 to
0.1 µF.

5.5

Error Amplifier

The error amplifier in HV9120 and HV9123 is a low-
power, differential-input, operational amplifier. A PMOS
input stage is used, so the common mode range
includes ground and the input impedance is high. 

5.6

Current Sense Comparators

HV9120 and HV9123 use a dual-comparator system
with independent comparators for modulation and cur-
rent limiting. This allows the designer greater latitude in
compensation design, as there are no clamps, except
ESD protection, on the compensation pin. 

C

VDD

100

gate charge of FET at 10V

Maker
Microchip Technology Inc.