150 mA, High PSRR, Low Quiescent Current LDO

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/22051D-html.html
background image

 2010 Microchip Technology Inc.

DS22051D-page 1

MCP1801

Features:

• 150 mA Maximum Output Current

• Low Dropout Voltage, 200 mV typical @ 100 mA

• 25 µA Typical Quiescent Current

• 0.01 µA Typical Shutdown Current

• Input Operating Voltage Range: 2.0V to 10.0V

• Standard Output Voltage Options:

-  0.9V, 1.2V, 1.8V, 2.5V, 3.0V, 3.3V, 5.0V, 6.0V

• Output Voltage Accuracy:

- ±2%  (V

R

 > 1.5V), ±30 mV (V

R

 

 1.5V)

• Stable with Ceramic Output Capacitors

• Current Limit Protection

• Shutdown Pin

• High PSRR: 70 dB typical @ 10 kHz

Applications:

• Battery-powered Devices

• Battery-powered Alarm Circuits

• Smoke Detectors

• CO

2

 Detectors

• Pagers and Cellular Phones

• Wireless Communications Equipment

• Smart Battery Packs

• Low Quiescent Current Voltage Reference

• PDAs

• Digital  Cameras

• Microcontroller Power

• Solar-Powered Instruments

• Consumer Products

• Battery Powered Data Loggers

Related Literature:

• AN765, “Using Microchip’s Micropower LDOs”

DS00765, Microchip Technology Inc., 2002

• AN766, “Pin-Compatible CMOS Upgrades to 

BiPolar LDOs”, DS00766, 
Microchip Technology Inc., 2002

• AN792, “A Method to Determine How Much 

Power a SOT23 Can Dissipate in an Application”
DS00792, Microchip Technology Inc., 2001

Description:

The MCP1801 is a family of CMOS low dropout (LDO)
voltage regulators that can deliver up to 150 mA of
current while consuming only 25 µA of quiescent
current (typical). The input operating range is specified
from 2.0V to 10.0V, making it an ideal choice for two to
six primary cell battery-powered applications, 9V
alkaline and one or two cell Li-Ion-powered
applications.

The MCP1801 is capable of delivering 100 mA with
only 200 mV (typical) of input to output voltage
differential (V

OUT

= 3.3V). The output voltage tolerance

of the MCP1801 at +25°C is typically ±0.4% with a
maximum of ±2%. Line regulation is ±0.01% typical at
+25°C.

The LDO output is stable with a minimum of 1 µF of
output capacitance. Ceramic, tantalum, or aluminum
electrolytic capacitors can all be used for input and
output. Overcurrent limit with current foldback provides
short-circuit protection. A shutdown (SHDN) function
allows the output to be enabled or disabled. When
disabled, the MCP1801 draws only 0.01 µA of current
(typical).

The MCP1801 is available in a SOT-23-5 package.

Package Types

SOT-23-5

1

2

3

5

4

V

OUT

NC

V

IN

SHDN

V

SS

150 mA, High PSRR, Low Quiescent Current LDO

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/22051D-html.html
background image

MCP1801

DS22051D-page 2

 2010 Microchip Technology Inc.

Functional Block Diagram

Typical Application Circuit

+

-

MCP1801

V

IN

V

OUT

GND

+V

IN

Error Amplifier

Voltage
Reference

Current Limiter

Shutdown

 Control

SHDN

+V

IN

MCP1801

V

IN

C

IN

1 µF

C

OUT

1 µF  Ceramic

V

IN

9V

Battery

+

V

OUT

NC

G

ND

SHDN

 Ceramic

V

OUT

3.3V @ 40 mA

1

2

3

5

4

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/22051D-html.html
background image

 2010 Microchip Technology Inc.

DS22051D-page 3

MCP1801

1.0

ELECTRICAL 
CHARACTERISTICS

Absolute Maximum Ratings †

Input Voltage  ................................................................. +12V

Output Current (Continuous) .....................  P

D

/(V

IN

-V

OUT

)mA

Output Current (Peak) ............................................... 500 mA

Output Voltage  ............................... (V

SS

-0.3V) to (V

IN

+0.3V)

SHDN Voltage ..................................(V

SS

-0.3V) to (V

IN

+0.3V)

Continuous Power Dissipation:

SOT-23-5 .............................................................. 250 mW

† Notice: Stresses above those listed under “Maximum
Ratings” may cause permanent damage to the device.
This is a stress rating only and functional operation of
the device at those or any other conditions above those
indicated in the operational listings of this specification
is not implied. Exposure to maximum rating conditions
for extended periods may affect device reliability.

ELECTRICAL CHARACTERISTICS

Electrical Specifications: Unless otherwise specified, all limits are established for V

IN

 = V

R

 + 1.0V, 

Note 1

, C

OUT

 = 1 µF (X7R), 

C

IN

 = 1 µF (X7R), V

SHDN

 = V

IN

, T

A

 = +25°C.

Parameters

Sym

Min

Typ

Max

Units

Conditions

Input / Output Characteristics

Input Operating Voltage

V

IN

2.0

10.0

V

Note 1

Input Quiescent Current

I

q

25

50

µA

I

L

 = 0 mA

Shutdown Current

I

SHDN

0.01

0.10

µA

SHDN = 0V

Maximum Output Current

I

OUT_mA

150

mA

Current Limiter

I

LIMIT

300

mA

if  V

R

 

 1.75V, then V

IN

 = V

R

 + 2.0V

Output Short Circuit Current

I

OUT_SC

50

mA

if  V

R

 

 1.75V, then V

IN

 = V

R

 + 2.0V

Output Voltage Regulation

V

OUT

V

R

-2.0%

V

R

V

R

+2.0%

V

V

R

 

 1.45V, I

OUT

 = 30 mA, 

Note 2

V

R

-30 mV

V

R

V

R

+30 mV

V

R

 

 1.45V, I

OUT

 = 30 mA

V

OUT

 Temperature Coeffi-

cient

TCV

OUT

100

ppm/°C

I

OUT

 = 30 mA, -40°C 

T

A

 

+85°C, 

Note 3

Line Regulation

V

OUT

/

(V

OUT

X

V

IN

)

-0.2

±0.01

+0.2

%/V

(V

R

 + 1V)  

V

IN

  

10V, 

Note 1

V

R

 

 1.75V, I

OUT

 = 30 mA

V

R

 

 1.75V, I

OUT

 = 10 mA

Load Regulation

V

OUT

/V

OUT

15

50

mV

I

L

 = 1.0 mA to 100 mA, 

Note 4

Dropout Voltage

, 

Note 5

V

DROPOUT

60

90

mV

I

L

 = 30 mA, 3.1V  

V

R

 

 6.0V

200

250

I

L

 = 100 mA, 3.1V  

V

R

 

 6.0V

80

120

I

L

 = 30 mA, 2.0V  

V

R

 

 3.1V

240

350

I

L

 = 100 mA, 2.0V  

V

R

 < 3.1V

2.07 - V

R

2.10 - V

R

V

I

L

 = 30 mA, V

R

 

 2.0V

2.23 - V

R

2.33 - V

R

I

L

 = 100 mA, V

R

 < 2.0V

Power Supply Ripple 
Rejection Ratio

PSRR

70

dB

f = 10 kHz, I

L

 = 50 mA,

V

INAC

 = 1V pk-pk, C

IN

 = 0 µF,

if V

R

 

 1.5V, then V

IN

 = 2.5V

Output Noise

e

N

0.6

µV/

Hz

I

OUT

=100 mA, f=1 kHz,

C

OUT

=1 µF (X7R Ceramic), 

V

OUT

=3.3V

Note 1:

The minimum V

IN

 must meet two conditions: V

IN

2.0V and V

IN

 

(V

R

 + 1.0V).

2:

V

R

 is the nominal regulator output voltage. For example: V

R

 = 1.8V, 2.5V, 3.0V, 3.3V, or 5.0V.

The input voltage V

IN

 = V

R

 + 1.0V or Vi

IN

 = 2.0V (whichever is greater); I

OUT

 = 100 µA. 

3:

TCV

OUT

 = (V

OUT-HIGH

 - V

OUT-LOW

) *10

6

 / (V

R

 * 

Temperature), V

OUT-HIGH

 = highest voltage measured over the 

temperature range. V

OUT-LOW

 = lowest voltage measured over the temperature range.

4:

Load regulation is measured at a constant junction temperature using low duty cycle pulse testing. Changes in output 
voltage due to heating effects are determined using thermal regulation specification TCV

OUT

.

5:

Dropout voltage is defined as the input to output differential at which the output voltage drops 2% below its measured 
value with an applied input voltage of V

R

 + 1.0V or 2.0V, whichever is greater.

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/22051D-html.html
background image

MCP1801

DS22051D-page 4

 2010 Microchip Technology Inc.

TEMPERATURE SPECIFICATIONS

Shutdown Input

Logic High Input

V

SHDN-HIGH

1.6

V

Logic Low Input

V

SHDN-LOW

0.25

V

ELECTRICAL CHARACTERISTICS (CONTINUED)

Electrical Specifications: Unless otherwise specified, all limits are established for V

IN

 = V

R

 + 1.0V, 

Note 1

, C

OUT

 = 1 µF (X7R), 

C

IN

 = 1 µF (X7R), V

SHDN

 = V

IN

, T

A

 = +25°C.

Parameters

Sym

Min

Typ

Max

Units

Conditions

Note 1:

The minimum V

IN

 must meet two conditions: V

IN

2.0V and V

IN

 

(V

R

 + 1.0V).

2:

V

R

 is the nominal regulator output voltage. For example: V

R

 = 1.8V, 2.5V, 3.0V, 3.3V, or 5.0V.

The input voltage V

IN

 = V

R

 + 1.0V or Vi

IN

 = 2.0V (whichever is greater); I

OUT

 = 100 µA. 

3:

TCV

OUT

 = (V

OUT-HIGH

 - V

OUT-LOW

) *10

6

 / (V

R

 * 

Temperature), V

OUT-HIGH

 = highest voltage measured over the 

temperature range. V

OUT-LOW

 = lowest voltage measured over the temperature range.

4:

Load regulation is measured at a constant junction temperature using low duty cycle pulse testing. Changes in output 
voltage due to heating effects are determined using thermal regulation specification TCV

OUT

.

5:

Dropout voltage is defined as the input to output differential at which the output voltage drops 2% below its measured 
value with an applied input voltage of V

R

 + 1.0V or 2.0V, whichever is greater.

Parameters

Sym

Min

Typ

Max

Units

Conditions

Temperature Ranges

Operating Temperature Range

T

A

-40

+85

°C

Storage Temperature Range

Tstg

-55

+125

°C

Thermal Package Resistance

Thermal Resistance, 5LD SOT-23

JA

JC


256

81


°C/W

EIA/JEDEC JESD51-7
FR-4 0.063 4-Layer Board

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/22051D-html.html
background image

 2010 Microchip Technology Inc.

DS22051D-page 5

MCP1801

2.0

TYPICAL PERFORMANCE CURVES

Note: Unless otherwise indicated: V

R

 = 3.3V, C

OUT

 = 1 µF Ceramic (X7R), C

IN

 = 1 µF Ceramic (X7R), I

L

 = 100 µA,

T

A

 = +25°C, V

IN

 = V

R

 + 1.0V, SOT-23-5.

Note: Junction Temperature (T

J

) is approximated by soaking the device under test to an ambient temperature equal to the desired junction temperature.

The test time is small enough such that the rise in Junction temperature over the Ambient temperature is not significant.

FIGURE 2-1:

Quiescent Current vs. Input 

Voltage.

FIGURE 2-2:

Quiescent Current vs. Input 

Voltage.

FIGURE 2-3:

Quiescent Current vs. Input 

Voltage.

FIGURE 2-4:

Ground Current vs. Load 

Current.

FIGURE 2-5:

Ground Current vs. Load 

Current.

FIGURE 2-6:

Quiescent Current vs. 

Junction Temperature.

Note:

The graphs and tables provided following this note are a statistical summary based on a limited number of
samples and are provided for informational purposes only. The performance characteristics listed herein
are not tested or guaranteed. In some graphs or tables, the data presented may be outside the specified
operating range (e.g., outside specified power supply range) and therefore outside the warranted range.

20.00

21.00

22.00

23.00

24.00

25.00

26.00

27.00

2

4

6

8

10

Input Voltage (V)

Q

u

iesc

ent C

u

rr

e

nt

 (

µ

A

)

V

OUT

 = 0.9V

I

OUT

 = 0 µA

+25°C

-45°C

0°C

+90°C

24.00

25.00

26.00

27.00

28.00

29.00

30.00

4

5

6

7

8

9

10

Input Voltage (V)

Q

u

iesce

nt

 C

u

rr

ent (µA

)

V

OUT

 = 3.3V

I

OUT

 = 0 µA

+25°C

-45°C

0°C

+90°C

25.00

26.00

27.00

28.00

29.00

30.00

7

7.5

8

8.5

9

9.5

10

Input Voltage (V)

Quiesce

nt C

u

rr

en

t (µA

)

V

OUT

 = 6.0V

I

OUT

 = 0 µA

+25°C

-45°C

0°C

+90°C

0

10

20

30

40

50

60

70

80

0

30

60

90

120

150

Load Current (mA)

G

N

D

 C

u

rr

en

t (µA

)

V

OUT

 = 0.9V

V

IN

 = 2.0V

10

20

30

40

50

60

70

80

0

25

50

75

100

125

150

Load Current (mA)

G

N

D

 C

u

rr

en

t (µA

)

V

OUT

 = 6.0V

V

IN

 = 7.0V

V

OUT

 = 3.3V

V

IN

 = 4.3V

20.00

22.00

24.00

26.00

28.00

30.00

-45

-22.5

0

22.5

45

67.5

90

Junction Temperature (°C)

Quiesce

nt C

u

rr

en

t (µA

)

I

OUT

 = 0 mA

V

OUT

 = 0.9V

V

IN

 = 2.0V

V

OUT

 = 6.0V

V

IN

 = 7.0V

V

OUT

 = 3.3V

V

IN

 = 4.3V

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/22051D-html.html
background image

MCP1801

DS22051D-page 6

 2010 Microchip Technology Inc.

Note: Unless otherwise indicated: V

R

 = 3.3V, C

OUT

 = 1 µF Ceramic (X7R), C

IN

 = 1 µF Ceramic (X7R), I

L

 = 100 µA,

T

A

 = +25°C, V

IN

 = V

R

 + 1.0V, SOT-23-5.

FIGURE 2-7:

Output Voltage vs. Input 

Voltage.

FIGURE 2-8:

Output Voltage vs. Input 

Voltage.

FIGURE 2-9:

Output Voltage vs. Input 

Voltage.

FIGURE 2-10:

Output Voltage vs. Load 

Current.

FIGURE 2-11:

Output Voltage vs. Load 

Current.

FIGURE 2-12:

Output Voltage vs. Load 

Current.

0.890

0.895

0.900

0.905

0.910

0.915

0.920

2

3

4

5

6

7

8

9

10

Input Voltage (V)

O

u

tpu

t V

o

ltage (

V

)

V

OUT

 = 0.9V

I

LOAD

 = 1 mA

+25°C

-45°C

0°C

+90°C

3.27

3.28

3.29

3.30

3.31

3.32

3.33

3.34

4

5

6

7

8

9

10

Input Voltage (V)

Outp

ut V

o

lt

age (V

)

V

OUT

 = 3.3V

I

LOAD

 = 1 mA

+25°C

-45°C

0°C

+90°C

5.94

5.96

5.98

6.00

6.02

6.04

6.06

7

7.5

8

8.5

9

9.5

10

Input Voltage (V)

O

u

tp

ut V

o

lta

g

e (V

)

V

OUT

 = 6.0V

I

LOAD

 = 1 mA

+25°C

-45°C

0°C

+90°C

0.880

0.885

0.890

0.895

0.900

0.905

0.910

0.915

0.920

0

25

50

75

100

125

150

Load Current (mA)

Ou

tpu

t V

o

ltage (V

)

V

IN

 = 2.0V

V

OUT

 = 0.9V

+25°C, -45°C

0°C

+90°C

3.26

3.27

3.28

3.29

3.30

3.31

3.32

3.33

3.34

0

25

50

75

100

125

150

Load Current (mA)

Outp

ut V

o

lt

age (V

)

V

IN

 = 4.3V

V

OUT

 = 3.3V

+25°C

-45°C

0°C

+90°C

5.92

5.94

5.96

5.98

6.00

6.02

6.04

6.06

0

25

50

75

100

125

150

Load Current (mA)

Outp

ut V

o

ltag

e (V

)

V

IN

 = 7.0V

V

OUT

 = 6.0V

+25°C

-45°C

0°C

+90°C

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/22051D-html.html
background image

 2010 Microchip Technology Inc.

DS22051D-page 7

MCP1801

Note: Unless otherwise indicated: V

R

 = 3.3V, C

OUT

 = 1 µF Ceramic (X7R), C

IN

 = 1 µF Ceramic (X7R), I

L

 = 100 µA,

T

A

 = +25°C, V

IN

 = V

R

 + 1.0V, SOT-23-5.

FIGURE 2-13:

Dropout Voltage vs. Load 

Current.

FIGURE 2-14:

Dropout Voltage vs. Load 

Current.

FIGURE 2-15:

Dynamic Line Response.

FIGURE 2-16:

Dynamic Line Response.

FIGURE 2-17:

Short Circuit Current vs. 

Input Voltage.

FIGURE 2-18:

Load Regulation vs. 

Temperature.

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0

25

50

75

100

125

150

Load Current (mA)

D

rop

ou

t Vo

ltage (V

)

V

OUT

 = 3.3V

+25°C

+0°C

-45°C

+90°C

0.00

0.05

0.10

0.15

0.20

0.25

0

25

50

75

100

125

150

Load Current (mA)

D

ropo

ut V

o

lta

g

e (V

)

V

OUT

 = 6.0V

+25°C

+0°C

-45°C

+90°C

0

20

40

60

80

100

120

140

0

1

2

3

4

5

6

7

8

9

10

Input Voltage (V)

S

h

o

rt C

ir

cuit C

u

rre

nt (m

A

)

V

OUT

 = 3.3V

R

OUT

< 0.1Ω

-1.60

-1.50

-1.40

-1.30

-1.20

-1.10

-1.00

-45

-22.5

0

22.5

45

67.5

90

Temperature (°C)

Load R

e

gul

at

ion 

(%

)

V

OUT

= 0.9V

I

OUT

 = 0.1 mA to 150 mA

V

IN

 = 6V

V

IN

 = 4V

V

IN

 = 10V

V

IN

 = 8V

V

IN

 = 2V

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/22051D-html.html
background image

MCP1801

DS22051D-page 8

 2010 Microchip Technology Inc.

Note: Unless otherwise indicated: V

R

 = 3.3V, C

OUT

 = 1 µF Ceramic (X7R), C

IN

 = 1 µF Ceramic (X7R), I

L

 = 100 µA,

T

A

 = +25°C, V

IN

 = V

R

 + 1.0V, SOT-23-5.

FIGURE 2-19:

Load Regulation vs. 

Temperature.

FIGURE 2-20:

Load Regulation vs. 

Temperature.

FIGURE 2-21:

Line Regulation vs. 

Temperature.

FIGURE 2-22:

Line Regulation vs. 

Temperature.

FIGURE 2-23:

Line Regulation vs. 

Temperature.

FIGURE 2-24:

PSRR vs. Frequency.

-0.60

-0.50

-0.40

-0.30

-0.20

-0.10

0.00

-45

-22.5

0

22.5

45

67.5

90

Temperature (°C)

Loa

d R

egu

lation (

%

)

V

OUT

 = 3.3V

I

OUT

 = 0.1 mA to 150 mA

V

IN

 = 4.3V

V

IN

 = 10V

V

IN

 = 8V

V

IN

 = 6V

-0.40

-0.30

-0.20

-0.10

0.00

0.10

-45

-22.5

0

22.5

45

67.5

90

Temperature (°C)

L

o

ad

 R

egu

la

tion

 (

%

)

V

OUT

 = 6.0V

I

OUT

 = 0.1 mA to 150 mA

V

IN

 = 9V

V

IN

 = 10V

V

IN

 = 7V

V

IN

 = 8V

-0.010

-0.005

0.000

0.005

0.010

0.015

0.020

-45

-22.5

0

22.5

45

67.5

90

Temperature (°C)

Lin

e R

egu

la

tion

 (

%

/V

)

V

IN

 = 2.0 to 10.0V

V

OUT

 = 0.9V

10 mA

1 mA

50 mA

100 mA

150 mA

-0.010

-0.005

0.000

0.005

0.010

0.015

0.020

-45

-22.5

0

22.5

45

67.5

90

Temperature (°C)

Line R

eg

u

lation

 (%/V

)

V

OUT

 = 3.3V

V

IN

 = 4.3V to 10V

1 mA

100 mA

10 mA

150 mA

50 mA

-0.010

-0.005

0.000

0.005

0.010

0.015

0.020

-45

-22.5

0

22.5

45

67.5

90

Temperature (°C)

Lin

e R

egu

la

tion

 (

%

/V

)

V

OUT

 = 6.0V

V

IN

 = 7.0V to 10.0V

100 mA

150 mA

1 mA

50 mA

10 mA

-90

-80

-70

-60

-50

-40

-30

-20

-10

0

0.01

0.1

1

10

100

1000

Frequency (kHz)

PS

R

R

 (d

B)

V

= 3.3V

V

IN 

= 4.3V

V

INAC

 = 100 mV p-p

C

IN 

= 0 μF

I

OUT 

= 100 µA

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/22051D-html.html
background image

 2010 Microchip Technology Inc.

DS22051D-page 9

MCP1801

Note: Unless otherwise indicated: V

R

 = 3.3V, C

OUT

 = 1 µF Ceramic (X7R), C

IN

 = 1 µF Ceramic (X7R), I

L

 = 100 µA,

T

A

 = +25°C, V

IN

 = V

R

 + 1.0V, SOT-23-5.

FIGURE 2-25:

PSRR vs. Frequency.

FIGURE 2-26:

Power-Up Timing.

FIGURE 2-27:

Dynamic Load Response.

FIGURE 2-28:

Dynamic Load Response.

FIGURE 2-29:

Power-Up Timing From 

SHDN.

FIGURE 2-30:

Output Noise

-90

-80

-70

-60

-50

-40

-30

-20

-10

0

0.01

0.1

1

10

100

1000

Frequency (kHz)

PSRR (

d

B)

V

= 6.0V

V

IN 

= 7.0V

V

INAC

 = 100 mV p-p

C

IN 

= 0 μF

I

OUT 

= 100 µA

0.010

0.100

1.000

10.000

0.01

0.1

1

10

100

1000

Frequency (KHz)

Noi

se (µV

/

Hz

)

Vout = 3.3V

Vout = 0.9V

I

OUT

 = 100 mA 

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/22051D-html.html
background image

MCP1801

DS22051D-page 10

 2010 Microchip Technology Inc.

NOTES:

Maker
Microchip Technology Inc.
Datasheet PDF Download