MAX866 Datasheet

/var/www/html/datasheet/sites/default/files/pdfhtml_images/MAX866-html.html
background image

_______________General Description

The MAX866 and MAX867 are ultra-small, high-efficiency,
CMOS, step-up, DC-DC switching regulators for 1-cell
battery-powered systems. The MAX866 accepts a posi-
tive input voltage between 0.8V and V

OUT

and converts it

to a higher, pin-selectable output voltage of 3.3V or 5V.
The MAX867 adjustable version accepts 0.8V to 6.0V
input voltages and generates a higher adjustable output
voltage in the 2.7V to 6.0V range. Typical efficiencies are
greater than 80%. Typical no-load supply current is
100µA (1µA in shutdown).

The MAX866/MAX867 combine ultra-low quiescent sup-
ply current and high efficiency to give maximum battery
life. Its high switching frequency permits the use of
small, low-cost inductors and capacitors. Additionally,
internal peak-current limiting protects the IC.

________________________Applications

Pagers
Remote Controls
Detectors
1-Cell Battery-Operated Equipment
Backup Supplies

____________________________Features

0.8V to 6.0V Input Supply Voltage 

0.9V Guaranteed Start-Up Supply Voltage

>80% Efficiency Over Wide Load Range

100µA No-Load Battery Current (V

OUT

= 3.3V)

1µA Shutdown Mode

Up to 250kHz Switching Frequency

±1.5% Reference Tolerance

Low-Battery Detector (LBI/LBO)

Ultra-Small 8-Pin µMAX Package (1.11mm high)

Circuit Fits in 0.2in

2

______________Ordering Information

MAX866/MAX867

3.3V/5V or Adjustable-Output, 

Single-Cell DC-DC Converters

________________________________________________________________

Maxim Integrated Products

1

1

2

3

4

8

7

6

5

LX

GND

OUT

LBI

LBO

REF

3/5

SHDN

MAX866

µ

MAX

TOP VIEW

1

2

3

4

8

7

6

5

LX

GND

OUT

LBI

LBO

REF

FB

SHDN

MAX867

µ

MAX

_________________Pin Configurations

MAX866

SHDN

3/5

REF

LX

GND

OUT

INPUT

0.8V TO V

OUT

MBRS0520LTI

OR 1N5817

OUTPUT

5V OR 3.3V

LBO

47

µ

F

0.22

µ

F

330

µ

H

LOW-BATTERY
DETECTOR OUTPUT

ON/OFF

3V/5V SELECT

LBI

LOW-BATTERY

DETECTOR

INPUT

__________Typical Operating Circuit

Call toll free 1-800-998-8800 for free samples or literature.

19-0374; Rev 0; 4/95

PART

TEMP. RANGE        PIN-PACKAGE

MAX866

C/D

0°C to +70°C

Dice*

MAX866EUA

-40°C to +85°C

8 µMAX

MAX867

C/D

0°C to +70°C

Dice*

MAX867EUA

-40°C to +85°C

8 µMAX

*  Dice are tested at T

A

= +25°C only.

EVALUATION KIT 

MANUAL AVAILABLE

/var/www/html/datasheet/sites/default/files/pdfhtml_images/MAX866-html.html
background image

V

MAX866/MAX867

3.3V/5V or Adjustable-Output, 
Single-Cell DC-DC Converters

2

_______________________________________________________________________________________

ABSOLUTE MAXIMUM RATINGS

ELECTRICAL CHARACTERISTICS

(Circuit of Figure 2, V

IN

= 1.2V, I

LOAD

= 0mA, T

A

= +25°C, unless otherwise noted.)

Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional
operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to
absolute maximum rating conditions for extended periods may affect device reliability.

Supply Voltage (OUT to GND)  ...................................-0.3V, +7V
Switch Voltage (LX to GND)  .......................................-0.3V, +7V
S

H

D

N

, LBO to GND ....................................................-0.3V, +7V

LBI, REF, 3/

5

, FB to GND ............................-0.3V, (V

OUT

+ 0.3V)

Reference Current (I

REF

) ..................................................2.5mA

Continuous Power Dissipation (T

A

= +70°C)

µMAX (derate 4.1mW/°C above +70°C)  ......................330mW

Reverse Battery Current (T

A

+45°C) (Note 1) ................750mA

Operating Temperature Ranges

MAX86_C/D  .......................................................0°C to +70°C
MAX86_EUA  ...................................................-40°C to +85°C

Junction Temperature  .....................................................+150°C
Storage Temperature Range  ............................-65°C to +160°C
Lead Temperature (soldering, 10sec)  ............................+300°C

Note 1:

Reverse battery current is measured from the 

Typical Operating Circuit’s battery input terminal to GND when the battery is 

connected backwards. A reverse current of 750mA will not exceed the package dissipation limits but, if left for an extended
time (more than ten minutes), may degrade performance.

With falling edge

3/

5

= 3V, -20µA 

REF load 

250µA, C

REF

= 0.22µF

No REF load

0.9V 

V

IN

3V

I

LOAD

= 0mA, 3/

5

= 3V, LBI = 1.5V, 

V

OUT

= 3.47V, FB = 1.5V

CONDITIONS

V

1.22

1.25

1.28

LBI Input Threshold

%

0.8

2.0

Reference Load Regulation

V

1.22

1.25

1.28

Reference Voltage

mA

500

µA

1

Shutdown Quiescent Current
(Note 4)

µA

27

60

Quiescent Supply Current in
3.3V mode (Note 4)

4.80

5.0

5.20

3.17

3.3

3.43

4.80

5.0

5.20

4.75

5.0

5.25

3.13

3.3

3.47

4.75

5.0

5.25

Output Voltage
(Note 2)

UNITS

MIN

TYP

MAX

PARAMETER

Peak Inductor Current Limit

MAX866, 3/

5

= 0V, 0mA 

I

LOAD

6mA

MAX866, 3/

5

= 3V, 0mA 

I

LOAD

8mA

MAX867, V

OUT

= 5V, 0mA 

I

LOAD

≤ 

6mA

MAX866, 3/

5

= 0V, 0mA 

I

LOAD

6mA

MAX866, 3/

5

= 3V, 0mA 

I

LOAD

8mA

MAX867, V

OUT

= 5V, 0mA 

I

LOAD

6mA

S

H

D

N

= 0V, 3/

5

= 3V, LBI = 1.5V, V

OUT

= 3.47V,

FB = 1.5V

0.9V 

V

IN

3V

MAX866, 3/

5

= 0V, 4.8V 

V

LOAD

5.2V

MAX866, 3/

5

= 3V, 3.17V 

V

LOAD

3.43V

MAX867, V

OUT

= 5V, 4.8V 

≤ 

V

LOAD

5.2V

MAX866, 3/

5

= 0V, 4.8V 

V

LOAD

5.2V

MAX866, 3/

5

= 3V, 3.17V 

V

LOAD

3.43V

MAX867, V

OUT

= 5V, 4.8V 

V

LOAD

5.2V

6

9

8

13

6

9

10

15

15

23

mA

10

15

Maximum Load Current
(Note 2)

0.9V 

V

IN

3V,

T

A =

T

MIN TO 

T

MAX

(Note 3)

1.2V 

V

IN

3V

V

0.8

0.9

Minimum Start-Up 
Supply Voltage

Output set for 3.3V, measured at V

IN

in Figure 2, V

IN

= 1.5V

µA

100

No-Load Battery Current

1.2V 

V

IN

3V

MAX866, 3/

5

= 0V, 0mA 

I

LOAD

10mA

MAX866, 3/

5

= 3V, 0mA 

I

LOAD

15mA

MAX867, V

OUT

= 5V, 0mA 

I

LOAD

≤ 

10mA

4.80

5.0

5.20

3.17

3.3

3.43

4.80

5.0

5.20

/var/www/html/datasheet/sites/default/files/pdfhtml_images/MAX866-html.html
background image

MAX866/MAX867

3.3V/5V or Adjustable-Output, 

Single-Cell DC-DC Converters

_______________________________________________________________________________________

3

100

0

10

0.01

0.1

1

10

100

1000

EFFICIENCY vs. LOAD CURRENT (V

OUT

 = 3.3V)

30

20

MAX866/667-01

LOAD CURRENT (mA)

EFFICIENCY (%)

40

50

60

70

80

90

TOP TO BOTTOM:
V

IN

 = 2.0V

V

IN

 = 1.5V

V

IN

 = 1.25V

V

IN

 = 1.0V

V

IN

 = 0.75V

V

IN

 = 0.5V

L = SUMIDA CD73-331 (330

µ

H, 1.5

)

100

90

0

0.01

1

0.1

10

100

EFFICIENCY vs. LOAD CURRENT (V

OUT

 = 5.0V)

20

MAX866/67-04

LOAD CURRENT (mA)

EFFICIENCY (%)

40

60

80

70

50

30

10

TOP TO BOTTOM:
V

IN

 = 2.0V

V

IN

 = 1.5V

V

IN

 = 1.25V

V

IN

 = 1.0V

V

IN

 = 0.75V

L = COILCRAFT D01608-334 (330

µ

H, 2.9

)

100

90

0

0.01

1

0.1

10

100

EFFICIENCY vs. LOAD CURRENT (V

OUT

 = 3.3V)

20

MAX866/67-02

LOAD CURRENT (mA)

EFFICIENCY (%)

40

60

80

70

50

30

10

TOP TO BOTTOM:
V

IN

 = 2.0V

V

IN

 = 1.5V

V

IN

 = 1.25V

V

IN

 = 1.0V

V

IN

 = 0.75V

L = COILCRAFT D01608-334 (330

µ

H, 2.9

)

100

0

10

0.01

0.1

1

10

100

1000

EFFICIENCY vs. LOAD CURRENT (V

OUT

 = 5.0V)

30

20

MAX866/667-03

LOAD CURRENT (mA)

EFFICIENCY (%)

40

50

60

70

80

90

TOP TO BOTTOM:
V

IN

 = 2.0V

V

IN

 = 1.5V

V

IN

 = 1.25V

V

IN

 = 1.0V

V

IN

 = 0.75V

V

IN

 = 0.5V

L = SUMIDA CD73-331 (330

µ

H, 1.5

)

1200

0

0

0.2

0.4

0.6

0.8 1.0

1.2

1.4 1.6

NO-LOAD BATTERY CURRENT 

vs. BATTERY VOLTAGE (V

OUT

 = 3.3V)

400

200

1000

MAX866/67-05

BATTERY VOLTAGE (V)

BATTERY CURRENT (

µ

A)

800

600

DECREASING
BATTERY
VOLTAGE

INCREASING
BATTERY
VOLTAGE

4000

0

0

0.2

0.4

0.6

0.8 1.0

1.2

1.4 1.6

NO-LOAD BATTERY CURRENT 

vs. BATTERY VOLTAGE (V

OUT

 = 5V)

1000

500

3500

MAX866/67-06

BATTERY VOLTAGE (V)

BATTERY CURRENT (

µ

A)

2000

2500

3000

1500

DECREASING
BATTERY
VOLTAGE

INCREASING
BATTERY
VOLTAGE

__________________________________________Typical Operating Characteristics

(Circuits of Figure 2, T

A

= +25°C, unless otherwise noted.)

ELECTRICAL CHARACTERISTICS (continued)

(Circuit of Figure 2, V

IN

= 1.2V, I

LOAD

= 0mA, T

A

= +25°C, unless otherwise noted.)

Note 2:

Output current specified with circuit of Figure 2 and CoilCraft D01608-334 inductor for test purposes only. More (or less) 
output current can be supplied with other coil types depending on inductance value and coil resistance. See 

Typical Operating

Characteristics for other coil types. Output voltage and output current are guaranteed over this V

IN 

operating range once the

device has started up. Actual V

IN 

start-up voltage depends on load current.

Note 3:

Output voltage specifications over temperature are guaranteed by design to limits that are 6 sigma from either side of the mean.

Note 4:

Current measured into OUT. V

OUT

is forced to 3.47V to maintain LX off when measuring device current.

PARAMETER

CONDITIONS

MIN

TYP

MAX

UNITS

S

H

D

N

, 3/

5

Input Voltage High

0.32 x V

OUT

V

S

H

D

N

, 3/

5

, FB, LBI Input Current

LBI = 1.5V, FB = 1.5V, 

S

H

D

N

= 0V or 3V, 3/

5

= 0V or 3V

±40

±100

nA

FB Voltage

MAX867, output in regulation

1.22

1.25

1.28

V

Output Voltage Range

MAX867

2.7

6.0

V

S

H

D

N

, 3/

5

Input Voltage Low

0.08 x V

OUT

V

LBO Output Leakage Current

LBO = 5V

1

µA

LBI Input Hysteresis

25

mV

LBO Output Voltage Low

I

SINK

= 2mA, open-drain output

0.4

V

/var/www/html/datasheet/sites/default/files/pdfhtml_images/MAX866-html.html
background image

MAX866/MAX867

3.3V/5V or Adjustable-Output, 
Single-Cell DC-DC Converters

4

_______________________________________________________________________________________

____________________________Typical Operating Characteristics (continued)

(Circuits of Figure 2, T

A

= +25°C, unless otherwise noted.)

1.5

1.4

1.3

1.2

1.1

1.0

0.8

0.5

0.1

1

100

START-UP INPUT VOLTAGE vs. LOAD CURRENT

(V

OUT

 

= 3.3V)

0.7

0.6

0.9

MAX186-14A

MAX866/67-07

LOAD CURRENT (mA)

START-UP INPUT VOLTAGE (V)

10

100µH

47µH

220µH

330µH

1mH

1.5

1.4

1.3

1.2

1.1

1.0

0.8

0.5

0.1

1

100

START-UP INPUT VOLTAGE vs. LOAD CURRENT

(V

OUT

 

= 5V)

0.7

0.6

0.9

MAX186-14A

LOAD CURRENT (mA)

START-UP INPUT VOLTAGE (V)

10

100µH

47µH

220µH

330µH

   MAX866/67-08

1

10

1000

INPUT VOLTAGE vs. LOAD CURRENT

(V

OUT

 

= 3.3V)

MAX186-14A

MAX866/67-09

LOAD CURRENT (mA)

INPUT VOLTAGE (V)

100

100µH

47µH

22µH

330µH

1mH

3.0

2.5

1.5

0

1.0

0.5

2.0

1

10

1000

INPUT VOLTAGE vs. LOAD CURRENT

(V

OUT

 

= 5V)

MAX186-14A

MAX866/67-10

LOAD CURRENT (mA)

INPUT VOLTAGE (V)

3.0

2.5

1.5

0

1.0

0.5

2.0

100

22µH

330µH

47µH

100µH

A: 3.3V OUTPUT VOLTAGE, AC COUPLED 20mV/div
B: INPUT VOLTAGE (0.9V AND 1.4V) 500mV/div
I

LOAD 

= 10mA, C

OUT 

= 47

µ

F

MAX866 LINE-TRANSIENT RESPONSE

(3.3V MODE)

1ms/div

A

B

5

0

REFERENCE VOLTAGE

 vs. REFERENCE CURRENT

 

6

10

MAX866/67-11

REFERENCE LOAD CURRENT (

µ

A)

V

REF

 LOAD REGULATION (mV)

8

7

100

200

9

50

150

250

4

3

2

1

0

A: 5.0V OUTPUT VOLTAGE, AC COUPLED 20mV/div
B: INPUT VOLTAGE (0.9V AND 1.4V) 500mV/div
I

LOAD 

= 10mA, C

OUT

 = 47

µ

F

MAX866 LINE-TRANSIENT RESPONSE

(5V MODE)

1ms/div

A

B

/var/www/html/datasheet/sites/default/files/pdfhtml_images/MAX866-html.html
background image

MAX866/MAX867

3.3V/5V or Adjustable-Output, 

Single-Cell DC-DC Converters

_______________________________________________________________________________________

5

A: 5.0V OUTPUT VOLTAGE, AC COUPLED 20mV/div
B: OUTPUT CURRENT (0mA AND 10mA) 5mV/div
    (TEKTRONIX P6042 CURRENT PROBE)
I

LOAD

 = 5mA, C

OUT

 = 47

µ

F, V

IN

 = 1.25V

MAX866 LOAD-TRANSIENT RESPONSE

(5V MODE)

1ms/div

A

B

A: 3.3V OUTPUT VOLTAGE, 2V/div
B: SHDN INPUT VOLTAGE (0V AND 5V) 2V/div
I

LOAD

 = 10mA

MAX866 SHUTDOWN RESPONSE

(3.3V MODE)

10ms/div

A

B

A: 5.0V OUTPUT VOLTAGE, 2V/div
B: SHDN INPUT VOLTAGE (0V AND 5V) 5V/div
I

LOAD

 = 10mA

MAX866 SHUTDOWN RESPONSE

(5V MODE)

10ms/div

A

B

____________________________Typical Operating Characteristics (continued)

(Circuits of Figure 2, T

A

= +25°C, unless otherwise noted.)

1.250

-60

MAX867 LBI AND FB THRESHOLD

vs. TEMPERATURE

1.260

MAX866/67-24

TEMPERATURE (°C)

LBI, FB VOLTAGE (V)

0

60

-20

-40

20

80

40

100

1.240

LBI

VFB (MAX867)

0

-60

MAX866 OUTPUT VOLTAGE ERROR

vs. TEMPERATURE

 

0.5

MAX866/67-25

TEMPERATURE (°C)

OUTPUT VOLTAGE ERROR (%)

0

60

-20

-40

20

80

40

100

-0.5

5V MODE

I

LOAD

= OA

3.3V MODE

-60

START-UP VOLTAGE 

vs. TEMPERATURE

 

1.0

0.9

0.8

0.7

0.6

MAX866/67-26

TEMPERATURE (°C)

START-UP VOLTAGE (V)

0

60

-20

-40

20

80

40

100

0.5

I

LOAD

 = 0A

A: 3.3V OUTPUT VOLTAGE, AC COUPLED 20mV/div
B: OUTPUT CURRENT (0mA AND 10mA) 5mV/div
    (TEKTRONIX P6042 CURRENT PROBE)
I

LOAD

 = 5mA, C

OUT

 = 47

µ

F, V

IN

 = 1.25V

MAX866 LOAD-TRANSIENT RESPONSE

(3.3V MODE)

1ms/div

A

B

/var/www/html/datasheet/sites/default/files/pdfhtml_images/MAX866-html.html
background image

MAX866/MAX867

3.3V/5V or Adjustable-Output, 
Single-Cell DC-DC Converters

6

_______________________________________________________________________________________

______________________________________________________________Pin Description

N-Channel Power-MOSFET Drain

8

8

Low-Battery Output. An open-drain N-channel MOSFET sinks current when the voltage at
LBI drops below 1.25V.

4

4

Low-Battery Input. When the voltage on LBI drops below 1.25V, LBO sinks current. 
If not used, connect to V

IN

.

5

5

Connect OUT to the regulator output. OUT provides bootstrap power to the IC.

6

6

Power Ground. Must be low impedance; solder directly to ground plane.

7

7

1.25V Reference Voltage Output. Bypass with 0.22µF to GND (0.1µF if there is no external
reference load). Maximum load capability is 250µA source, 20µA sink.

3

3

Feedback Input for adjustable-output operation. Connect to an external resistor voltage
divider between OUT and GND.

2

Selects the output voltage; connect to GND for 5V output, and to OUT for 3.3V output.

2

Shutdown Input. When low, the entire circuit is off and V

OUT

= V

IN

- V

D,

where V

D

is the

forward voltage drop of the external Schottky rectifier.

1

1

FUNCTION

PIN

LX

LBO

LBI

OUT

GND

REF

FB

3/

5

S

H

D

N

NAME

MAX866

MAX867

____________________________Typical Operating Characteristics (continued)

(Circuits of Figure 2, T

A

= +25°C, unless otherwise noted.)

24

-60

QUIESCENT SUPPLY CURRENT 

vs. TEMPERATURE

 

30

28

26

22

MAX866/67-28

TEMPERATURE (°C)

QUIESCENT SUPPLY CURRENT (

µ

A)

0

60

-20

-40

20

80

40

100

20

I

OUT

V

OUT 

= 3.47V

1.250

-60

REFERENCE VOLTAGE 

vs. TEMPERATURE

 

1.255

MAX866/67-29

TEMPERATURE (°C)

REFERENCE VOLTAGE (V)

0

60

-20

-40

20

80

40

100

1.245

I

REF 

= 0A

-60

OUTPUT CURRENT CAPABILITY 

vs. TEMPERATURE

 

30

25

20

15

MAX866/67-27

TEMPERATURE (°C)

OUTPUT CURRENT (mA)

0

60

-20

-40

20

80

40

100

10

V

IN 

= 0.9V

3.3V MODE

V

IN 

= 1.2V

/var/www/html/datasheet/sites/default/files/pdfhtml_images/MAX866-html.html
background image

_______________Detailed Description

Operating Principle

The MAX866/MAX867 combine a switch-mode regula-
tor, N-channel power MOSFET, precision voltage refer-
ence, and power-fail detector in a single monolithic
device. The MOSFET is a “sense-FET” type for best effi-
ciency, and has a very low gate threshold voltage to
ensure start-up with low battery voltages (0.8V typ).

PFM Control Scheme

The MAX866/MAX867 control scheme (Figure 1) com-
bines low-voltage efficiency (80% typ) with low battery

drain (100µA typ). There is no oscillator; switching is
accomplished by a pair of one shots that set a maxi-
mum LX on-time (4.5µs typ) and a minimum LX off-time
(1µs). LX on-time will be terminated early if the inductor
current reaches 0.5A before 4.5µs elapses. With the
standard application circuit (Figure 2a), LX current is
typically less than 50mA, so LX on-time is normally not
terminated by the 0.5A limit and lasts the complete
4.5µs. The LX on-resistance is typically 1

to minimize

switch losses. The MAX866/MAX867 switching frequen-
cy depends on load, input voltage, and inductor value,
and it can range up to 250kHz with typical component
values. 

MAX866/MAX867

3.3V/5V or Adjustable-Output, 

Single-Cell DC-DC Converters

_______________________________________________________________________________________

7

MAX866/MAX867

SHDN

3/5*

LBO

LBI

N

LBI COMPARATOR

ERROR COMPARATOR

CURRENT-LIMIT

 COMPARATOR

ONE-SHOT

TRIG

Q

Q

ONE-SHOT

TRIG

S

Q

R

F/F

MINIMUM

OFF-TIME

ONE-SHOT

V

BATT

LX

N

GND

OUT

V

OUT

**

FB**

**

*

*

REF

REFERENCE

MAXIMUM

ON-TIME

ONE-SHOT

*MAX866 ONLY
**MAX867 ONLY

Figure 1.  Block Diagram

/var/www/html/datasheet/sites/default/files/pdfhtml_images/MAX866-html.html
background image

MAX866/MAX867

3.3V/5V or Adjustable-Output, 
Single-Cell DC-DC Converters

8

_______________________________________________________________________________________

Voltage Reference

The precision voltage reference is suitable for driving
external loads, such as an analog-to-digital converter.
The voltage-reference output changes less than ±2%
when sourcing up to 250µA and sinking up to 20µA. If
the reference drives an external load, bypass it with
0.22µF to GND. If the reference is unloaded, bypass it
with at least 0.1µF.

Logic Inputs and Outputs

The 3/5 input is internally diode clamped to GND and
OUT, and should not be connected to signals outside
this range. The SHDN input and LBO output (open-
drain) are not clamped to V+ and can be pulled as high
as 7V regardless of the voltage at OUT

Do not leave

control inputs (3/5, LBI, or SHDN) floating.

__________________Design Procedure

Output Voltage Selection

For the MAX866, you can select a 3.3V or 5V output volt-
age under logic control, or by tying 3/5 to GND or OUT.
The MAX867’s output voltage is set by two resistors, R1
and R2 (Figure 2b), which form a voltage divider
between the output and FB. Use the following equation
to determine the output voltage:

R1 + R2

V

OUT

= V

REF

(

_________ 

)

R2

where V

REF

= 1.25V.

To simplify resistor selection:

V

OUT

R1 = R2 

(

_______ - 1

)

V

REF

C1
47

µ

F

L1
330

µ

F

V

IN

D1

C2
47

µ

F

R1

R2

LX

OUT

FB

LBO

LBI

REF

SHDN

GND

C3

0.1

µ

F

V

OUT

5

1

3

8

6

2

4

7

MAX867

L1 = COILCRAFT DO1608-334

D1 = MOTOROLA MBR0520LTI

C1
47

µ

F

L1
330

µ

H

V

IN

D1

C2
47

µ

F

R1

LX

OUT

3/5

LBO

LBI

REF

SHDN

GND

C3

0.1

µ

F

V

OUT

5

1

3

8

6

2

4

7

MAX866

L1 = COILCRAFT DO1608-334

OUTPUT
SELECT

D1 = MOTOROLA MBR0520LTI

Figure 2b.  Standard Application Circuit—Adjustable Output
Voltage

Figure 2a.  Standard Application Circuit—Preset Output
Voltage

/var/www/html/datasheet/sites/default/files/pdfhtml_images/MAX866-html.html
background image

MAX866/MAX867

3.3V/5V or Adjustable-Output, 

Single-Cell DC-DC Converters

_______________________________________________________________________________________

9

Since the input bias current at FB has a maximum value
of 100nA, large values (10k

to 300k

) can be used

for R1 and R2 with no significant accuracy loss. For 1%
error, the current through R1 should be at least 100
times FB’s bias current.

Low-Battery Detection, V

TH 

> 1.25V 

The MAX866 series contains an on-chip comparator for
low-battery detection. If the voltage at LBI falls below
the regulator’s internal reference voltage (1.25V), LBO
(an open-drain output) sinks current to GND. The low-
battery monitor’s threshold is set by two resistors, R3
and R4 (Figure 3). Set the threshold voltage using the
following equation:

V

TH

R3 = R4 

(

____ 1

)

V

REF

where V

TH

is the desired threshold of the low-battery

detector and V

REF

is the internal 1.25V reference.

Since the LBI current is less than 100nA, large resistor
values (typically 10k

to 300k

) can be used for R3

and R4 to minimize loading of the input supply. 

When the voltage at LBI is below the internal threshold,
LBO sinks current to GND. Connect a pull-up resistor of
100k

or more from LBO to OUT when driving CMOS

circuits. When LBI is above the threshold, the LBO out-
put is off. If the low-battery comparator is not used,
connect LBI to V

IN

and leave LBO open.

Low-Battery Detection, V

TH 

< 1.25V 

When the low-battery detection threshold voltage is
below 1.25V, use the circuit shown on the right in

Figure 3. This circuit uses V

OUT

(3.3V or 5.0V in the

MAX866, adjustable in MAX867) as a reference. The
voltage divider formed by R5 and R6 allows the effec-
tive trip point of V

IN

to be set below 1.25V. R6 is usually

set to approximately 100k

, and R5 is given by the 

formula:

R5 = [R6 x (V

REF

- V

TH

)] / (V

OUT

- V

REF

)

Note that LBI drops below the 1.25V LBI threshold trip
point when either V

IN

or V

OUT

is low.

Since V

OUT

regulation and the LBI threshold are derived

from the same internal voltage reference, they track
together over temperature.

Low-Battery Start-Up 

The MAX866/MAX867 are bootstrapped circuits; they
can start under no-load conditions at much lower bat-
tery voltages than under full load. Once started, the out-
put can maintain a moderate load as the battery volt-
age decreases below the start-up voltage (see 

Typical

Operating Characteristics). The circuit shown in Figure
4 allows the circuit to start with no load, then uses the
LBI circuit and an external low-threshold P-channel
MOSFET switch to apply the load after the output has
started.

Resistors R7 and R8 are selected to trip the LBI detec-
tor at about 90% of the output voltage. On start-up, LBI
and LBO are low, Q2 is off, and transistor Q1’s gate is
held high by R11. This disconnects the load, allowing
the MAX866 to bootstrap itself at the lowest possible
voltage. When the output reaches its final output volt-
age, LBI and LBO go high, turning on Q2, Q1, and the
load.

Figure 3.  Low-Battery Detector Circuits

Figure 4.  Low-Voltage Start-Up Circuit

MAX866

LBI

OUT

5

6

R6

R5

V

IN

MAX866

LBI

5

R4

R3

V

IN

FOR V

TH 

> 1.25V

R3 = R4

-1

WHERE V

TH 

= THE V

IN 

TRIP THRESHOLD

WHERE V

TH 

= THE V

IN 

TRIP THRESHOLD

FOR V

TH

 < 1.25V

V

TH

V

REF

(

)

R5 = R6

V

REF 

- V

TH

V

OUT 

- V

REF

(

)

MAX866

OUT

LBO

LBI

6

4

5

R11
1M

R9
1M

R10
1M

R8
1M

R7

V

OUT

 (3.3V/5V)

Q1

MMDFZP02E

Q2

2N3904

(1.25V)

LOAD

/var/www/html/datasheet/sites/default/files/pdfhtml_images/MAX866-html.html
background image

MAX866/MAX867

3.3V/5V or Adjustable-Output, 
Single-Cell DC-DC Converters

10

______________________________________________________________________________________

Inductor Selection

An inductor value of 330µH works well in most applica-
tions, supplying loads over 10mA and allowing typical
start-up voltages of 0.8V. The inductor value is not 
critical, and the MAX866/MAX867 can operate with val-
ues from 22µH to 1mH. In general, smaller inductor val-
ues supply more output current while larger values start
with lower input voltage. Several inductor suppliers and
part numbers are listed in Tables 1 and 2.

The peak inductor current should not exceed the induc-
tor’s current rating. Since the MAX866/MAX867 current
limit of 0.5A will not be reached in most applications,
the peak coil current (I

PK

) is:

I

PK

= (V

IN(max)

x 4.5µs) / L

For a typical 1-cell alkaline design, V

IN(max)

is 1.55V,

so:

I

PK

= (1.55V x 4.5µs) / 330µH = 21.14mA

which is well within the ratings of most surface-mount
coils. Higher efficiency and output current are achieved
with lower inductor resistance, but unfortunately this is
inversely related to physical size. Table 2 indicates
resistance and height for each coil. Some of the small-
est coils have resistances over 10

, and will not pro-

vide the same output power or efficiency of a 1

coil.

At light loads however (below 5mA), the efficiency dif-
ferences between low- and high-resistance coils may
be only a percent or two. The 

Typical Operating

Characteristics graphs show efficiency and output cur-
rent plots for 1.5

and 2.9

, 330µH coils.

Capacitor Selection

A 47µF, 6V, 0.85

, surface-mount tantalum (SMT) 

output filter capacitor typically provides 15mV output
ripple when stepping up from 0.9V to 1.4V at 10mA.
Smaller capacitors (down to 10µF with higher ESRs) are
acceptable for light loads or in applications that can 

Table 1.  Component Suppliers

(708) 803-6294
03-3278-5358

USA:

(708) 803-6100

Japan: 03-3278-5111

TDK

(805) 867-2556
81-3-3494-7414

USA:

(805) 867-2555

Japan: 81-3-3494-7411

Nihon

(708) 639-1469

USA:

(708) 639-6400

CoilCraft

(310) 515-1962

USA:

(310) 515-1720

J.W. Miller

(708) 956-0702
81-3-3607-5144

USA:

(708) 956-0666

Japan: 81-3-3607-5111

Sumida

(619) 661-1055
81-7-2070-1174

USA:

(619) 661-6835

Japan: 81-7-2070-6306

Sanyo

(814) 238-0490

USA:

(800) 831-9172

Murata-Erie

(602) 244-4015

USA:

(602) 244-5303

Motorola

(714) 960-6492

USA:

(714) 969-2491

Matsuo

(207) 283-1941

USA:

(207) 282-5111

AVX

FAX

PHONE

COMPANY

PRODUCTION

METHOD

INDUCTORS

CAPACITORS

Surface Mount

See Table 2

Matsuo 267 series
Sprague 595D series
AVX TPS series

Motorola MBR 0530
Nihon EC15QS02L

Miniature
Through Hole

Sumida
RCH654-220

Sanyo
OS-CON series
low-ESR organic
semiconductor

Motorola 1N5017

RECTIFIERS

/var/www/html/datasheet/sites/default/files/pdfhtml_images/MAX866-html.html
background image

tolerate higher output ripple. Values in the 10µF to 47µF
range are recommended.

The equivalent series resistance (ESR) of both bypass
and filter capacitors affects efficiency and output ripple.
Use low-ESR capacitors for best performance, or con-
nect two or more filter capacitors in parallel. Low-ESR,
SMT tantalum capacitors are currently available from
Sprague (595D series) and AVX (TPS series). See
Table 1 for a list of suggested capacitor suppliers.

Rectifier Diode

For optimum performance, a switching Schottky diode
(such as the 1N5817 or MBR0520LTI) is recommended.
Refer to Table 1 for a list of component suppliers. For
low output power applications, a PN-junction switching
diode (such as the 1N4148) will also work well,
although its greater forward voltage drop will reduce
efficiency and raise the start-up voltage. 

PC Layout and Grounding

The circuit’s high-frequency operation makes PC layout
important for minimizing ground bounce and noise.
Keep the IC’s GND pin and the ground leads of C1 and
C2 (Figure 2) less than 0.2in (5mm) apart. Also keep all
connections to the FB and LX pins as short as possible.
To maximize output power and efficiency and minimize
output ripple voltage, use a ground plane and solder
the IC’s GND (pin 7) directly to the ground plane.

MAX866/MAX867

3.3V/5V or Adjustable-Output, 

Single-Cell DC-DC Converters

______________________________________________________________________________________

11

Table 2.  Surface-Mount Inductor Information

MANUFACTURER PART

INDUCTANCE

(

m

H)

RESISTANCE

(

W

)

RATED CURRENT

(A)

HEIGHT

(mm)

Sumida CD73-331

330

1.5

0.28

3.5

Sumida CD104-331

330

1.1

0.42

4

Murata-Erie LQH4N331K04M00**

330

8.2

0.095

2.6

TDK NLC565050T-331K**

330

4.9

0.14

5

CoilCraft D01608-334

330

2.9

0.16

3.2

CoilCraft DT1608-334

330*

2.9

0.16

3.2

CoilCraft D03316-334

330

0.7

0.6

5.4

CoilCraft DT3316-334

330*

0.7

0.6

5.4

J.W. Miller PM105-331K

330

1.1

0.52

5.4

* Shielded
** Low cost

/var/www/html/datasheet/sites/default/files/pdfhtml_images/MAX866-html.html
background image

Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are
implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.

12

__________________Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA  94086 (408) 737-7600

© 1995 Maxim Integrated Products 

Printed USA

is a registered trademark of Maxim Integrated Products.

MAX866/MAX867

3.3V/5V or Adjustable-Output, 
Single-Cell DC-DC Converters

________________________________________________________Package Information

L

α

C

A1

B

DIM

A

A1

B

C

D

E

e

H

L

α

MIN

0.036

0.004

0.010

0.005

0.116

0.116

0.188

0.016

MAX

0.044

0.008

0.014

0.007

0.120

0.120

0.198

0.026

MIN

0.91

0.10

0.25

0.13

2.95

2.95

4.78

0.41

MAX

1.11

0.20

0.36

0.18

3.05

3.05

5.03

0.66

INCHES

MILLIMETERS

8-PIN 

µ

MAX

MICROMAX SMALL OUTLINE

PACKAGE

0.65

0.0256

A

e

E

H

D

0.101mm
0.004 in

___________________Chip Topography

TRANSISTOR COUNT:  357;

SUBSTRATE IS CONNECTED TO OUT.

GND

LBI

OUT

 3/5 

OR FB*

 REF

LX

0.084"

(2.1336mm)

0.058"

(1.4732mm)

SHDN

 LBO

*3/5 FOR MAX866; FB FOR MAX867.

Maker
Maxim Integrated
Datasheet PDF Download