11AAXXX/11LCXXX Data Sheet

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/22067J-html.html
background image

 2011 Microchip Technology Inc.

DS22067J-page 1

11AA010/11LC010

11AA080/11LC080

11AA020/11LC020

11AA160/11LC160

11AA040/11LC040

11AA161/11LC161

Features:

• Single I/O, UNI/O

®

 Serial Interface Bus

• Low-Power CMOS Technology:

- 1 mA active current, typical

- 1 µA standby current (max.) (I-temp)

• 128 x 8 through 2,048 x 8 Bit Organizations

• Schmitt Trigger Inputs for Noise Suppression

• Output Slope Control to Eliminate Ground Bounce

• 100 kbps Max. Bit Rate – Equivalent to 100 kHz 

Clock Frequency

• Self-Timed Write Cycle (including Auto-Erase)

• Page-Write Buffer for up to 16 Bytes

• STATUS Register for Added Control:

- Write enable latch bit

- Write-In-Progress bit

• Block Write Protection:

- Protect none, 1/4, 1/2 or all of array

• Built-in Write Protection:

- Power-on/off data protection circuitry

- Write enable latch

• High Reliability:

- Endurance: 1,000,000 erase/write cycles

- Data retention: > 200 years

- ESD protection: > 4,000V

• 3-lead SOT-23 and TO-92 Packages

• 4-lead Chip Scale Package

• 8-lead PDIP, SOIC, MSOP, TDFN Packages

• Pb-Free and RoHS Compliant

• Available Temperature Ranges:

Pin Function Table

Description:

The Microchip Technology Inc. 11AAXXX/11LCXXX
(11XX

*

) devices are a family of 1 Kbit through 16 Kbit

Serial Electrically Erasable PROMs. The devices are
organized in blocks of x8-bit memory and support the
patented** single I/O UNI/O

®

  serial  bus.  By  using

Manchester encoding techniques, the clock and data
are combined into a single, serial bit stream (SCIO),
where the clock signal is extracted by the receiver to
correctly decode the timing and value of each bit.

Low-voltage design permits operation down to 1.8V (for
11AAXXX devices), with standby and active currents of
only 1 uA and 1 mA, respectively. 

The 11XX family is available in standard packages
including 8-lead PDIP and SOIC, and advanced pack-
aging including 3-lead SOT-23, 3-lead TO-92, 4-lead
Chip Scale, 8-lead TDFN, and 8-lead MSOP.

Package Types (not to scale)

- Industrial (I): 

-40°C to

+85°C

- Automotive (E):

-40°C to +125°C

Name

Function

SCIO

Serial Clock, Data Input/Output

V

SS

Ground

V

CC

Supply Voltage

NC
NC

NC

Vss

1

2

3

4

8

7

6

5

V

CC

NC

NC
SCIO

PDIP/SOIC

(P, SN)

NC

NC
NC

V

SS

1
2
3
4

8
7
6
5

V

CC

NC

NC

SCIO

(MS)

TDFN

NC

NC

NC

V

SS

NC

NC

SCIO

5

6

7

8

4

3

2

1

V

CC

(MN)

MSOP

SOT23

2

3

1

SCIO

V

CC

V

SS

(TT)

Vcc

TO-92

SCIO

(TO)

1

2

3

4

V

CC

V

SS

NC

SCIO

(Top down view,
balls not visible

)

Note 1:

Available in I-temp, “AA” only.

Vss

CS (Chip Scale)

(1)

1K-16K UNI/O

®

 Serial EEPROM Family Data Sheet

* 11XX

 

is used in this document as a generic part number for the 11 series devices.

** Microchip’s UNI/O

®

 Bus products are covered by some or all of the following patents issued in the U.S.A.: 7,376,020 & 7,788,430.

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/22067J-html.html
background image

11XX

DS22067J-page 2

 2011 Microchip Technology Inc.

DEVICE SELECTION TABLE

Part Number

Density 

(bits)

Organization

V

CC

 Range

Page Size 

(Bytes)

Temp. 

Ranges

Device 

Address

Packages

11LC010

1K

128 x 8

2.5-5.5V

16

I,E

0xA0

P, SN, MS, MN, TO, TT

11AA010

1K

128 x 8

1.8-5.5V

16

I

0xA0

P, SN, MS, MN, TO, TT, CS

11LC020

2K

256 x 8

2.5-5.5V

16

I,E

0xA0

P, SN, MS, MN, TO, TT

11AA020

2K

256 x 8

1.8-5.5V

16

I

0xA0

P, SN, MS, MN, TO, TT, CS

11LC040

4K

512 x 8

2.5-5.5V

16

I,E

0xA0

P, SN, MS, MN, TO, TT

11AA040

4K

512 x 8

1.8-5.5V

16

I

0xA0

P, SN, MS, MN, TO, TT, CS

11LC080

8K

1,024 x 8

2.5-5.5V

16

I,E

0xA0

P, SN, MS, MN, TO, TT

11AA080

8K

1,024 x 8

1.8-5.5V

16

I

0xA0

P, SN, MS, MN, TO, TT, CS

11LC160

16K

2,048 x 8

2.5-5.5V

16

I,E

0xA0

P, SN, MS, MN, TO, TT

11AA160

16K

2,048 x 8

1.8-5.5V

16

I

0xA0

P, SN, MS, MN, TO, TT,CS

11LC161

16K

2,048 x 8

2.5-5.5V

16

I, E

0xA1

P, SN, MS, MN, TO, TT

11AA161

16K

2,048 x 8

1.8-5.5V

16

I

0xA1

P, SN, MS, MN, TO, TT, CS

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/22067J-html.html
background image

 2011 Microchip Technology Inc.

DS22067J-page 3

11XX

1.0

ELECTRICAL CHARACTERISTICS

Absolute Maximum Ratings 

(†)

V

CC

............................................................................................................................................................................. 6.5V

SCIO w.r.t. V

SS

.....................................................................................................................................-0.6V to V

CC

+1.0V

Storage temperature ................................................................................................................................. -65°C to 150°C

Ambient temperature under bias............................................................................................................... -40°C to 125°C

ESD protection on all pins.......................................................................................................................................... 4 kV

TABLE 1-1:

DC CHARACTERISTICS

†  NOTICE: Stresses above those listed under ‘Absolute Maximum Ratings’ may cause permanent damage to the
device. This is a stress rating only and functional operation of the device at those or any other conditions above those
indicated in the operational listings of this specification is not implied. Exposure to maximum rating conditions for an
extended period of time may affect device reliability.

DC CHARACTERISTICS

Electrical Characteristics:
Industrial (I): 

V

CC

 = 2.5V to 5.5V

T

A

 = -40°C to +85°C

V

CC

 = 1.8V to 2.5V

T

A

 = -20°C to +85°C

Automotive (E):

V

CC

 = 2.5V to 5.5V

T

A

 = -40°C to +125°C

Param.

No.

Sym.

Characteristic

Min.

Max.

Units

Test Conditions

D1

V

IH

High-level input 
voltage

0.7*V

CC

V

CC

+1

V

D2

V

IL

Low-level input
voltage

-0.3
-0.3

0.3*V

CC

0.2*V

CC

V
V

V

CC

2.5V

V

CC

 < 2.5V

D3

V

HYS

Hysteresis of Schmitt 
Trigger inputs (SCIO)

0.05*Vcc

V

V

CC

2.5V (

Note 1

)

D4

V

OH

High-level output
voltage

V

CC

 -0.5

V

CC

 -0.5


V
V

I

OH

 = -300 

A, V

CC

 = 5.5V

I

OH

 = -200 

A, Vcc = 2.5V

D5

V

OL

Low-level output
voltage


0.4
0.4

V
V

I

O

I = 300 

A, V

CC

 = 5.5V

I

O

I = 200 

A, Vcc = 2.5V

D6

I

O

Output current limit 
(Note 2)


±4
±3

mA
mA

V

CC

 = 5.5V (Note 1)

Vcc = 2.5V (Note 1)

D7

I

LI

Input leakage current 
(SCIO)

±1

A

V

IN

 = V

SS

 or V

CC

D8

C

INT

Internal Capacitance
(all inputs and 
outputs)

7

pF

T

A

 = 25°C, F

CLK

 = 1 MHz,

V

CC

 = 5.0V (

Note 1

)

D9

I

CC

 Read Read Operating

Current


3
1

mA
mA

V

CC

=5.5V; F

BUS

=100 kHz, C

B

=100 pF

V

CC

=2.5V; F

BUS

=100 kHz, C

B

=100 pF

D10

I

CC

 Write Write Operating

Current


5
3

mA
mA

V

CC

 = 5.5V

V

CC

 = 2.5V

D11

Iccs

Standby Current

5

1

A

A

V

CC

 = 5.5V

T

A

 = 125°C

V

CC

 = 5.5V

T

A

 = 85°C

D12

I

CCI

Idle Mode Current

50

A

V

CC

 = 5.5V

Note 1:

This parameter is periodically sampled and not 100% tested.

2:

The SCIO output driver impedance will vary to ensure I

O

 is not exceeded.

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/22067J-html.html
background image

11XX

DS22067J-page 4

 2011 Microchip Technology Inc.

TABLE 1-3:

AC TEST CONDITIONS

TABLE 1-2:

AC CHARACTERISTICS

AC CHARACTERISTICS

Electrical Characteristics:
Industrial (I): 

V

CC

 = 2.5V to 5.5V

T

A

 = -40°C to +85°C

V

CC

 = 1.8V to 2.5V

T

A

 = -20°C to +85°C

Automotive (E):

V

CC

 = 2.5V to 5.5V

T

A

 = -40°C to +125°C

Param.

No.

Sym.

Characteristic

Min.

Max.

Units

Test Conditions

1

F

BUS

Serial bus frequency

10

100

kHz

2

T

E

Bit period

10

100

µs

3

T

IJIT

Input edge jitter tolerance

±0.06

UI

(Note 3)

4

F

DRIFT

Serial bus frequency drift 
rate tolerance

±0.50

% per byte —

5

F

DEV

Serial bus frequency drift 
limit

±5

%  per 

command

6

T

OJIT

Output edge jitter

±0.25

UI

(Note 3)

7

T

R

SCIO input rise time
(

Note 1

)

100

ns

8

T

F

SCIO input fall time
(

Note 1

)

100

ns

9

T

STBY

Standby pulse time

600

µs

10

T

SS

Start header setup time

10

µs

11

T

HDR

Start header low pulse 
time

5

µs

12

T

SP

Input filter spike
suppression (SCIO)

50

ns

(

Note 1

)

13

T

WC

Write cycle time
(byte or page)


5

10

ms
ms

Write, WRSR commands
ERAL, SETAL commands

14

Endurance (per page)

1M

cycles

25°C, V

CC

 = 5.5V (

Note 2

)

Note 1: This parameter is periodically sampled and not 100% tested.

2: This parameter is not tested but ensured by characterization. For endurance estimates in a specific 

application, please consult the Total Endurance

 Model which can be obtained on Microchip’s web site: 

www.microchip.com.

3:

A Unit Interval (UI) is equal to 1-bit period (T

E

) at the current bus frequency.

AC Waveform: 

V

LO

 = 0.2V

V

H I

 = V

CC

 - 0.2V 

C

L

 = 100 pF

Timing Measurement Reference Level

Input

0.5 V

CC

Output

0.5 V

CC

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/22067J-html.html
background image

 2011 Microchip Technology Inc.

DS22067J-page 5

11XX

FIGURE 1-1:

BUS TIMING – START HEADER

FIGURE 1-2:

BUS TIMING – DATA 

FIGURE 1-3:

BUS TIMING – STANDBY PULSE

FIGURE 1-4:

BUS TIMING – JITTER

SCIO

2

Data ‘0’

Data ‘1’

Data ‘0’

Data ‘1’

Data ‘0’

Data ‘1’

Data ‘0’

Data ‘1’

MAK bit NoSAK bit

11

10

2

SCIO

7

8

Data ‘0’

Data ‘1’

Data ‘1’

Data ‘0’

12

SCIO

9

Standby

Mode

Ideal Edge

3

2

3

6

6

2

6

6

Ideal Edge

Ideal Edge

Ideal Edge

from Master

from Master

from Slave

from Slave

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/22067J-html.html
background image

11XX

DS22067J-page 6

 2011 Microchip Technology Inc.

2.0

FUNCTIONAL DESCRIPTION

2.1

Principles of Operation

The 11XX family of serial EEPROMs support the
UNI/O

®

 protocol. They can be interfaced with

microcontrollers, including Microchip’s PIC

®

 microcon-

trollers, ASICs, or any other device with an available
discrete I/O line that can be configured properly to
match the UNI/O protocol.

The 11XX devices contain an 8-bit instruction register.
The devices are accessed via the SCIO pin.

Table 4-1

 contains a list of the possible instruction

bytes and format for device operation. All instructions,
addresses, and data are transferred MSb first, LSb
last.

Data is embedded into the I/O stream through
Manchester encoding. The bus is controlled by a
master device which determines the clock period, con-
trols the bus access and initiates all operations, while
the 11XX works as slave. Both master and slave can
operate as transmitter or receiver, but the master
device determines which mode is active.

FIGURE 2-1:

BLOCK DIAGRAM

SCIO

STATUS

Register

I/O Control

Memory

Control

Logic

X

Dec

HV Generator

EEPROM

Array

Page Latches

Y Decoder

Sense Amp.
R/W Control

Logic

Vcc

Vss

Current-

Limited

Slope

Control

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/22067J-html.html
background image

 2011 Microchip Technology Inc.

DS22067J-page 7

11XX

3.0

BUS CHARACTERISTICS

3.1

Standby Pulse

When the master has control of SCIO, a standby pulse
can be generated by holding SCIO high for T

STBY

. At

this time, the 11XX will reset and return to Standby
mode. Subsequently, a high-to-low transition on SCIO
(the first low pulse of the header) will return the device
to the active state.

Once a command is terminated satisfactorily (i.e., via
a NoMAK/SAK combination during the Acknowledge
sequence), performing a standby pulse is not required
to begin a new command as long as the device to be
selected is the same device selected during the previ-
ous command. However, a period of T

SS

 must be

observed after the end of the command and before the
beginning of the start header. After T

SS

, the start

header (including T

HDR

 low pulse) can be transmitted

in order to begin the new command.

If a command is terminated in any manner other than a
NoMAK/SAK combination, then the master must per-
form a standby pulse before beginning a new com-
mand, regardless of which device is to be selected.

An example of two consecutive commands is shown in

Figure 3-1

. Note that the device address is the same

for both commands, indicating that the same device is
being selected both times.

A standby pulse cannot be generated while the slave
has control of SCIO. In this situation, the master must
wait for the slave to finish transmitting and to release
SCIO before the pulse can be generated.

If, at any point during a command, an error is detected
by the master, a standby pulse should be generated
and the command should be performed again.

FIGURE 3-1:

CONSECUTIVE COMMANDS EXAMPLE

3.2

Start Data Transfer

All operations must be preceded by a start header. The
start header consists of holding SCIO low for a period
of T

HDR

, followed by transmitting an 8-bit ‘

01010101

code. This code is used to synchronize the slave’s
internal clock period with the master’s clock period, so
accurate timing is very important.

When a standby pulse is not required (i.e., between
successive commands to the same device), a period of
T

SS

 must be observed after the end of the command

and before the beginning of the start header.

Figure 3-2

 shows the waveform for the start header,

including the required Acknowledge sequence at the
end of the byte.

FIGURE 3-2:

START HEADER

Note: After a POR/BOR event occurs, a low-

to-high transition on SCIO must be gen-
erated before proceeding with commu-
nication, including a standby pulse.

1

1

0

1

0

1

0

0

Start Header

SCIO

Device Address

MA

K

0

0

0

0

1

0

1

0

MA

K

No

SAK

SAK

Standby Pulse

(1)

1

1

0

1

0

1

0

0

Start Header

SCIO

Device Address

MA

K

0

0

0

0

1

0

1

0

MA

K

No

S

A

K

SAK

No

MAK

SAK

T

SS

Note 1: After a POR/BOR event, a low-to-high transition on SCIO is required to occur before the first

standby pulse.

SCIO

Data ‘0’

Data ‘1’

Data ‘0’

Data ‘1’

Data ‘0’

Data ‘1’

Data ‘0’

Data ‘1’

MAK

NoSAK

T

SS

T

HDR

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/22067J-html.html
background image

11XX

DS22067J-page 8

 2011 Microchip Technology Inc.

3.3

Acknowledge

An Acknowledge routine occurs after each byte is
transmitted, including the start header. This routine
consists of two bits. The first bit is transmitted by the
master, and the second bit is transmitted by the slave.

The Master Acknowledge, or MAK, is signified by trans-
mitting a ‘

1

’, and informs the slave that the current

operation is to be continued. Conversely, a Not
Acknowledge, or NoMAK, is signified by transmitting a
‘0’, and is used to end the current operation (and initiate
the write cycle for write operations).

The slave Acknowledge, or SAK, is also signified by
transmitting a ‘

1

’, and confirms proper communication.

However, unlike the NoMAK, the NoSAK is signified by
the lack of a middle edge during the bit period.

A NoSAK will occur for the following events:

• Following the start header

• Following the device address, if no slave on the 

bus matches the transmitted address

• Following the command byte, if the command is 

invalid, including Read, CRRD, Write, WRSR, 
SETAL, and ERAL during a write cycle.

• If the slave becomes out of sync with the master

• If a command is terminated prematurely by using 

a NoMAK, with the exception of immediately after 
the device address.

See 

Figure 3.3

 and 

Figure 3-4

 for details.

If a NoSAK is received from the slave after any byte
(except the start header), an error has occurred. The
master should then perform a standby pulse and begin
the desired command again.

FIGURE 3-3:

ACKNOWLEDGE 
ROUTINE

FIGURE 3-4:

ACKNOWLEDGE BITS

3.4

Device Addressing

A device address byte is the first byte received from the
master device following the start header. The device
address byte consists of a four-bit family code, for the
11XX this is set as ‘

1010

’. The last four bits of the

device address byte are the device code, which is
hardwired to ‘

0000

’ on the 11XXXX0 devices.

The device code on 11XXXX1 devices is hardwired to
‘0001’. This allows both 11XXXX0 and 11XXXX1
devices to be used on the same bus without address
conflicts.

FIGURE 3-5:

DEVICE ADDRESS BYTE 
ALLOCATION

3.5

Bus Conflict Protection

To help guard against high current conditions arising
from bus conflicts, the 11XX features a current-limited
output driver. The I

OL

 and I

OH

 specifications describe

the maximum current that can be sunk or sourced,
respectively, by the SCIO pin. The 11XX will vary the
output driver impedance to ensure that the maximum
current level is not exceeded.

Note: A MAK must always be transmitted

following the start header.

Note: When a NoMAK is used to end a

WRITE

 or 

WRSR

 instruction, the write

cycle is not initiated if no bytes of data
have been received.

Note: In order to guard against bus conten-

tion, a NoSAK will occur after the start
header.

Master

Slave

MAK

SAK

MAK (‘1’)

NoMAK (‘0’)

SAK (‘1’)

NoSAK

(1)

Note 1:

valid SAK.

A NoSAK is defined as any sequence that is not a

1

0

1

0

0

0

0

MAK

SLAVE ADDRESS

0

(1)

SAK

Note 1:

 This bit is a ‘1’ on the 11XXXX1.

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/22067J-html.html
background image

 2011 Microchip Technology Inc.

DS22067J-page 9

11XX

3.6

Device Standby

The 11XX features a low-power Standby mode during
which the device is waiting to begin a new command.
A high-to-low transition on SCIO will exit low-power
mode and prepare the device for receiving the start
header.

Standby mode will be entered upon the following
conditions:

• A NoMAK followed by a SAK (i.e., valid termina-

tion of a command)

• Reception of a standby pulse

3.7

Device Idle

The 11XX features an Idle mode during which all serial
data is ignored until a standby pulse occurs. Idle mode
will be entered upon the following conditions:

• Invalid device address

• Invalid command byte, including Read, CRRD, 

Write, WRSR, SETAL and ERAL during a write 
cycle.

• Missed edge transition

• Reception of a MAK following a 

WREN

WRDI

SETAL

, or 

ERAL

 command byte

• Reception of a MAK following the data byte of a 

WRSR

 command

An invalid start header will indirectly cause the device
to enter Idle mode. Whether or not the start header is
invalid cannot be detected by the slave, but will
prevent the slave from synchronizing properly with the
master. If the slave is not synchronized with the
master, an edge transition will be missed, thus causing
the device to enter Idle mode.

3.8

Synchronization

At the beginning of every command, the 11XX utilizes
the start header to determine the master’s bus clock
period. This period is then used as a reference for all
subsequent communication within that command.

The 11XX features re-synchronization circuitry which
will monitor the position of the middle data edge during
each MAK bit and subsequently adjust the internal time
reference in order to remain synchronized with the
master. 

There are two variables which can cause the 11XX to
lose synchronization. The first is frequency drift,
defined as a change in the bit period, T

E

. The second is

edge jitter, which is a single occurrence change in the
position of an edge within a bit period, while the bit
period itself remains constant.

3.8.1

FREQUENCY DRIFT

Within a system, there is a possibility that frequencies
can drift due to changes in voltage, temperature, etc.
The re-synchronization circuitry provides some toler-
ance for such frequency drift. The tolerance range is
specified by two parameters, F

DRIFT

 and F

DEV

. F

DRIFT

specifies the maximum tolerable change in bus fre-
quency per byte. F

DEV

 specifies the overall limit in fre-

quency deviation within an operation (i.e., from the end
of the start header until communication is terminated
for that operation). The start header at the beginning of
the next operation will reset the re-synchronization cir-
cuitry and allow for another F

DEV

 amount of frequency

drift.

3.8.2

EDGE JITTER

Ensuring that edge transitions from the master always
occur exactly in the middle or end of the bit period is not
always possible. Therefore, the re-synchronization cir-
cuitry is designed to provide some tolerance for edge
jitter. 

The 11XX adjusts its phase every MAK bit, so T

IJIT

specifies the maximum allowable peak-to-peak jitter
relative to the previous MAK bit. Since the position of
the previous MAK bit would be difficult to measure by
the master, the minimum and maximum jitter values for
a system should be considered the worst-case. These
values will be based on the execution time for different
branch paths in software, jitter due to thermal noise,
etc.

The difference between the minimum and maximum
values, as a percentage of the bit period, should be cal-
culated and then compared against T

IJIT

 to determine

jitter compliance.

Note: In the case of the 

WRITE

WRSR

SETAL

,

or 

ERAL

 commands, the write cycle is initi-

ated upon receipt of the NoMAK, assuming
all other write requirements have been met.

Note: Because the 11XX only re-synchronizes

during the MAK bit, the overall ability to
remain synchronized depends on a combi-
nation of frequency drift and edge jitter (i.e.,
if the MAK bit edge is experiencing the max-
imum allowable edge jitter, then there is no
room for frequency drift). Conversely, if the
frequency has drifted to the maximum
amount tolerable within a byte, then no
edge jitter can be present.

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/22067J-html.html
background image

11XX

DS22067J-page 10

 2011 Microchip Technology Inc.

4.0

DEVICE COMMANDS

After the device address byte, a command byte must
be sent by the master to indicate the type of operation
to be performed. The code for each instruction is listed
in 

Table 4-1

.

TABLE 4-1:

INSTRUCTION SET

4.1

Read Instruction

The Read command allows the master to access any
memory location in a random manner. After the 

READ

instruction has been sent to the slave, the two bytes of
the Word Address are transmitted, with an Acknowl-
edge sequence being performed after each byte. Then,
the slave sends the first data byte to the master. If more
data is to be read, the master sends a MAK, indicating

that the slave should output the next data byte. This
continues until the master sends a NoMAK, which ends
the operation.

To provide sequential reads in this manner, the 11XX
contains an internal Address Pointer which is incre-
mented by one after the transmission of each byte. This
Address Pointer allows the entire memory contents to
be serially read during one operation. When the highest
address is reached, the Address Pointer rolls over to
address ‘0x000’ if the master chooses to continue the
operation by providing a MAK.

FIGURE 4-1:

READ COMMAND SEQUENCE

Instruction Name

Instruction Code

Hex Code

Description

READ

0000 0011

0x03

Read data from memory array beginning at specified address

CRRD

0000 0110

0x06

Read data from current location in memory array

WRITE

0110 1100

0x6C

Write data to memory array beginning at specified address

WREN

1001 0110

0x96

Set the write enable latch (enable write operations)

WRDI

1001 0001

0x91

Reset the write enable latch (disable write operations)

RDSR

0000 0101

0x05

Read STATUS register

WRSR

0110 1110

0x6E

Write STATUS register 

ERAL

0110 1101

0x6D

Write ‘

0x00

’ to entire array

SETAL

0110 0111

0x67

Write ‘

0xFF

’ to entire array

7 6 5 4

Data Byte 1

3 2 1 0

7 6 5 4

Data Byte 2

3 2 1 0

7 6 5 4

Data Byte n

3 2 1 0

SCIO

MA

K

MA

K

No

MAK

1

1

0

1

0

1

0

0

Start Header

SCIO

Device Address

MA

K

0

0

(1)

0

0

1

0

1

0

MA

K

Command

0

1

0

0

0

0

0

1

MA

K

No

SAK

SAK

Standby Pulse

SCIO

SAK

15 14 13 12

Word Address MSB

11 10 9 8

MA

K

SAK

7 6 5 4

Word Address LSB

3 2 1 0

MA

K

SAK

SAK

SAK

SAK

Note 1: For the 11XXXX1, this bit must be a ‘1’.

Maker
Microchip Technology Inc.
Datasheet PDF Download