MAX509_510 Datasheet

/var/www/html/datasheet/sites/default/files/pdfhtml_images/max509_510-html.html
background image

_______________General Description

The MAX509/MAX510 are quad, serial-input, 8-bit volt-
age-output digital-to-analog converters (DACs). They
operate with a single +5V supply or dual ±5V supplies.
Internal, precision buffers swing rail-to-rail. The refer-
ence input range includes both supply rails.

The MAX509 has four separate reference inputs, allow-
ing each DAC's full-scale range to be set independently.
20-pin DIP, SSOP, and SO packages are available. The
MAX510 is identical to the MAX509 except it has two ref-
erence inputs, each shared by two DACs. The MAX510
is housed in space-saving 16-pin DIP and SO packages.

The serial interface is double-buffered: A 12-bit input
shift register is followed by four 8-bit buffer registers and
four 8-bit DAC registers. A 12-bit serial word is used to
load data into each register. Both input and DAC regis-
ters can be updated independently or simultaneously
with single software commands. Two additional asyn-
chronous control pins provide simultaneous updating
(

LDAC) or clearing (CLR) of input and DAC registers. 

The interface is compatible with Microwire

TM

and SPI/

QSPI

TM

.  All digital inputs and outputs are TTL/CMOS

compatible. A buffered data output provides for read-
back or daisy-chaining of serial devices.

____________________________Features

Single +5V or Dual ±5V Supply Operation

Output Buffer Amplifiers Swing Rail-to-Rail

Reference Input Range Includes Both Supply Rails

Calibrated Offset, Gain, and Linearity (1LSB TUE)

10MHz Serial Interface, Compatible with SPI, QSPI
(CPOL = CPHA = 0) and Microwire

Double-Buffered Registers for Synchronous
Updating

Serial Data Output for Daisy-Chaining 

Power-On Reset Clears Serial Interface and Sets
All Registers to Zero

______________Ordering Information

Ordering Information continued on last page.

*  Dice are specified at +25°C, DC parameters only.

**Contact factory for availability and processing to MIL-STD-883.

MAX509/MAX510

Quad, Serial 8-Bit DACs

with Rail-to-Rail Outputs

________________________________________________________________

Maxim Integrated Products

1

20

19

18

17

16

15

14

13

12

11

1

2

3

4

5

6

7

8

9

10

OUTC

OUTD

V

DD

REFC

REFB

V

SS

OUTA

OUTB

TOP VIEW

MAX509

REFD

CS

N.C.

SCLK

DGND

N.C.

AGND

REFA

DIN

CLR

DOUT

LDAC

DIP/SO/SSOP

_________________Pin Configurations

MAX509

OUTA

DAC A

DAC B

DAC C

DAC D

REFA

REFB

DAC

REG A

DECODE

CONTROL

INPUT
REG A

DAC

REG B

INPUT
REG B

DAC

REG C

INPUT
REG C

DAC

REG D

INPUT
REG D

12-BIT

SHIFT

REGISTER

SR

CONTROL

CS DIN SCLK

REFC

REFD

OUTB

OUTC

OUTD

DOUT

LDAC

CLR

V

DD

DGND V

SS

AGND

_______________Functional Diagrams

19-0155; Rev 2; 1/96

PART

TEMP. RANGE

PIN-PACKAGE

MAX509

ACPP

0°C to +70°C

20 Plastic DIP

MAX509BCPP

0°C to +70°C

20 Plastic DIP

MAX509ACWP

0°C to +70°C

20 Wide SO

±1

±1 1/2

±1

MAX509BCWP

20 Wide SO

±1 1/2

MAX509ACAP

0°C to +70°C

20 SSOP

±1

0°C to +70°C

MAX509BCAP

0°C to +70°C

20 SSOP

±1 1/2

MAX509BC/D

0°C to +70°C

Dice*

±1 1/2

Pin Configurations continued at end of data sheet.

Functional Diagrams continued at end of data sheet.

TUE

(LSB)

Microwire is a trademark of National Semiconductor. SPI and QSPI are trademarks of Motorola.

For free samples & the latest literature: http://www.maxim-ic.com, or phone 1-800-998-8800

/var/www/html/datasheet/sites/default/files/pdfhtml_images/max509_510-html.html
background image

MAX509/MAX510

Quad, Serial 8-Bit DACs
with Rail-to-Rail Outputs

2

_______________________________________________________________________________________

V

DD

to DGND ..............................................................-0.3V, +6V

V

DD

to AGND...............................................................-0.3V, +6V

V

SS

to DGND ...............................................................-6V, +0.3V

V

SS

to AGND ...............................................................-6V, +0.3V

V

DD

to V

SS

.................................................................-0.3V, +12V

Digital Input Voltage to DGND ......................-0.3V, (V

DD

+ 0.3V)

REF_....................................................(V

SS

- 0.3V), (V

DD

+ 0.3V)

OUT_..............................................................................V

DD

, V

SS

Maximum Current into Any Pin............................................50mA
Continuous Power Dissipation (T

A

= +70°C)

16-Pin Plastic DIP (derate 10.53mW/°C above +70°C) ....842mW
16-Pin Wide SO (derate 9.52mW/°C above +70°C) .........762mW
16-Pin CERDIP (derate 10.00mW/°C above +70°C) ........800mW

20-Pin Plastic DIP (derate 11.11mW/°C above +70°C)....889mW

20-Pin Wide SO (derate 10.00mW/°C above +70°C) .......800mW
20-Pin SSOP (derate 10.00mW/°C above +70°C) ............800mW
20-Pin CERDIP (derate 11.11mW/°C above +70°C) ........889mW

Operating Temperature Ranges:

MAX5_ _ _C_ _ .....................................................0°C to +70°C
MAX5_ _ _E_ _ ..................................................-40°C to +85°C
MAX5_ _ _MJ_ ................................................-55°C to +125°C

Storage Temperature Range .............................-65°C to +150°C
Lead Temperature (soldering, 10sec) .............................+300°C

ELECTRICAL CHARACTERISTICS

(VDD = +5V ±10%, VSS = 0V to -5.5V, VREF = 4V, AGND = DGND = 0V, RL = 10k

, CL = 100pF, TA = TMIN to TMAX, 

unless otherwise noted.)

Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional
operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to
absolute maximum rating conditions for extended periods may affect device reliability.

PARAMETER

CONDITIONS

MIN

TYP

MAX

UNITS

Note:

The outputs may be shorted to VDD, VSS, or AGND if the package power dissipation is not exceeded.  Typical short-circuitcurrent

to AGND is 50mA.  Do not bias AGND more than +1V above DGND, or more than 2.5V below DGND.

ABSOLUTE MAXIMUM RATINGS

Resolution

8

Bits

±1

MAX5_ _A

VREF = +4V,
VSS = 0V or -5V ±10%

MAX5_ _B

±1

MAX5_ _A

Total Unadjusted Error

VREF = -4V,
VSS = -5V ±10%

±1.5

LSB

Differential Nonlinearity

±1

LSB

Guaranteed monotonic

14

MAX5_ _C

16

MAX5_ _E

MAX5_ _B

±10

µV/°C

Code = FF hex

1

4

MAX5_ _C

Full-Scale Error

±14

mV

Code = FF hex

±10

µV/°C

Code = 00 hex

Zero-Code-Error Supply Rejection

1

2

mV

Code = 00 hex,
VSS = 0V

20

MAX5_ _M

SYMBOL

TUE

DNL

±14

MAX5_ _C

±16

MAX5_ _E

Zero-Code Error

Code = 00 hex,
VSS = -5V ±10%

±20

mV

MAX5_ _M

ZCE

±1.5

Code = 00 hex, V

DD

= 5V ±10%,

V

SS

= 0V or -5V ±10%

Zero-Code 
Temperature Coefficient

1

8

MAX5_ _E

Full-Scale-Error Supply Rejection

Code = FF hex,
V

DD

= +5V ±10%,

V

SS

= 0V or -5V ±10%

1

12

mV

MAX5_ _M

Full-Scale-Error 
Temperature Coefficient

STATIC ACCURACY

/var/www/html/datasheet/sites/default/files/pdfhtml_images/max509_510-html.html
background image

MAX509/MAX510

Quad, Serial 8-Bit DACs

with Rail-to-Rail Outputs

_______________________________________________________________________________________

3

ELECTRICAL CHARACTERISTICS (continued)

(VDD = +5V ±10%, VSS = 0V to -5.5V, VREF = 4V, AGND = DGND = 0V, RL = 10k

, CL = 100pF, TA = TMIN to TMAX, 

unless otherwise noted.)

PARAMETER

CONDITIONS

MIN

TYP

MAX

UNITS

Input Voltage Range

SYMBOL

V

SS

V

DD

V

MAX509

16

24

MAX510

Input Resistance (Note 1)

8

12

k

Code = 55 hex

MAX509

15

(Note 4)

AC Feedthrough

-70

dB

(Note 3)

Channel-to-Channel Isolation

-60

dB

MAX510

Input Capacitance (Note 2)

30

pF

Code = 00 hex

10

2

VREF = 4V, load regulation 

1/4LSB

2

Full-Scale Output Voltage

V

SS

V

DD

V

Resistive Load

10

k

Input High Voltage

2.4

V

V

IH

VREF = -4V, V

SS 

= -5V ±10%,

load regulation 

1/4LSB

VREF = V

DD

MAX5_ _C/E,

load regulation 

1LSB

VREF = V

DD

MAX5_ _M,

load regulation 

2LSB

Input Low Voltage

0.8

V

V

IL

V

IN

= 0V or V

DD

Input Current

1.0

µA

I

IN

(Note 5)

Input Capacitance

10

pF

C

IN

I

SOURCE

= 0.2mA

Output High Voltage

V

DD

- 0.5

V

V

OH

I

SINK

= 1.6mA

Output Low Voltage

0.4

V

V

OL

MAX5_ _E

0.7

MAX5_ _C

1.0

MAX5_ _M

Voltage-Output Slew Rate

0.5

V/µs

Positive and negative

To 1/2LSB, 10k

II 100pF load

Output Settling Time (Note 6)

6

µs

Digital Feedthrough

5

nV-s

Wideband Amplifier Noise

60

MHz

VREF = 0.5V

p-p

, 3dB bandwidth

Multiplying Bandwidth

1

VREF = 4V

p-p

at 1kHz, V

DD

= 5V, 

code = FF hex

Digital-to-Analog Glitch Impulse

87

Code 128➝127

12

nV-s

Code = 00 hex, all digital inputs 
from 0V to V

DD

Signal-to-Noise + Distortion Ratio

VREF = 4V

p-p

at 20kHz, V

SS

= -5V ±10%

74

dB

SINAD

µV

RMS

REFERENCE INPUTS

DAC OUTPUTS

DIGITAL INPUTS

DIGITAL OUTPUTS

DYNAMIC PERFORMANCE

/var/www/html/datasheet/sites/default/files/pdfhtml_images/max509_510-html.html
background image

MAX509/MAX510

Quad, Serial 8-Bit DACs
with Rail-to-Rail Outputs

4

_______________________________________________________________________________________

ELECTRICAL CHARACTERISTICS (continued)

(VDD = +5V ±10%, VSS = 0V to -5.5V, VREF = 4V, AGND = DGND = 0V, RL = 10k

, CL = 100pF, TA = TMIN to TMAX, 

unless otherwise noted.)

PARAMETER

CONDITIONS

MIN

TYP

MAX

UNITS

Positive Supply Voltage

SYMBOL

4.5

5.5

V

For specified performance

V

DD

Negative Supply Voltage

-5.5

0

V

For specified performance

V

SS

5

10

Positive Supply Current

5

12

mA

I

DD

Negative Supply Current

mA

I

SS

5

10

MAX5_ _C/E

MAX5_ _M

MAX5_ _C/E

5

12

MAX5_ _M

V

SS

= -5V ±10%, outputs

unloaded, all digital
inputs = 0V or V

DD

Note 1:

Input resistance is code dependent.  The lowest input resistance occurs at code = 55 hex.

Note 2:

Input capacitance is code dependent.  The highest input capacitance occurs at code = 00 hex.

Note 3:

VREF = 4V

p-p

, 10kHz.  Channel-to-channel isolation is measured by setting the code of one DAC to FF hex and setting the

code of all other DACs to 00 hex.

Note 4:

VREF = 4V

p-p

, 10kHz.  DAC code = 00 hex.

Note 5:

Guaranteed by design.

Note 6:

Output settling time is measured by taking the code from 00 hex to FF hex, and from FF hex to 00 hex.

TIMING CHARACTERISTICS

(VDD = +5V ±10%, VSS = 0V to -5V, VREF = 4V, AGND = DGND = 0V, CL = 50pF, TA = TMIN to TMAX, unless otherwise noted.)

PARAMETER

CONDITIONS

MIN

TYP

MAX

UNITS

CLR Pulse Width Low

SYMBOL

50

25

ns

MAX5_ _M

MAX5_ _C/E

40

20

t

CLW

MAX5_ _M

50

25

ns

MAX5_ _C/E

40

20

SCLK Fall to 

CS Rise Hold Time

0

ns

t

CSH2

SCLK Fall to 

CS Fall Hold Time

0

ns

(Note 7)

t

CSH0

40

MAX5_ _C/E

10

100

MAX5_ _C/E

MAX5_ _C/E

40

40

MAX5_ _C/E

20

12.5

MAX5_ _C/E

DIN to SCLK Rise Hold Time

0

ns

t

DH

SCLK Rise to 

CS Rise Hold Time

(Note 9)

40

ns

t

CSH1

LDAC Pulse Width Low

(Notes 7, 8)

0

ns

t

LDW

t

CLL

CS Rise to LDAC Fall Setup Time

40

MAX5_ _C/E

CS Fall to SCLK Setup Time

50

ns

MAX5_ _M

t

CSS

DIN to SCLK Rise Setup Time

50

ns

MAX5_ _M

t

DS

SCLK Clock Frequency

20

10

MHz

MAX5_ _M

f

CLK

SCLK Pulse Width High

50

ns

MAX5_ _M

t

CH

SCLK Pulse Width Low

MAX5_ _M

50

ns

t

CL

SCLK to DOUT Valid

10

100

ns

MAX5_ _M

t

DO

Note 7:

Guaranteed by design.

Note 8:

If 

LDAC is activated prior to CS's rising edge, it must stay low for t

LDW

or longer after 

CS goes high.

Note 9:

Minimum delay from 12th clock cycle to 

CS rise.

Outputs unloaded, all 
digital inputs = 0V or V

DD

POWER SUPPLIES

SERIAL INTERFACE TIMING

/var/www/html/datasheet/sites/default/files/pdfhtml_images/max509_510-html.html
background image

MAX509/MAX510

Quad, Serial 8-Bit DACs

with Rail-to-Rail Outputs

_______________________________________________________________________________________

5

12

0

0

1.2

OUTPUT SINK CURRENT

vs. (V

OUT 

- V

SS

)

2

10

MAX509-FG01

V

OUT

 - V

SS

 (V)

I

OUT

 (mA)

0.8

6

4

0.2

0.6

1.0

8

0.4

V

DD

 = VREF = +5V

V

SS 

= GND = 0V

ALL DIGITAL INPUTS = 00 HEX

-25

0

3.6

4.6

-20

MAX509-FG10

V

OUT

 (V)

I

OUT

 (mA)

4.4

-10

-5

3.8

4.0

-15

OUTPUT SOURCE CURRENT

vs. OUTPUT VOLTAGE

4.8

5.0

4.2

V

DD

 = VREF = +5V

V

SS

 = GND

DIGITAL INPUT = FF HEX

7

0

-60

-20

40

100

SUPPLY CURRENT

vs. TEMPERATURE

2

6

MAX509-FG02

TEMPERATURE (

°

C)

SUPPLY CURRENT (mA)

20

80

4

5

3

1

-40

0

60

120 140

I

DD

I

SS

V

DD

 = +5.5V

V

SS

 = -5.5V

VREF = -4.75
ALL DIGITAL INPUTS = +5V

6

0

-5

5

SUPPLY CURRENT

vs. REFERENCE VOLTAGE

1

5

MAX509-FG03

VREF VOLTAGE (V)

I

DD

 (mA)

0

3

2

-4

-2

2

4

4

3

1

-1

-3

V

DD

 = +5V

ALL LOGIC
INPUTS = +5V

V

SS

 = -5V

V

SS

 = 0V

0

1k

10k

100k

REFERENCE VOLTAGE INPUT

FREQUENCY RESPONSE

-40

MAX509-FG06

FREQUENCY (Hz)

RELATIVE OUTPUT (dB)

-30

-20

-10

1M

10M

V

DD

 = +5V

V

SS

 = AGND

VREF = 2.5VDC + 0.5Vp-p SINE WAVE

-40

-90

0

2

6

10

THD + NOISE AT DAC OUTPUT

vs. REFERENCE AMPLITUDE

-80

-50

MAX509-FG04

REFERENCE AMPLITUDE (Vp-p)

THD + NOISE (dB)

4

8

-60

-70

-85

-75

-65

-55

-45

1%

0.01%

0.1%

FREQ = 20kHz

FREQ = 1kHz

V

DD

 = +5V

V

SS

 = -5V

INPUT CODE = FF HEX

THD + NOISE (%)

-20

-80

10

1k

100k

THD + NOISE AT DAC OUTPUT

vs. REFERENCE FREQUENCY

-70

MAX509-FG05

REFERENCE FREQUENCY (Hz)

THD + NOISE (dB)

-60

-50

-40

-90

-30

100

10k

VREF = 8Vp-p

VREF = 1Vp-p

VREF = 4Vp-p

V

DD

 = +5V

V

SS

 = -5V

INPUT CODE = FF HEX
FREQ = SWEPT

10%

1%

0.1%

0.01%

THD + NOISE (%)

0

1k

10k

100k

REFERENCE VOLTAGE INPUT

FREQUENCY RESPONSE

-40

MAX509-FG07

FREQUENCY (Hz)

RELATIVE OUTPUT (dB)

-30

-20

-10

1M

10M

V

DD

 = +5V

V

SS

 = AGND

VREF = 2.5VDC + 0.05Vp-p SINE WAVE

0

1k

10k

100k

REFERENCE VOLTAGE INPUT

FREQUENCY RESPONSE

-40

MAX509-FG08

FREQUENCY (Hz)

RELATIVE OUTPUT (dB)

-30

-20

-10

1M

10M

V

DD

 = +5V

V

SS

 = -5V

VREF = 2.5VDC + 4Vp-p SINE WAVE

__________________________________________Typical Operating Characteristics

(T

= +25°C, unless otherwise noted.)

/var/www/html/datasheet/sites/default/files/pdfhtml_images/max509_510-html.html
background image

MAX509/MAX510

Quad, Serial 8-DACs
with Rail-to-Rail Outputs

6

_______________________________________________________________________________________

____________________________Typical Operating Characteristics (continued)

(T

= +25°C, unless otherwise noted.)

A = REFA, 10V

p-p

B = OUTA, 100

µ

V/div, UNLOADED

TIMEBASE = 10

µ

s/div

V

DD

 = +5V, V

SS

 = -5V

CODE = ALL 0s

REFERENCE FEEDTHROUGH AT 40kHz

A

B

A = REFA, 10V

p-p

B = OUTA, 50

µ

V/div, UNLOADED

TIMEBASE = 1ms/div

REFERENCE FEEDTHROUGH AT 400Hz

A

B

A = REFA, 10V

p-p

B = OUTA, 50

µ

V/div, UNLOADED

TIMEBASE = 50

µ

s/div

REFERENCE FEEDTHROUGH AT 10kHz

A

B

5V

50µV

100µS

A = REFA, 10V

p-p

B = OUTA, 50

µ

V/div, UNLOADED

TIMEBASE = 100

µ

s/div

REFERENCE FEEDTHROUGH AT 4kHz

A

B

10

5.0

3.6

0

-4

ZERO-CODE ERROR

vs. NEGATIVE SUPPLY VOLTAGE

3.8

4.8

MAX509-FG09

V

SS

 (V)

ZERO-CODE ERROR (mV)

-3

4.4

4.0

-1

-2

4.6

3.4

4.2

-5

-6

V

DD

 = +5V

VREF = +4V

A = CS, 2V/div
B = OUTA, 20mV ˜
TIMEBASE = 200ns/div

WORST-CASE 1LSB DIGITAL STEP CHANGE

A

B

200nS

2V

20mV

/var/www/html/datasheet/sites/default/files/pdfhtml_images/max509_510-html.html
background image

MAX509/MAX510

Quad, Serial 8-Bit DACs

with Rail-to-Rail Outputs

_______________________________________________________________________________________

7

5V

100mV

1µS

A = DIGITAL INPUT, 5V/div
B = OUT_ , 2V/div
TIMEBASE = 1

µ

s/div

V

DD

 = +5V

REF_ = +4V
ALL BITS OFF TO ALL BITS ON
R

L

 = 10k

, C

L

 = 100pF

POSITIVE SETTLING TIME

(V

SS

 = AGND OR -5V)

A

B

5V

100mV

1µS

A = DIGITAL INPUT, 5V/div
B = OUT_ , 2V/div
TIMEBASE = 1

µ

s/div

V

DD

 = +5V

REF_ = +4V
ALL BITS ON TO ALL BITS OFF
R

L

 = 10k

, C

L

 = 100pF

NEGATIVE SETTLING TIME

(V

SS

 = AGND)

A

B

____________________________Typical Operating Characteristics (continued)

(T

= +25°C, unless otherwise noted.)

A = SCLK, 333kHz
B = OUT_, 10mV/div
TIMEBASE = 2

µ

s/div

CLOCK FEEDTHROUGH

A

B

5V

100mV

1µS

A = DIGITAL INPUT, 5V/div
B = OUT_ , 2V/div
TIMEBASE = 1

µ

s/div

V

DD

 = +5V

REF_ = +4V
ALL BITS ON TO ALL BITS OFF
R

L

 = 10k

, C

L

 = 100pF

NEGATIVE SETTLING TIME

(V

SS

 = -5V)

A

B

/var/www/html/datasheet/sites/default/files/pdfhtml_images/max509_510-html.html
background image

MAX509/MAX510

Quad, Serial 8-Bit DACs
with Rail-to-Rail Outputs

8

_______________________________________________________________________________________

NAME

FUNCTION

1

OUTB

DAC B Voltage Output

2

OUTA

DAC A Voltage Output

3

V

SS

Negative Power Supply, 0V to -5V ±10%.  Connect to AGND for single-supply operation.

PIN

MAX509

MAX510

1

2

4

REFB

Reference Voltage Input for DAC B

REFAB

Reference Voltage Input for DACs A and B

5

REFA

Reference Voltage Input for DAC A

6

AGND

Analog Ground

3

4

7, 14

N.C.

Not Internally Connected

8

DGND

Digital Ground

5

6

______________________________________________________________Pin Description

10

DOUT

8

9

LDAC

7

11

CLR

9

12

DIN

10

13

SCLK

11

15

CS

12

16

REFD

Reference Voltage Input for DAC D

REFCD

Reference Voltage Input for DACs C and D

13

Load DAC Input (active low).  Driving this asynchronous input low (level sensitive) 
transfers the contents of each input latch to its respective DAC latch.

Serial Data Output.  Can sink and source current.  Data at DOUT is adjustable to be
clocked out on rising or falling edge of SCLK.

17

REFC

Reference Voltage Input for DAC C

18

V

DD

Positive Power Supply, +5V ±10%

14

19

OUTD

DAC D Output Voltage

15

20

OUTC

DAC C Output Voltage

16

Clear DAC input (active low).  Driving 

CLR low causes an asynchronous clear of input

and DAC registers and sets all DAC outputs to zero.

Serial Data Input.  TTL/CMOS-compatible input.  Data is clocked into DIN on the 
rising edge of SCLK.  

CS must be low for data to be clocked in.

Serial Clock Input.  Data is clocked in on the rising edge and clocked out on either the 
rising (default) or the falling edge.

Chip-Select Input (active low).  Data is shifted in and out when 

CS is low.  Programming

commands are executed when 

CS rises.

/var/www/html/datasheet/sites/default/files/pdfhtml_images/max509_510-html.html
background image

MAX509/MAX510

Quad, Serial 8-Bit DACs

with Rail-to-Rail Outputs

_______________________________________________________________________________________

9

• • •

• • •

• • •

• • •

A1 A0

C1 C0

D7 D6

D5 D4 D3 D2 D1 D0

MSB

LSB

DACA

DATA FROM PREVIOUS DATA INPUT

DATA FROM PREVIOUS DATA INPUT

A1 A0

C1 C0

D7

D6 D5 D4 D3 D2

D1 D0

MSB

LSB

DACD

A1

A1

A1

A1

A0

C1

C0

D7

D6 D5 D4 D3 D2 D1 D0

A1

A0

C1 C0

D7

A0

C1 C0

D7

D6 D5 D4 D3 D2 D1

D0

A1

A1

A0 C1

C0

D7

D6 D5

D4 D3 D2

D1 D0

A1

D6

D5 D4 D3 D2 D1 D0

A1

A1

DOUT

MODE 0

DOUT

MODE 1

(DEFAULT)

DIN

SCLK

• • •

CS

INSTRUCTION

EXECUTED

Figure 1.  MAX509/MAX510 3-Wire Interface Timing

_______________Detailed Description

Serial Interface

At power-on, the serial interface and all DACs are
cleared and set to code zero. The serial data output
(DOUT) is set to transition on SCLK's rising edge. 

The MAX509/MAX510 communicate with microproces-
sors through a synchronous, full-duplex, 3-wire inter-
face (Figure 1). Data is sent MSB first and can be
transmitted in one 4-bit and one 8-bit (byte) packet or
in one 12-bit word. If a 16-bit control word is used, the
first four bits are ignored. A 4-wire interface adds a line
for 

LDAC and allows asynchronous updating. The serial

clock (SCLK) synchronizes the data transfer. Data is
transmitted and received simultaneously. 

Figure 2 shows a detailed serial interface timing.
Please note that the clock should be low if it is stopped

between updates. DOUT does not go into a high-
impedance state if the clock or 

CS is high.  

Serial data is clocked into the data registers in MSB-
first format, with the address and configuration infor-
mation preceding the actual DAC data. Data is
clocked in on SCLK's rising edge while 

CS is low. Data

at DOUT is clocked out 12 clock cycles later, either at
SCLK's rising edge (default or mode 1) or falling edge
(mode 0).

Chip select (

CS) must be low to enable the DAC. If CS

is high, the interface is disabled and DOUT remains
unchanged. 

CS must go low at least 40ns before the

first rising edge of the clock pulse to properly clock in
the first bit. With 

CS low, data is clocked into the

MAX509/MAX510's internal shift register on the rising
edge of the external serial clock. SCLK can be driven
at rates up to 12.5MHz.

/var/www/html/datasheet/sites/default/files/pdfhtml_images/max509_510-html.html
background image

MAX509/MAX510

Quad, Serial 8-Bit DACs
with Rail-to-Rail Outputs

10

______________________________________________________________________________________

• • •

• • •

• • •

• • •

• • •

t

LDW

SCLK

DIN

DOUT

LDAC

CS

t

DO

t

DH

t

DS

t

CSH0

t

CSS

t

CH

t

CL

t

CSH1

t

CSH2

t

CLL

NOTE:  TIMING SPECIFICATION t

CLL

 IS RECOMMENDED TO MINIMIZE OUTPUT GLITCH, BUT IS NOT MANDATORY.

Figure 2.  Detailed Serial Interface Timing (Mode 0 Shown)

Table 1.  Serial-Interface Programming Commands

Mode 0, DOUT clocked out on falling edge of SCLK.
All DACs updated from input registers.

Mode 1, DOUT clocked out on rising edge of SCLK
(default). All DACs updated from respective input
registers.

LDAC” Command, all DACs updated from respective

input registers.

12-Bit Serial Word

0
0
1
1

0
0
1
1

C0

0

0

0

0

0

1
1
1
1

1
1
1
1

C1

1

1

1

0

0

1
1
1
1

0
0
0
0

A0

0

1

X

1

0

0
1
0
1

0
1
0
1

Function

LDAC

D7 . . . . . . . .  D0

A1

X

X X X X X X X X

1

X

X X X X X X X X

1

X

X X X X X X X X

0

No Operation (NOP), shifts data in shift register.

X

X X X X X X X X 

X

Update all DACs from shift register.

X

8-Bit DAC Data

X

Load input and DAC register A.
Load input and DAC register B.
Load input and DAC register C.
Load input and DAC register D.

1
1
1
1

8-Bit DAC Data
8-Bit DAC Data
8-Bit DAC Data
8-Bit DAC Data

Load DAC A input register, DAC output unchanged.
Load DAC B input register, DAC output unchanged.
Load DAC C input register, DAC output unchanged.
Load DAC D input register, DAC output unchanged.

1
1
1
1

8-Bit DAC Data
8-Bit DAC Data
8-Bit DAC Data
8-Bit DAC Data

/var/www/html/datasheet/sites/default/files/pdfhtml_images/max509_510-html.html
background image

Serial Input Data Format and Control Codes

The 12-bit serial input format shown in Figure 3 com-
prises two DAC address bits (A1, A0), two control bits
(C1, C0) and eight bits of data (D0...D7). 

The 4-bit address/control code configures the DAC as
shown in Table 1.

Load Input Register, DAC Registers Unchanged

(Single Update Operation)

When performing a single update operation, A1 and A0
select the respective input register. At the rising edge
of 

CS, the selected input register is loaded with the cur-

rent shift-register data. All DAC outputs remain
unchanged. This preloads individual data in the input
register without changing the DAC outputs.

Load Input and DAC Registers

This command directly loads the selected DAC register
at 

CS's rising edge. A1 and A0 set the DAC address.

Current shift-register data is placed in the selected
input and DAC registers.

For example, to load all four DAC registers simultaneously
with individual settings (DAC A = 1V, DAC B = 2V, DAC
C = 3V and DAC D = 4V), five commands are required.
First, perform four single input register update opera-
tions. Next, perform an “

LDAC” command as a fifth

command. All DACs will be updated from their respec-
tive input registers at the rising edge of 

CS.

Update All DACs from Shift Registers

All four DAC registers are updated with shift-register
data. This command allows all DACs to be set to any
analog value within the reference range. This command
can be used to substitute 

CLR if code 00 hex is pro-

grammed, which clears all DACs.

No Operation (NOP)

The NOP command (no operation) allows data to be shift-
ed through the MAX509/MAX510 shift register without
affecting the input or DAC registers. This is useful in daisy
chaining (also see the 

Daisy-Chaining Devices section).

For this command, the data bits are "Don't Cares." As an
example, three MAX509/MAX510s are daisy-chained (A, B
and C), and DAC A and DAC C need to be updated. The
36-bit-wide command would consist of one 12-bit word for
device C, followed by an NOP instruction for device B and
a third 12-bit word with data for device A. At 

CS's rising

edge, only device B is not updated.

“LDAC” Command (Software)

All DAC registers are updated with the contents of their
respective input registers at 

CS's rising edge. With the

exception of using 

CS to execute, this performs the

same function as the asynchronous 

LDAC. 

Set DOUT Phase – SCLK Rising (Mode 1, Default)

Mode 1 resets the serial output DOUT to transition at
SCLK's rising edge. This is the MAX509/MAX510’s
default setting after the supply voltage has been
applied.

The command also loads all DAC registers with the con-
tents of their respective input registers, and is identical to
the “

LDAC” command.

MAX509/MAX510

Quad, Serial 8-Bit DACs

with Rail-to-Rail Outputs

______________________________________________________________________________________

11

This is the first bit shifted in

A1 A0C1 C0 D7D6 

● ● ●

 D1 D0

DIN

DOUT

Control and
Address bits 

8-bit DAC data

MSB

LSB

Figure 3.  Serial Input Format

(

LDAC = H)

(

LDAC = x)

(

LDAC = x)

(

LDAC = x)

(

LDAC = x)

(

LDAC = H)

1       0

1       1

x

x

x

x

x

x

x

x

D0

D1

D2

D3

D4

D5

D6

D7

C0

C1

A0

A1

8-Bit DAC Data

0       0

x       0

D0

D1

D2

D3

D4

D5

D6

D7

C0

C1

A0

A1

x

x

x

x

x

x

x

x

0       0

x       1

D0

D1

D2

D3

D4

D5

D6

D7

C0

C1

A0

A1

1       0

0       x

x

x

x

x

x

x

x

x

D0

D1

D2

D3

D4

D5

D6

D7

C0

C1

A0

A1

8-Bit Data

0       1

Address

D0

D1

D2

D3

D4

D5

D6

D7

C0

C1

A0

A1

8-Bit Data

1       1

Address

D0

D1

D2

D3

D4

D5

D6

D7

C0

C1

A0

A1

/var/www/html/datasheet/sites/default/files/pdfhtml_images/max509_510-html.html
background image

Set DOUT Phase – SCLK Falling (Mode 0)

This command resets DOUT to transition at SCLK's falling
edge. Once this command is issued, the phase of DOUT is
latched and will not change except on power-up or if the
specific command is issued that sets the phase to rising
edge.

The same command also updates all DAC registers with
the contents of their respective input registers, identical to
the “

LDAC” command. 

LDAC Operation (Hardware)

LDAC is typically used in 4-wire interfaces (Figure 7).
LDAC allows asynchronous hardware control of the DAC
outputs and is level-sensitive. With 

LDAC low, the DAC reg-

isters are transparent and any time an input register is
updated, the DAC output immediately follows. 

Clear DACs with CLR

Strobing the 

CLR pin low causes an asynchronous clear of

input and DAC registers and sets all DAC outputs to zero.
Similar to the 

LDAC pin, CLR can be invoked at any time,

typically when the device is not selected (

CS = H). When

the DAC data is all zeros, this function is equivalent to the
"Update all DACs from Shift Registers" command. 

Digital Inputs and Outputs

Digital inputs and outputs are compatible with both TTL and
5V CMOS logic. The power-supply current (I

DD

) depends

on the input logic levels. Using CMOS logic to drive 

CS,

SCLK, DIN, 

CLR and LDAC turns off the internal level trans-

lators and minimizes supply currents.  

Serial Data Output 

DOUT is the output of the internal shift register. DOUT can be
programmed to clock out data on SCLK's falling edge (mode
0) or rising edge (mode 1). In mode 0, output data lags the
input data by 12.5 clock cycles, maintaining compatibility with
Microwire, SPI, and QSPI. In mode 1, output data lags the input
by 12 clock cycles. On power-up, DOUT defaults to mode 1
timing. DOUT never three-states; it always actively drives either
high or low and remains unchanged when 

CS is high.

Interfacing to the Microprocessor

The MAX509/MAX510 are Microwire, SPI, and QSPI compati-
ble.  For SPI and QSPI, clear the CPOL and CPHA configura-
tion bits (CPOL = CPHA = 0).  The SPI/QSPI CPOL = CPHA
= 1 configuration can also be used if the DOUT output is
ignored.  

The MAX509/MAX510 can interface with Intel's
80C5X/80C3X family in mode 0 if the SCLK clock polarity is
inverted. More universally, if a serial port is not available,
three lines from one of the parallel ports can be used for bit
manipulation. 

Digital feedthrough at the voltage outputs is greatly mini-
mized by operating the serial clock only to update the regis-
ters. Also see the Clock Feedthrough photo in the 

Typical

Operating Characteristics section. The clock idle state is low. 

Daisy-Chaining Devices

Any number of MAX509/MAX510s can be daisy-chained by
connecting the DOUT pin of one device to the DIN pin of the
following device in the chain. The NOP instruction (Table 1)
allows data to be passed from DIN to DOUT without chang-
ing the input or DAC registers of the passing device. A three-
wire interface updates daisy-chained or individual
MAX509/MAX510s simultaneously by bringing 

CS high. 

Quad, Serial 8-Bit DACs
with Rail-to-Rail Outputs

12

______________________________________________________________________________________

SCLK

DIN

DOUT

CS

SK

SO

SI

I/0

MICROWIRE

PORT

MAX509
MAX510

THE DOUT-SI CONNECTION IS NOT REQUIRED FOR WRITING TO THE
MAX509/MAX510, BUT MAY BE USED FOR READ-BACK PURPOSES.

Figure 4. Connections for Microwire  

DOUT

DIN

SCLK

CS

MISO

MOSI

SCK

I/0

SPI

PORT

MAX509
MAX510

THE DOUT-MISO CONNECTION IS NOT REQUIRED FOR WRITING TO THE
MAX509/MAX510, BUT MAY BE USED FOR READ-BACK PURPOSES.

CPOL = 0, CPHA = 0

Figure 5. Connections for SPI 

(

LDAC = x)

A1

A0

C1

C0

D7

D6

D5

D4

D3

D2

D1

D0

x

x

x

x

x

x

x

x

1       0

1       0

MAX509/MAX510

/var/www/html/datasheet/sites/default/files/pdfhtml_images/max509_510-html.html
background image

MAX509/MAX510

Quad, Serial 8-Bit DACs

with Rail-to-Rail Outputs

______________________________________________________________________________________

13

SCLK

DIN

CS

MAX509
MAX510

SCLK

DIN

CS

MAX509
MAX510

SCLK

DIN

CS

MAX509
MAX510

SCLK

DIN

CS

MAX509
MAX510

DOUT

DOUT

DOUT

SCLK

DIN

CS

SCLK

DIN

CS

TO OTHER
SERIAL DEVICES

Figure 6. Daisy-chained or individual MAX509/MAX510s are simultaneously updated by bringing CS high.  Only three wires are
required.

CS

LDAC

SCLK

DIN

MAX509
MAX510

CS

LDAC

SCLK

DIN

MAX509
MAX510

CS

LDAC

SCLK

DIN

MAX509
MAX510

TO OTHER
SERIAL
DEVICES

DIN

SCLK

LDAC

CS1

CS2

CS3

Figure 7. Multiple MAX509/MAX510 DACs sharing one DIN line.  Simultaneously update by strobing LDAC, or specifically update by
enabling individual CS.

/var/www/html/datasheet/sites/default/files/pdfhtml_images/max509_510-html.html
background image

MAX509/MAX510

Quad, Serial 8-Bit DACs
with Rail-to-Rail Outputs

14

______________________________________________________________________________________

If multiple devices share a common DIN line, Figure 7's
configuration provides simultaneous update by strob-
ing 

LDAC low. CS1, CS2, CS3... are driven separately,

thus controlling which data are written to devices 1, 2, 3....

Analog Section

DAC Operation

The MAX509/MAX510 contain four matched voltage-
output DACs. The DACs are inverted R-2R ladder net-
works that convert 8-bit digital words into equivalent
analog output voltages in proportion to the applied ref-
erence voltages. Each DAC in the MAX509 has a sepa-
rate reference input, while the two reference inputs in
the MAX510 each share a pair of DACs. The two refer-
ence inputs permit different full-scale output voltage
ranges for each pair of DACs. A simplified diagram of
one of the four DACs is shown in Figure 8.

Reference Input

The MAX509/MAX510 can be used for multiplying
applications. The reference accepts both DC and AC
signals. The voltage at each REF input sets the full-
scale output voltage for its respective DAC(s). If the ref-
erence voltage is positive, both the MAX509 and
MAX510 can be operated from a single supply. If dual
supplies are used, the reference input can vary from
V

SS

to V

DD

, but is always referred to AGND. The input

impedance at REF is code dependent, with the lowest
value (16k

for the MAX509 and 8k

for the MAX510)

occurring when the input code is 55 hex or 0101 0101.
The maximum value, practically infinity, occurs when
the input code is 00 hex. Since the REF input imped-
ance is code dependent, the DAC's reference sources
must have a low output impedance (no more than 32

for the MAX509 and 16

for the MAX510) to maintain

output linearity. The REF input capacitance is also code

dependent:  15pF typical for the MAX509 and 30pF
typical for the MAX510. 

The output voltage for any DAC can be represented by
a digitally programmable voltage source as:

VOUT = (NB x VREF) / 256

where NB is the numerical value of the DAC's binary
input code.

Output Buffer Amplifiers

All MAX509/MAX510 voltage outputs are internally
buffered by precision unity-gain followers that slew at
up to 1V/µs. The outputs can swing from V

SS

to V

DD

.

With a 0V to +4V (or +4V to 0V) output transition, the
amplifier outputs will settle to 1/2LSB in typically 6µs
when loaded with 10k

in parallel with 100pF. 

The buffer amplifiers are stable with any combination of
resistive loads 

2k

and capacitive loads 

300pF.

__________Applications Information

Power Supply and

Reference Operating Ranges

The MAX509/MAX510 are fully specified to operate with
V

DD

= 5V ±10% and V

SS

= 0V to -5.5V. 8-bit perfor-

mance is guaranteed for both single- and dual-supply
operation. The zero-code output error is less than 14mV
when operating from a single +5V supply.

The DACs work well with reference voltages from V

SS

to V

DD

. The reference voltage is referred to AGND. 

The preferred power-up sequence is to apply V

SS

and

then V

DD

, but bringing up both supplies at the same

time is also acceptable.  In either case, the voltage
applied to REF should not exceed V

DD

during power-

up or at any other time.  If proper power sequencing is
not possible, connect an external Schottky diode
between V

SS

and AGND to ensure compliance with the

Absolute Maximum Ratings.  Do not apply signals to
the digital inputs before the device is fully powered up.

Power-Supply Bypassing

and Ground Management

In single-supply operation (AGND = DGND = V

SS

=

0V), AGND, DGND and V

SS

should be connected

together in a "star" ground at the chip. This ground
should then return to the highest quality ground avail-
able. Bypass V

DD

with a 0.1µF capacitor, located as

close to V

DD

and DGND as possible. In dual-supply

operation, bypass V

SS

to AGND with 0.1µF. 

Careful PC board layout minimizes crosstalk among
DAC outputs, reference inputs, and digital inputs.
Figures 9 and 10 show suggested circuit board layouts
to minimize crosstalk.

2R

R

R

R

2R

2R

2R

2R

2R

D0

D5

D6

D7

REF_

AGND

SHOWN FOR ALL 1 ON DAC

OUT_

Figure 8. DAC Simplified Circuit Diagram 

/var/www/html/datasheet/sites/default/files/pdfhtml_images/max509_510-html.html
background image

MAX509/MAX510

Quad, Serial 8-Bit DACs

with Rail-to-Rail Outputs

______________________________________________________________________________________

15

Unipolar-Output, 2-Quadrant Multiplication

In unipolar operation, the output voltages and the refer-
ence input(s) are the same polarity. Figures 11 and 12
show the MAX509/MAX510 unipolar configurations.
Both devices can be operated from a single supply if
the reference inputs are positive. If dual supplies are
used, the reference input can vary from V

SS

to V

DD

.

Table 2 shows the unipolar code. 

Bipolar-Output, 2-Quadrant Multiplication

Bipolar-output, 2-quadrant multiplication is achieved by
offsetting AGND positively or negatively. Table 3 shows
the bipolar code.

AGND can be biased above DGND to provide an arbi-
trary nonzero output voltage for a 0 input code, as
shown in Figure 13. The output voltage at OUTA is:

V

OUTA

= V

BIAS

+ (NB/256)(V

IN

),

Figure 9. Suggested MAX509 PC Board Layout for Minimizing
Crosstalk (Bottom View)

OUTC

OUTD

V

DD

REFC

REFD

OUTB

OUTA

V

SS

REFB

REFA

SYSTEM GND

AGND

Figure 10. Suggested MAX510 PC Board Layout for Minimizing
Crosstalk (Bottom View)

OUTC

OUTD

V

DD

REFCD

OUTB

OUTA

V

SS

REFAB

SYSTEM GND

AGND

DAC CONTENTS

MSB

LSB

ANALOG

OUTPUT

1 1 1 1

1 1 1 1

255

+V

REF

(

––––

)

256

1 0 0 0

0 0 0 1

129

+V

REF 

(

––––

)

256

1 0 0 0

0 0 0 0

128         V

REF

+V

REF

(

––––

)

= + –

–––

256            2

0 1 1 1

1 1 1 1

127

+V

REF

(

––––

)

256

0 0 0 0

0 0 0 0

0V

0 0 0 0

0 0 0 1

1

+V

REF

(

––––

)

256

Table 2. Unipolar Code Table

1

Note:

1LSB = (V

REF

) (2-8) = +V

REF

(

––––

)

256

Table 3. Bipolar Code Table

1 0 0 0

DAC CONTENTS

0 0 0 1

MSB

LSB

ANALOG

OUTPUT

1 1 1 1

1 1 1 1

127

+V

REF

(

––––

)

128

1

+V

REF

(

––––

)

128

1 0 0 0

0 0 0 0

0V

0 1 1 1

1 1 1 1

1

-V

REF

(

––––

)

128

0 0 0 0

0 0 0 0

128    

-V

REF

(

––––

)

= -V

REF

128

0 0 0 0

0 0 0 1

127

-V

REF

(

––––

)

128

/var/www/html/datasheet/sites/default/files/pdfhtml_images/max509_510-html.html
background image

MAX509/MAX510

where NB represents the digital input word. Since
AGND is common to all four DACs, all outputs will be
offset by V

BIAS

in the same manner. Do not bias AGND

more than +1V above DGND, or more than 2.5V below
DGND.

Figures 14 and 15 illustrate the generation of negative
offsets with bipolar outputs. In these circuits, AGND is
biased negatively (up to -2.5V with respect to DGND) to
provide an arbitrary negative output voltage for a 0
input code. The output voltage at OUTA is:

OUTA = -(R2/R1)(2.5V) + (NB/256)(2.5V)(R2/R1+1)

where NB represents the digital input word. Since
AGND is common to all four DACs, all outputs will be
offset by V

BIAS

in the same manner. Table 3, with

V

REF

= 2.5V, shows the digital code vs. output voltage

for Figure 14 and 15's circuits with R1 = R2. The
ICL7612 op amp is chosen because its common-mode
range extends to both supply rails.

Quad, Serial 8-Bit DACs
with Rail-to-Rail Outputs

16

______________________________________________________________________________________

Figure 11. MAX509 Unipolar Output Circuit

REFD

DAC A

DAC B

DAC C

DAC D

REFC

REFB

REFA

MAX509

OUTA

OUTB

OUTC

OUTD

SERIAL

 INTERFACE

NOT SHOWN

REFERENCE INPUTS (V

SS

 TO V

DD

)

2

1

20

19

V

DD

+5V

16

5

17

4

18

3

-5V (OR GND)

6

8

V

SS

AGND

DGND

Figure 12. MAX510 Unipolar Output Circuit

DAC A

DAC B

DAC C

DAC D

REFAB

MAX510

OUTA

OUTB

OUTC

OUTD

SERIAL

 INTERFACE

NOT SHOWN

REFERENCE INPUTS (V

SS

 TO V

DD

)

2

1

16

15

V

DD

+5V

4

14

3

-5V (OR GND)

5

6

V

SS

AGND

DGND

REFCD

13

Figure 13. MAX509/MAX510 AGND Bias Circuits (Positive
Offset)

DAC A

MAX509

5

18

AGND

2

OUTA

DGND

V

SS

REFA

V

DD

3

8

V

IN

V

BIAS

6

+5V

-5V (OR GND)

DAC A

MAX510

4

14

AGND

2

OUTA

DGND

V

SS

REFAB

V

DD

3

6

V

IN

V

BIAS

5

+5V

-5V (OR GND)

SERIAL INTERFACE NOT SHOWN

/var/www/html/datasheet/sites/default/files/pdfhtml_images/max509_510-html.html
background image

MAX509/MAX510

Quad, Serial 8-Bit DACs

with Rail-to-Rail Outputs

______________________________________________________________________________________

17

Figure 14. MAX509 AGND Bias Circuit (Negative Offset)

DAC A

DAC B

DAC C

DAC D

MAX509

OUTA

OUTB

OUTC

OUTD

SERIAL

 INTERFACE

NOT SHOWN

REFERENCE INPUTS 

2

1

20

19

V

DD

+5V

16

5

17

4

18

3

-5V

8

V

SS

AGND

DGND

6

0.1

µ

F

0.1

µ

F

MAX873

+5V

0.1

µ

F

R1

330k

0.1%

+5V

+2.5V

0.1

µ

F

0.1

µ

F

-5V

6

8

7

2

3

1

R2

330k

0.1%

ICL7611A

4-Quadrant Multiplication

Each DAC output may be configured for 4-quadrant
multiplication using Figure 16 and 17's circuit. One op
amp and two resistors are required per channel. With
R1 = R2:

V

OUT

= V

REF

[2(NB/256)-1]

where NB represents the digital word in DAC register A.

The recommended value for resistors R1 and R2 is
330k

(±0.1%). Table 3 shows the digital code vs. out-

put voltage for Figure 16 and 17's circuit. 

/var/www/html/datasheet/sites/default/files/pdfhtml_images/max509_510-html.html
background image

MAX509/MAX510

Quad, Serial 8-Bit DACs
with Rail-to-Rail Outputs

18

______________________________________________________________________________________

Figure 15. MAX510 AGND Bias Circuit (Negative Offset)

DAC A

DAC B

DAC C

DAC D

MAX510

OUTA

OUTB

OUTC

OUTD

SERIAL

 INTERFACE

NOT SHOWN

REFERENCE INPUTS

2

1

16

15

V

DD

+5V

13

4

14

3

-5V

6

V

SS

AGND

DGND

5

0.1

µ

F

0.1

µ

F

MAX873

+5V

0.1

µ

F

R1

330k

0.1%

+5V

+2.5V

0.1

µ

F

0.1

µ

F

-5V

6

8

7

2

3

1

R2

330k

0.1%

ICL7611A

6

4

2

DAC A

DAC B

DAC C

DAC D

MAX509

OUTA

OUTB

OUTC

OUTD

SERIAL

 INTERFACE

NOT SHOWN

REFERENCE INPUTS (V

SS

 TO V

DD

)

2

1

20

19

V

DD

+5V

16

5

17

4

18

3

AGND OR -5V

8

V

SS

AGND

DGND

6

*CONNECT ICL7612A PIN 8 TO AGND

+5V

0.1

µ

F

0.1

µ

F

R1

0.1

µ

F

R2

-5V

V

OUT

+5V

R1

R2

0.1

µ

F

V

OUT

0.1

µ

F

-5V

0.1

µ

F

ICL7612A*

ICL7612A*

Figure 16. MAX509 Bipolar Output Circuit

/var/www/html/datasheet/sites/default/files/pdfhtml_images/max509_510-html.html
background image

MAX509/MAX510

Quad, Serial 8-Bit DACs

with Rail-to-Rail Outputs

______________________________________________________________________________________

19

DAC A

DAC B

DAC C

DAC D

MAX510

OUTA

OUTB

OUTC

OUTD

SERIAL

 INTERFACE

NOT SHOWN

REFERENCE INPUTS

2

1

16

15

V

DD

+5V

13

4

14

3

AGND OR -5V

6

V

SS

AGND

DGND

5

 *CONNECT ICL7612A PIN 8 TO AGND

+5V

0.1

µ

F

0.1

µ

F

R1

0.1

µ

F

R2

-5V

V

OUT

+5V

R1

R2

0.1

µ

F

V

OUT

0.1

µ

F

-5V

0.1

µ

F

ICL7612A*

ICL7612A*

Figure 17. MAX510 Bipolar Output Circuit

TOP VIEW

16

15

14

13

12

11

10

9

1

2

3

4

5

6

7

8

OUTC

 

OUTD

V

DD

REFCD

REFAB

V

SS

OUTA

OUTB

MAX510

CS

SCLK

DIN

CLR

DOUT

LDAC

DGND

AGND

DIP/Wide SO

____Pin Configurations (continued)

MAX509

OUTA

DAC A

DAC B

DAC C

DAC D

REFA

REFB

DAC

REG A

DECODE

CONTROL

INPUT
REG A

DAC

REG B

INPUT
REG B

DAC

REG C

INPUT
REG C

DAC

REG D

INPUT
REG D

12-BIT

SHIFT

REGISTER

SR

CONTROL

CS DIN SCLK

REFC

REFD

OUTB

OUTC

OUTD

DOUT

LDAC

CLR

V

DD

DGND V

SS

AGND

__Functional Diagrams (continued)

/var/www/html/datasheet/sites/default/files/pdfhtml_images/max509_510-html.html
background image

Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are
implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.

20

__________________Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA  94086 (408) 737-7600

© 1996 Maxim Integrated Products 

Printed USA

is a registered trademark of Maxim Integrated Products.

MAX509/MAX510

Quad, Serial 8-Bit DACs
with Rail-to-Rail Outputs

___________________Chip Topography

_Ordering Information (continued)

PART

TEMP. RANGE

PIN-PACKAGE

MAX509AEPP

-40°C to +85°C

20 Plastic DIP

MAX509BEPP

-40°C to +85°C

20 Plastic DIP

MAX509AEWP

-40°C to +85°C

20 Wide SO

±1

±1 1/2

±1

MAX509BEWP

-40°C to +85°C

20 Wide SO

±1 1/2

MAX509AEAP

-40°C to +85°C

20 SSOP

±1

MAX509BEAP

-40°C to +85°C

20 SSOP

±1 1/2

MAX509AMJP

-55°C to +125°C

20 CERDIP**

±1

MAX509BMJP

-55°C to +125°C

20 CERDIP**

±1 1/2

MAX510

ACPE

16 Plastic DIP

±1

MAX510BCPE

0°C to +70°C

16 Plastic DIP

±1 1/2

MAX510ACWE

0°C to +70°C

16 Wide SO

±1

MAX510BCWE

0°C to +70°C

16 Wide SO

±1 1/2

MAX510AEPE

-40°C to +85°C

16 Plastic DIP

±1

MAX510BEPE

-40°C to +85°C

16 Plastic DIP

±1 1/2

MAX510AEWE

-40°C to +85°C

16 Wide SO

±1

MAX510BEWE

-40°C to +85°C

16 Wide SO

±1 1/2

0°C to +70°C

MAX510AMJE

-55°C to +125°C

16 CERDIP**

±1

MAX510BMJE

-55°C to +125°C

16 CERDIP**

±1 1/2

**Contact factory for availability and processing to MIL-STD-883.

________________________________________________________Package Information

L

DIM

A

A1

B

C

D

E

e

H

L

α

MIN

0.068

0.002

0.010

0.005

0.278

0.205

0.301

0.022

MAX

0.078

0.008

0.015

0.009

0.289

0.212

0.311

0.037

MIN

1.73

0.05

0.25

0.13

7.07

5.20

7.65

0.55

MAX

1.99

0.21

0.38

0.22

7.33

5.38

7.90

0.95

INCHES

MILLIMETERS

α

20-PIN PLASTIC

SHRINK

SMALL-OUTLINE

PACKAGE

H

E

D

A

A1

C

0.127mm

0.004in.

B

0.65 BSC

0.0256 BSC

21-0003A

e

REFC
(REFCD)

SCLK

CS

 REFB

(REFAB)

 AGND

V

SS

OUTC

OUTD

V

DD

CLR

DOUT

LDAC

0.121"

(3.07mm)

0.128"

(3.25mm)

 DGND

 REFA

(REFAB)

DIN

REFD
(REFCD)

OUTA

OUTB

MAX509/MAX510

NOTE:

LABELS IN (  ) ARE FOR MAX510 ONLY.

TRANSISTOR COUNT:  2235;
SUBSTRATE CONNECTED TO VDD.

TUE

(LSB)

Maker
Maxim Integrated
Datasheet PDF Download