150mA Low-Noise LDO Regulator

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/20005785A-html.html
background image

 2017 Microchip Technology Inc.

DS20005785A-page 1

MIC5205

Features

• Ultra-Low Noise Output
• High Output Voltage Accuracy
• Guaranteed 150 mA Output
• Low Quiescent Current
• Low Dropout Voltage
• Extremely Tight Load and Line Regulation
• Very Low Temperature Coefficient
• Current and Thermal Limiting
• Reverse-Battery Protection
• Zero Off-Mode Current
• Logic-Controlled Electronic Enable

Applications

• Cellular Telephones
• Laptop, Notebook, and Palmtop Computers
• Battery-Powered Equipment
• PCMCIA V

CC

 and V

PP

 Regulation/Switching

• Consumer/Personal Electronics
• SMPS Post-Regulator and DC/DC Modules
• High-Efficiency Linear Power Supplies

General Description

The MIC5205 is an efficient linear voltage regulator
with ultra low-noise output, very low dropout voltage
(typically 17 mV at light loads and 165 mV at 150 mA),
and very low ground current (600 µA at 100 mA
output). The MIC5205 offers better than 1% initial
accuracy.
Designed especially for hand-held, battery-powered
devices, the MIC5205 includes a CMOS or TTL
compatible enable/shutdown control input. When shut
down, power consumption drops nearly to zero.
Regulator ground current increases only slightly in
dropout, further prolonging battery life.
Key MIC5205 features include a reference bypass pin
to improve its already excellent low-noise performance,
reversed-battery protection, current limiting, and
overtemperature shutdown.
The MIC5205 is available in fixed and adjustable output
voltage versions in a small SOT-23-5 package.
For low-dropout regulators that are stable with ceramic
output capacitors, see the µCap MIC5245/6/7 family.

Package Type

MIC5205

5-Lead SOT-23 (M5)

IN

OUT

BYP

EN

LBxx

KBxx

Part
Identification

1

3

4

5

IN

OUT

ADJ

EN

LBAA

KBAA

1

3

4

5

2

2

GND

GND

Pb-Free

Marking

150 mA Low-Noise LDO Regulator

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/20005785A-html.html
background image

MIC5205

DS20005785A-page 2

 2017 Microchip Technology Inc.

Typical Application Circuit

Functional Block Diagrams

MIC5205

5-Lead SOT-23

1

5

2

3

4

C

OUT

= 2.2μF

tantalum

C

BYP

Enable

Shutdown

EN

V

OUT

Low-Noise Operation:
C

BYP

 = 470pF, C

OUT

≥ 2.2μF

Basic Operation:
C

BYP

 = not used, C

OUT

≥ 1μF

MIC5205-x.xYM5

EN (pin 3) may be

connected directly

to IN (pin 1).

V

IN

IN

EN

OUT

BYP

C

BYP

(optional)

GND

V

REF

Bandgap

Ref.

Current Limit

Thermal Shutdown

C

OUT

V

OUT

V

IN

MIC5205-x.xYM5

Ultra-Low Noise Fixed Regulator

IN

EN

OUT

C

BYP

(optional)

GND

V

REF

Bandgap

Ref.

Current Limit

Thermal Shutdown

C

OUT

V

OUT

V

IN

R1

R2

MIC5205YM5

ADJ

V

OUT

 = V

REF

 (1 + R2/R1)

Ultra-Low Noise Adjustable 

Regulator

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/20005785A-html.html
background image

 2017 Microchip Technology Inc.

DS20005785A-page 3

MIC5205

1.0

ELECTRICAL CHARACTERISTICS

Absolute Maximum Ratings †

Supply Input Voltage (V

IN

) .......................................................................................................................... –20V to +20V

Enable Input Voltage (V

EN

) ......................................................................................................................... –20V to +20V

Power Dissipation (P

D

) (

Note 1

) ............................................................................................................ Internally Limited

Operating Ratings ‡

Supply Input Voltage (V

IN

) ......................................................................................................................... +2.5V to +16V

Enable Input Voltage (V

EN

) .................................................................................................................................0V to V

IN

 Notice: Stresses above those listed under “Absolute Maximum Ratings” may cause permanent damage to the device.
This is a stress rating only and functional operation of the device at those or any other conditions above those indicated
in the operational sections of this specification is not intended. Exposure to maximum rating conditions for extended
periods may affect device reliability.
‡ Notice: The device is not guaranteed to function outside its operating ratings.

Note 1: The maximum allowable power dissipation at any T

A

 (ambient temperature) is P

D(max)

 = (T

J(max)

 – T

A

)/

JA

.

Exceeding the maximum allowable power dissipation will result in excessive die temperature, and the reg-
ulator will go into thermal shutdown. The 

JA

 of the MIC5205-xxYM5 (all versions) is 220°C/W mounted on

a PC board.

TABLE 1-1:

ELECTRICAL CHARACTERISTICS

Electrical Characteristics: V

IN

 = V

OUT

 +1V; I

L

 = 100 µA; C

L

 = 1.0 µF; V

EN

 ≥ 2.0V; T

J

 = +25°C, bold values indicate 

–40°C < T

J

 < +125°C, unless noted.

Parameter

Symbol

Min.

Typ.

Max.

Units

Conditions

Output Voltage Accuracy

V

O

–1

1

%

Variation from specified V

OUT

–2

2

Output Voltage Temperature 
Coefficient

∆V

O

/∆T

40

ppm/°C

Note 1

Line Regulation

∆V

O

/V

O

0.004

0.012

%/V

V

IN

 = V

OUT

 + 1V to 16V

0.05

Load Regulation

∆V

O

/V

O

0.02

0.2

%

I

L

 = 0.1 mA to 150 mA, 

Note 2

0.5

Dropout Voltage, 

Note 3

V

IN

 – V

O

10

50

mV

I

L

 = 100 µA

70

mV

110

150

mV

I

L

 = 50 mA

230

mV

140

250

mV

I

L

 = 100 mA

300

mV

165

275

mV

I

L

 = 150 mA

350

mV

Quiescent Current

I

GND

0.01

1

µA

V

EN

 ≤ 0.4V (shutdown)

5

µA

V

EN

 ≤ 0.18V (shutdown)

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/20005785A-html.html
background image

MIC5205

DS20005785A-page 4

 2017 Microchip Technology Inc.

Ground Pin Current, 

Note 4

I

GND

80

125

µA

V

EN

 ≥ 2.0V, I

L

 = 100 µA

150

µA

350

600

µA

I

L

 = 50 mA

800

µA

600

1000

µA

I

L

 = 100 mA

1500

µA

1300

1900

µA

I

L

 = 150 mA

2500

µA

Ripple Rejection

PSRR

75

dB

Frequency = 100 Hz, I

L

 = 100 µA

Current Limit

I

LIMIT

320

500

mA

V

OUT

 = 0V

Thermal Regulation

∆V

O

/∆

PD

0.05

%/W

Note 5

Output Noise

e

NO

260

nV/√Hz

I

L

 = 50 mA, C

L

 = 2.2 µF, 470 pF 

from BYP to GND

ENABLE Input

Enable Input Logic-Low 
Voltage

V

IL

0.4

V

Regulator shutdown

0.18

Enable Input Logic-High 
Voltage

V

IH

2.0

V

Regulator enabled

Enable Input Current

I

IL

0.01

–1

µA

V

IL

 ≤ 0.4V

–2

V

IL

 ≤ 0.18V

I

IH

2

5

20

V

IL

 = 2.0V

25

V

IL

 = 2.0V

Note 1: Output voltage temperature coefficient is defined as the worst case voltage change divided by the total 

temperature range.

2: Regulation is measured at constant junction temperature using low duty cycle pulse testing. Parts are 

tested for load regulation in the load range from 0.1 mA to 150 mA. Changes in output voltage due to heat-
ing effects are covered by the thermal regulation specification.

3: Dropout Voltage is defined as the input to output differential at which the output voltage drops 2% below its 

nominal value measured at 1V differential.

4: Ground pin current is the regulator quiescent current plus pass transistor base current. The total current 

drawn from the supply is the sum of the load current plus the ground pin current.

5: Thermal regulation is defined as the change in output voltage at a time “t” after a change in power dissipa-

tion is applied, excluding load or line regulation effects. Specifications are for a 150 mA load pulse at V

IN

 = 

16V for t = 10 ms.

TABLE 1-1:

ELECTRICAL CHARACTERISTICS (CONTINUED)

Electrical Characteristics: V

IN

 = V

OUT

 +1V; I

L

 = 100 µA; C

L

 = 1.0 µF; V

EN

 ≥ 2.0V; T

J

 = +25°C, bold values indicate 

–40°C < T

J

 < +125°C, unless noted.

Parameter

Symbol

Min.

Typ.

Max.

Units

Conditions

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/20005785A-html.html
background image

 2017 Microchip Technology Inc.

DS20005785A-page 5

MIC5205

TEMPERATURE SPECIFICATIONS (

Note 1

)

Parameters

Sym.

Min.

Typ.

Max.

Units

Conditions

Temperature Ranges
Junction Operating Temperature 
Range

T

J

–40

+125

°C

Storage Temperature Range

T

S

–65

+150

°C

Lead Temperature

+260

°C

Soldering, 5s

Package Thermal Resistances
Thermal Resistance SOT-23-5

JA

220

°C/W

Note 2

JC

130

°C/W

Note 1: The maximum allowable power dissipation is a function of ambient temperature, the maximum allowable 

junction temperature and the thermal resistance from junction to air (i.e., T

A

, T

J

JA

). Exceeding the 

maximum allowable power dissipation will cause the device operating junction temperature to exceed the 
maximum +125°C rating. Sustained junction temperatures above +125°C can impact the device reliability.

2: The maximum allowable power dissipation at any T

A

 (ambient temperature) is P

D(max)

 = (T

J(max)

 – T

A

)/

JA

Exceeding the maximum allowable power dissipation will result in excessive die temperature, and the reg-
ulator will go into thermal shutdown. The 

JA

 of the MIC5205-xxYM5 (all versions) is 220°C/W mounted on 

a PC board.

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/20005785A-html.html
background image

MIC5205

DS20005785A-page 6

 2017 Microchip Technology Inc.

2.0

TYPICAL PERFORMANCE CURVES

FIGURE 2-1:

Power Supply Rejection 

Ratio. 

FIGURE 2-2:

Power Supply Rejection 

Ratio.

FIGURE 2-3:

Power Supply Ripple 

Rejection vs. Voltage Drop.

FIGURE 2-4:

Power Supply Rejection 

Ratio.

FIGURE 2-5:

Power Supply Rejection 

Ratio.

FIGURE 2-6:

Power Supply Ripple 

Rejection vs. Voltage Drop.

Note:

The graphs and tables provided following this note are a statistical summary based on a limited number of
samples and are provided for informational purposes only. The performance characteristics listed herein
are not tested or guaranteed. In some graphs or tables, the data presented may be outside the specified
operating range (e.g., outside specified power supply range) and therefore outside the warranted range.

-100

-80

-60

-40

-20

0

1E+1 1E+2 1E+3 1E+4 1E+5 1E+6 1E+7

)

B

d( 

R

R

S

P

FREQUENCY (Hz)

I

OUT

 = 100

μA

C

OUT

 = 1

μF

V

IN

 = 6V

V

OUT

 = 5V

10

100

1k

10k 100k 1M 10M

-100

-80

-60

-40

-20

0

1E+1 1E+2 1E+3 1E+4 1E+5 1E+6 1E+7

)

B

d( 

R

R

S

P

FREQUENCY (Hz)

I

OUT

 = 100

μA

C

OUT

 = 2.2

μF

C

BYP

 = 0.01

μF

V

IN

 = 6V

V

OUT

 = 5V

10

100

1k

10k 100k 1M 10M

0

10

20

30

40

50

60

0

0.1

0.2

0.3

0.4

)

B

d( 

N

OI

T

C

E

J

E

E

L

P

PI

R

VOLTAGE DROP (V)

I

OUT

 = 100mA

10mA

1mA

C

OUT

 = 1

μF

-100

-80

-60

-40

-20

0

1E+1 1E+2 1E+3 1E+4 1E+5 1E+6 1E+7

)

B

d( 

R

R

S

P

FREQUENCY (Hz)

I

OUT

 = 1mA

C

OUT

 = 1

μF

V

IN

 = 6V

V

OUT

 = 5V

10

100

1k

10k 100k 1M 10M

-100

-80

-60

-40

-20

0

1E+1 1E+2 1E+3 1E+4 1E+5 1E+6 1E+7

)

B

d( 

R

R

S

P

FREQUENCY (Hz)

I

OUT

 = 1mA

C

OUT

 = 2.2

μF

C

BYP

 = 0.01

μF

V

IN

 = 6V

V

OUT

 = 5V

10

100

1k

10k 100k 1M 10M

0

10

20

30

40

50

60

70

80

90

100

0

0.1

0.2

0.3

0.4

)

B

d( 

N

OI

T

C

E

J

E

E

L

P

PI

R

VOLTAGE DROP (V)

I

OUT

 = 100mA

10mA

1mA

C

OUT

 = 2.2

μF

C

BYP

 = 0.01

μF

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/20005785A-html.html
background image

 2017 Microchip Technology Inc.

DS20005785A-page 7

MIC5205

FIGURE 2-7:

Power Supply Rejection 

Ratio.

FIGURE 2-8:

Power Supply Rejection 

Ratio.

FIGURE 2-9:

Turn-On Time vs. Bypass 

Capacitance.

FIGURE 2-10:

Power Supply Rejection 

Ratio.

FIGURE 2-11:

Power Supply Rejection 

Ratio.

FIGURE 2-12:

Dropout Voltage vs. Output 

Current.

-100

-80

-60

-40

-20

0

1E+1 1E+2 1E+3 1E+4 1E+5 1E+6 1E+7

)

B

d( 

R

R

S

P

FREQUENCY (Hz)

I

OUT

 = 10mA

C

OUT

 = 1

μF

V

IN

 = 6V

V

OUT

 = 5V

10

100

1k

10k 100k 1M 10M

-100

-80

-60

-40

-20

0

1E+1 1E+2 1E+3 1E+4 1E+5 1E+6 1E+7

)

B

d( 

R

R

S

P

FREQUENCY (Hz)

I

OUT

 = 10mA

C

OUT

 = 2.2

μF

C

BYP

 = 0.01

μF

V

IN

 = 6V

V

OUT

 = 5V

10

100

1k

10k 100k 1M 10M

10

100

1000

10000

10

100

1000

10000

E

MI

T

μ

)

s

CAPACITANCE (pF)

-100

-80

-60

-40

-20

0

1E+1 1E+2 1E+3 1E+4 1E+5 1E+6 1E+7

)

B

d( 

R

R

S

P

FREQUENCY (Hz)

I

OUT

 = 100mA

C

OUT

 = 1

μF

V

IN

 = 6V

V

OUT

 = 5V

10

100

1k

10k 100k 1M 10M

-100

-80

-60

-40

-20

0

1E+1 1E+2 1E+3 1E+4 1E+5 1E+6 1E+7

)

B

d( 

R

R

S

P

FREQUENCY (Hz)

I

OUT

 = 100mA

C

OUT

 = 2.2

μF

C

BYP

 = 0.01

μF

V

IN

 = 6V

V

OUT

 = 5V

10

100

1k

10k 100k 1M 10M

0

40

80

120

160

200

240

280

320

0

40

80

120

160

)

V

m( 

E

G

A

T

L

O

T

U

O

P

O

R

D

OUTPUT CURRENT (mA)

+125

°C

+25

°C

–40

°C

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/20005785A-html.html
background image

MIC5205

DS20005785A-page 8

 2017 Microchip Technology Inc.

FIGURE 2-13:

Noise Performance

.

FIGURE 2-14:

Noise Performance

.

FIGURE 2-15:

Noise Performance.

FIGURE 2-16:

Noise Performance.

FIGURE 2-17:

Noise Performance

.

FIGURE 2-18:

Noise Performance.

0.0001

0.001

0.01

0.1

1

10

1E+1 1E+2 1E+3 1E+4 1E+5 1E+6 1E+7

E

SI

O

N

μ

/

V

)

z

H

FREQUENCY (Hz)

10

100

1k

10k 100k 1M 10M

1mA

C

OUT

 = 1

μF

C

BYP

 = 10nF

10mA, C

OUT

 = 1

μF

V

OUT

 = 5V

0.0001

0.001

0.01

0.1

1

10

1E+1 1E+2 1E+3 1E+4 1E+5 1E+6 1E+7

E

SI

O

N

μ

/

V)

z

H

FREQUENCY (Hz)

10mA

1mA

100mA

10

100

1k

10k 100k 1M 10M

V

OUT

 = 5V

C

OUT

 = 10

μF

electrolytic

0.0001

0.001

0.01

0.1

1

10

1E+1 1E+2 1E+3 1E+4 1E+5 1E+6 1E+7

E

SI

O

N

μ

/

V

)

z

H

FREQUENCY (Hz)

10mA

1mA

100mA

10

100

1k

10k 100k 1M 10M

V

OUT

 = 5V

C

OUT

 = 22

μF

tantalum
C

BYP

 = 10nF

0.0001

0.001

0.01

0.1

1

10

1E+1 1E+2 1E+3 1E+4 1E+5 1E+6 1E+7

E

SI

O

N

μ

/

V

)

z

H

FREQUENCY (Hz)

10mA

1mA

100mA

10

100

1k

10k 100k 1M 10M

V

OUT

 = 5V

C

OUT

 = 10

μF

electrolytic
C

BYP

 = 100pF

0.0001

0.001

0.01

0.1

1

10

1E+1 1E+2 1E+3 1E+4 1E+5 1E+6 1E+7

E

SI

O

N

μ

/

V

)

z

H

FREQUENCY (Hz)

10mA

1mA

100mA

10

100

1k

10k 100k 1M 10M

V

OUT

 = 5V

C

OUT

 = 10

μF

electrolytic
C

BYP

 = 1nF

0.0001

0.001

0.01

0.1

1

10

1E+1 1E+2 1E+3 1E+4 1E+5 1E+6 1E+7

E

SI

O

N

μ

/

V

)

z

H

FREQUENCY (Hz)

10mA

1mA

100mA

10

1k

100

10k 100k 1M 10M

V

OUT

 = 5V

C

OUT

 = 10

μF

electrolytic
C

BYP

 = 10nF

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/20005785A-html.html
background image

 2017 Microchip Technology Inc.

DS20005785A-page 9

MIC5205

3.0

PIN DESCRIPTIONS

The descriptions of the pins are listed in 

Table 3-1

.

TABLE 3-1:

PIN FUNCTION TABLE

Pin Number

Fixed Version

Pin Number

Adj. Version

Pin Name

Description

1

1

IN

Supply Input

2

2

GND

Ground

3

3

EN

Enable/Shutdown (Input): CMOS compatible input. Logic-high = 
enable, logic-low or open = shutdown

4

BYP

Reference Bypass: Connect external 470 pF capacitor to GND to 
reduce output noise. May be left open.

4

ADJ

Adjust (Input): Adjustable regulator feedback input. Connect to 
resistor voltage divider.

5

5

OUT

Regulator Output

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/20005785A-html.html
background image

MIC5205

DS20005785A-page 10

 2017 Microchip Technology Inc.

4.0

APPLICATION INFORMATION

4.1

Enable/Shutdown

Forcing EN (enable/shutdown) high (greater than 2V)
enables the regulator. EN is compatible with CMOS
logic gates.
If the enable/shutdown feature is not required, connect
EN (pin 3) to IN (supply input, pin 1). See 

Figure 4-1

.

4.2

Input Capacitor

A 1 µF capacitor should be placed from IN to GND if
there are more than 10 inches of wire between the
input and the AC filter capacitor or if a battery is used
as the input.

4.3

Reference Bypass Capacitor

BYP (reference bypass) is connected to the internal
voltage reference. A 470 pF capacitor (C

BYP

)

connected from BYP to GND quiets this reference,
providing a significant reduction in output noise. C

BYP

reduces the regulator phase margin; when using C

BYP

,

output capacitors of 2.2 µF or greater are generally
required to maintain stability.
The start-up speed of the MIC5205 is inversely
proportional to the size of the reference bypass
capacitor. Applications requiring a slow ramp-up of
output voltage should consider larger values of C

BYP

.

Likewise, if rapid turn-on is necessary, consider
omitting C

BYP

.

If output noise is not a major concern, omit C

BYP

 and

leave BYP open.

4.4

 Output Capacitor

An output capacitor is required between OUT and GND
to prevent oscillation. The minimum size of the output
capacitor is dependent upon whether a reference
bypass capacitor is used. 1.0 µF minimum is
recommended when C

BYP

 is not used (see 

Figure 4-2

).

2.2 µF minimum is recommended when C

BYP

 is 470 pF

(see 

Figure 4-1

). Larger values improve the regulator’s

transient response. The output capacitor value may be
increased without limit.
The output capacitor should have an ESR (effective
series resistance) of about 5Ω or less and a resonant
frequency above 1 MHz. Ultra-low-ESR capacitors can
cause a low amplitude oscillation on the output and/or
underdamped transient response. Most tantalum or
aluminum electrolytic capacitors are adequate; film
types will work, but are more expensive. Because
many aluminum electrolytics have electrolytes that
freeze at about –30°C, solid tantalums are
recommended for operation below –25°C.

At lower values of output current, less output
capacitance is required for output stability. The
capacitor can be reduced to 0.47 µF for current below
10 mA or 0.33 µF for currents below 1 mA.

4.5

No-Load Stability

The MIC5205 will remain stable and in regulation with
no load (other than the internal voltage divider) unlike
many other voltage regulators. This is especially
important in CMOS RAM keep-alive applications.

4.6

Thermal Considerations

The MIC5205 is designed to provide 150 mA of
continuous current in a very small package. Maximum
power dissipation can be calculated based on the
output current and the voltage drop across the part. To
determine the maximum power dissipation of the
package, use the junction-to-ambient thermal
resistance of the device and the following basic
equation:

EQUATION 4-1:

T

J(MAX)

 is the maximum junction temperature of the

die, 125°C, and T

A

 is the ambient operating

temperature. θ

JA

 is layout dependent; 

Table 4-1

 shows

examples of junction-to-ambient thermal resistance for
the MIC5205.

The actual power dissipation of the regulator circuit can
be determined using the equation:

EQUATION 4-2:

Substituting P

D(MAX)

 for P

D

 and solving for the

operating conditions that are critical to the application
will give the maximum operating conditions for the

TABLE 4-1:

SOT-23-5 THERMAL 
RESISTANCE

Package

θ

JA

 Rec. 

Min. 

Footprint

θ

JA

 Square 

Copper 

Clad

θ

JC

SOT-23-5

(M5)

220°C/W

170°C/W

130°C/W

P

D MAX

T

J MAX

T

A

JA

-------------------------------------

=

P

D

V

IN

V

OUT

 I

OUT

V

IN

+

I

GND

=

Maker
Microchip Technology Inc.
Datasheet PDF Download