IRLIB9343PbF Product Datasheet

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/Infineon-IRLIB9343-DS-v01_02-EN-html.html
background image

 

IRLIB9343PbF 

  

2017-04-27 

Absolute Maximum Ratings 

 

 

Symbol Parameter 

Max. 

Units 

V

DS

 Drain-to-Source 

Voltage 

-55 

V  

V

GS 

Gate-to-Source Voltage 

 ± 20 

I

D

 @ T

C

 = 25°C 

Continuous Drain Current, V

GS

 @ -10V  

-14 

A  

I

D

 @ T

C

 = 100°C 

Continuous Drain Current, V

GS

 @ -10V  

-10 

I

DM 

Pulsed Drain Current  -60 

P

D

 @T

C

 = 25°C 

Maximum Power Dissipation   

33 

W  

P

D

 @T

C

 = 100°C 

Maximum Power Dissipation   

20 

  

Linear Derating Factor 

0.26 

W/°C 

T

J  

Operating Junction and 

-40  to + 175 

 

T

STG 

Storage Temperature Range 

  

°C 

  

Soldering Temperature, for 10 seconds (1.6mm from case) 

300 

 

 

Mounting torque, 6-32 or M3 screw 

10lbin (1.1Nm) 

 

Thermal Resistance  

Symbol Parameter 

Typ. 

Max. 

Units 

R

JC

  

Junction-to-Case  ––– 

3.84 

R

JA

  

Junction-to-Ambient (PCB Mount)  ––– 

65 

°C/W   

G D S 

Gate Drain 

Source 

HEXFET

® 

Power MOSFET 

TO-220 Full-Pak 

Key Parameters 

V

DS 

 -55 

R

DS(ON)

 typ. @ V

GS

 =-10V 

93 

m

 

R

DS(ON)

 typ. @ V

GS

 = -4.5V 

150 

m

 

Q

g

 typ. 

31 

nC 

T

J

 max 

175 

°C 

Features 

  Advanced Process Technology 

  Key Parameters Optimized for Class-D Audio Amplifier 
 Applications 
 Low 

R

DSON 

for Improved Efficiency 

 Low 

Q

G

 and Q

sw

 for Better THD and Improved Efficiency 

 Low 

Q

rr

 for Better THD and Lower EMI 

 175°C Operating Junction Temperature for Ruggedness 

  Repetitive Avalanche Capability for Robustness and  
 Reliability 
 Lead-Free 

Description 
This Digital Audio HEXFET

® 

is specifically designed for Class-D audio amplifier applications. This MosFET utilizes the 

latest processing techniques to achieve low on-resistance per silicon area. Furthermore, Gate charge, body-diode 
reverse recovery and internal Gate resistance are optimized to improve key Class-D audio amplifier performance factors 
such as efficiency, THD and EMI. Additional features of this MosFET are 175°C operating junction temperature and 
repetitive avalanche capability. These features combine to make this MosFET a highly efficient, robust and reliable 
device for Class-D audio amplifier applications. 

Base Part Number 

Package Type  

Standard Pack 

Orderable Part Number 

Form Quantity 

IRLIB9343PbF 

TO-220 Full-Pak 

Tube 

50 IRLIB9343PbF 

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/Infineon-IRLIB9343-DS-v01_02-EN-html.html
background image

 

IRLIB9343PbF 

 

2017-04-27 

    

Notes:

  Repetitive rating;  pulse width limited by max. junction temperature.  

  starting  T

J

 = 25°C, L = 3.89mH, R

G

 = 25

, I

AS

 = -10A. 

 Pulse width 

400µs; duty cycle  2%. 

  R

θ 

is measured at T

J

 of approximately 90°C. 

  Limited by T

jmax

. See Figs. 14, 15, 17a, 17b for repetitive avalanche information 

Electrical Characteristics @ T

= 25°C (unless otherwise specified) 

  

Parameter Min. 

Typ. 

Max. 

Units 

Conditions 

V

(BR)DSS 

Drain-to-Source Breakdown Voltage 

-55 

––– 

––– 

V

GS

 = 0V, I

D

 = -250µA 

V

(BR)DSS

/

T

J  

Breakdown Voltage Temp. Coefficient 

––– 

-52 

–––  mV/°C Reference to 25°C, I

D

 = -1mA  

R

DS(on) 

   

Static Drain-to-Source On-Resistance    

––– 93 105 

m



V

GS

 = -10V, I

D

 = -3.4A  

 150 

170 

V

GS

 = -4.5V, I

D

 = -2.7A  

V

GS(th) 

Gate Threshold Voltage 

-1.0 

––– 

––– 

V

DS

 = V

GS

, I

D

 = -250µA  

V

GS(th)/

T

J  

Gate Threshold Voltage Temp. Coefficient  ––– 

-3.7 

–––  mV/°C 

I

DSS 

  

Drain-to-Source Leakage Current   

––– ––– -2.0 

µA  

V

DS

 = -55V, V

GS

 = 0V 

––– –––  -25 

V

DS

 = -55V,V

GS

 = 0V,T

J

 =125°C 

I

GSS 

   

Gate-to-Source Forward Leakage 

––– 

–––  -100 

nA  

V

GS

 = -20V 

Gate-to-Source Reverse Leakage 

––– 

––– 

100 

V

GS

 = 20V 

gfs 

Forward Trans conductance 

5.3 

––– 

––– 

V

DS

 = -25V, I

D

 = -14A 

Q

Total Gate Charge  

––– 

31 

47 

nC   

V

DS

 = -44V 

Q

gs 

Pre-Vth Gate-to-Source Charge 

––– 

7.1 

––– 

I

D

 = -14A, 

Q

gd 

Gate-to-Drain Charge 

––– 

8.5 

––– 

V

GS

 = -10V  

Q

godr 

Gate Charge Overdrive 

––– 

15 

––– 

See Fig. 6 and 19. 

t

d(on) 

Turn-On Delay Time 

––– 

9.5 

––– 

ns 

V

DD

 = -28V, V

GS

 = -10V  

t

Rise Time 

––– 

24 

––– 

I

D

 = -14A 

t

d(off) 

Turn-Off Delay Time 

––– 

21 

––– 

R

G

= 2.5



t

Fall Time 

––– 

9.5 

––– 

 

C

iss 

Input Capacitance 

––– 

660 

––– 

pF    

V

GS

 = 0V 

C

oss 

Output Capacitance 

––– 

160 

––– 

V

DS

 = -50V 

C

rss 

Reverse Transfer Capacitance 

––– 

72 

––– 

ƒ = 1.0MHz, See Fig. 5 

C

oss 

eff.

 

Effective Output Capacitance 

––– 

280 

––– 

V

GS

 = 0V, V

DS

 = 0V to –44V 

L

D

 

Internal Drain Inductance 

––– 

4.5 

––– 

 nH    

Between lead, 
6mm (0.25in.) 

L

S

 

Internal Source Inductance 

––– 

7.5 

––– 

from package 
and center of die contact 

Diode Characteristics 

  

        Parameter 

Min.  Typ.  Max.  Units 

Conditions 

I

 @ T

= 25°C 

Continuous Source Current  

––– –––  -14 

MOSFET symbol 

(Body Diode) 

showing  the 

I

SM 

  

Pulsed Source Current 

––– –––  -60 

integral reverse 

(Body Diode)

p-n junction diode. 

V

SD 

Diode Forward Voltage 

––– 

––– 

-1.2 

V  T

J

 = 25°C,I

= -14A,V

GS

 = 0V 

t

rr  

Reverse Recovery Time  

––– 

57 

86 

ns   T

J

 = 25°C ,I

F

 = -14A 

Q

rr  

Reverse Recovery Charge  

––– 

120 

180 

nC    di/dt = 100A/µs 

Avalanche Characteristics 

  

        Parameter 

Typ. Max. Units 

E

AS  

Single Pulse Avalanche Energy 

––– 

190 

mJ    

I

AR 

Avalanche Current  

E

AR 

Repetitive Avalanche Energy  

mJ  

See Fig. 14, 15, 17a, 17b 

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/Infineon-IRLIB9343-DS-v01_02-EN-html.html
background image

 

IRLIB9343PbF 

 

2017-04-27 

    

Fig. 2 Typical Output Characteristics 

Fig. 3 

Typical Transfer Characteristics

 

 

Fig. 4 

Normalized On-Resistance vs. Temperature

 

 

Fig. 1 Typical Output Characteristics 

Fig 6.  Typical Gate Charge vs. Gate-to-Source Voltage

 

 

0.1

1

10

100

-VDS, Drain-to-Source Voltage (V)

0.1

1

10

100

-I

D

, D

ra

in

-t

o-

S

ou

rc

C

ur

re

nt

 (

A

)

 60µs PULSE WIDTH

Tj = 25°C

-2.5V

VGS

TOP           -15V

-12V

-10V

-8.0V

-5.5V

-4.5V

-3.0V

BOTTOM

-2.5V

0.1

1

10

100

-VDS, Drain-to-Source Voltage (V)

0.1

1

10

100

-I

D

, D

ra

in

-t

o-

S

ou

rc

C

ur

re

nt

 (

A

)

 60µs PULSE WIDTH

Tj = 175°C

-2.5V

VGS

TOP           -15V

-12V

-10V

-8.0V

-5.5V

-4.5V

-3.0V

BOTTOM

-2.5V

0.0

5.0

10.0

15.0

-VGS, Gate-to-Source Voltage (V)

0.1

1.0

10.0

100.0

-I

D

, D

ra

in

-t

o-

S

ou

rc

C

ur

re

nt

 



)

VDS = -25V

 60µs PULSE WIDTH

TJ = 25°C

TJ = 175°C

-60 -40 -20 0

20 40 60 80 100 120 140 160 180

TJ , Junction Temperature (°C)

0.5

1.0

1.5

2.0

R

D

S

(o

n)

 ,

 D

ra

in

-t

o-

S

ou

rc

O

R

es

is

ta

nc

   

   

   

   

   

   

   

 (

N

or

m

al

iz

ed

)

ID = -14A

VGS = -10V

1

10

100

-VDS, Drain-to-Source Voltage (V)

10

100

1000

10000

C

, C

ap

ac

ita

nc

(p

F

)

Coss

Crss

Ciss

VGS   = 0V,       f = 1 MHZ

Ciss    = Cgs + Cgd,  C ds SHORTED
Crss    = Cgd 
Coss   = Cds + Cgd

Fig 5.  Typical Capacitance vs. Drain-to-Source Voltage

 

0

10

20

30

40

50

 QG  Total Gate Charge (nC)

0

4

8

12

16

20

-V

G

S

, G

at

e-

to

-S

ou

rc

V

ol

ta

ge

 (

V

)

VDS= -44V

VDS= -28V

VDS= -11V

ID= -14A

FOR TEST CIRCUIT
SEE FIGURE 19

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/Infineon-IRLIB9343-DS-v01_02-EN-html.html
background image

 

IRLIB9343PbF 

 

2017-04-27 

    

 

Fig 8.  Maximum Safe Operating Area  

Fig 10.  Threshold Voltage vs. Temperature 

Fig 11.  Maximum Effective Transient Thermal Impedance, Junction-to-Case 

Fig 9.  Maximum Drain Current vs. Case Temperature 

Fig. 7 Typical Source-to-Drain Diode 

 

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

-VSD, Source-to-Drain Voltage (V)

0.1

1.0

10.0

100.0

-I

S

D

R

ev

er

se

 D

ra

in

 C

ur

re

nt

 (

A

)

TJ = 25°C

TJ = 175°C

VGS = 0V

1

10

100

1000

-VDS  , Drain-toSource Voltage (V)

1

10

100

1000

-I

D

,  

D

ra

in

-t

o-

S

ou

rc

C

ur

re

nt

 (

A

)

Tc = 25°C

Tj = 175°C

Single Pulse

1msec

10msec

OPERATION IN THIS AREA 

LIMITED BY R DS(on)

100µsec

25

50

75

100

125

150

175

TJ , Junction Temperature (°C)

0

4

8

12

16

-I

D

  

, D

ra

in

 C

ur

re

nt

 (

A

)

-75 -50 -25

0

25

50

75 100 125 150 175

TJ , Temperature ( °C )

1.0

1.5

2.0

2.5

-V

G

S

(t

h)

 G

at

th

re

sh

ol

V

ol

ta

ge

 (

V

)

ID = -250µA

1E-006

1E-005

0.0001

0.001

0.01

0.1

1

10

t1 , Rectangular Pulse Duration (sec)

0.001

0.01

0.1

1

10

T

he

rm

al

 R

es

po

ns

Z

 th

JC

 )

0.20

0.10

D = 0.50

0.02
0.01

0.05

SINGLE PULSE

( THERMAL RESPONSE )

Notes:

1. Duty Factor D = t1/t2

2. Peak Tj = P dm x Zthjc + Tc

J

J

1

1

2

2

3

3

R

1

R

1

R

2

R

2

R

3

R

3

C

C

Ci= 

iRi

Ci= 

iRi

Ri (°C/W) 

i (sec)

0.877 

0.068578 

2.089 

2.593 

0.8737 

0.000799 

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/Infineon-IRLIB9343-DS-v01_02-EN-html.html
background image

 

IRLIB9343PbF 

 

2017-04-27 

    

 

Fig 13.  Maximum Avalanche Energy Vs. Drain Current 

Fig 14.  Typical Avalanche Current vs. Pulse width  

Fig 15.  Maximum Avalanche Energy vs. Temperature 

Notes on Repetitive Avalanche Curves , Figures 14, 15: 
(For further info, see AN-1005 at www.irf.com)
 
1.  Avalanche failures assumption:  
 

Purely a thermal phenomenon and failure occurs at a temperature far in  

 

excess of T

jmax

. This is validated for every part type. 

2.  Safe operation in Avalanche is allowed as long as T

jmax

 is not exceeded. 

3.   Equation below based on circuit and waveforms shown in Figures 17a, 17b. 
4.   P

D (ave) 

= Average power dissipation per single avalanche pulse. 

5.   BV = Rated breakdown voltage (1.3 factor accounts for voltage increase  
 during 

avalanche). 

6.   I

av 

= Allowable avalanche current. 

7. 

T

 = 

Allowable rise in junction temperature, not to exceed

 

T

jmax 

(assumed as  

 

25°C in Figure 14, 15).  

 

t

av = 

Average time in avalanche. 

 

D = Duty cycle in avalanche =  t

av 

·f 

 

Z

thJC

(D, t

av

) = Transient thermal resistance, see Figures 11) 

 

P

D (ave)

 = 1/2 ( 1.3·BV·I

av

) = 

T/ Z

thJC

 

I

av

 = 2

T/ [1.3·BV·Z

th

E

AS (AR) 

= P

D (ave)

·t

av

 

Fig 12. On-Resistance Vs. Gate Voltage 

4.0

6.0

8.0

10.0

-VGS, Gate-to-Source Voltage (V)

0

100

200

300

400

500

600

R

D

S

(o

n)

,  

D

ra

in

-t

-S

ou

rc

O

R

es

is

ta

nc

(m

)

TJ = 25°C

TJ = 125°C

ID = -14A

25

50

75

100

125

150

175

Starting TJ, Junction Temperature (°C)

0

200

400

600

800

1000

E

A

S

, S

in

gl

P

ul

se

 A

va

la

nc

he

 E

ne

rg

(m

J)

                 ID

TOP  

        -5.0A

                -5.6A

BOTTOM 

  -10A

1.0E-06

1.0E-05

1.0E-04

1.0E-03

1.0E-02

1.0E-01

tav (sec)

0.1

1

10

100

1000

-A

va

la

nc

he

 C

ur

re

nt

 (

A

)

0.05

Duty Cycle = Single Pulse

0.10

Allowed avalanche Current vs 
avalanche pulsewidth, tav 
assuming   Tj = 25°C due to 

avalanche losses. Note: In no 
case should Tj be allowed to 
exceed Tjmax

0.01

25

50

75

100

125

150

175

Starting TJ , Junction Temperature (°C)

0

40

80

120

160

200

E

A

R

 , 

A

va

la

nc

he

 E

ne

rg

(m

J)

TOP          Single Pulse                
BOTTOM   1% Duty Cycle
ID = -10A

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/Infineon-IRLIB9343-DS-v01_02-EN-html.html
background image

 

IRLIB9343PbF 

 

2017-04-27 

    

 

Fig 16. Peak Diode Recovery dv/dt Test Circuit for P-Channel HEXFET® Power MOSFETs 

Fig 17a.  Unclamped Inductive Test Circuit 

Fig 17b.  Unclamped Inductive Waveforms 

Fig 18a.  Switching Time Test Circuit 

Fig 18b.  Switching Time Waveforms 

Fig 19a.  Gate Charge Test Circuit 

Fig 19b.   Gate Charge Waveform 

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/Infineon-IRLIB9343-DS-v01_02-EN-html.html
background image

 

IRLIB9343PbF 

 

2017-04-27 

    

 

TO-220 Full-Pak Package Outline (Dimensions are shown in millimeters (inches)) 

TO-220 Full-Pak Part Marking Information 

Note: For the most current drawing please refer to IR website at 

http://www.irf.com/package/

 

TO-220AB  Full-Pak packages are not recommended for Surface Mount Application. 

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/Infineon-IRLIB9343-DS-v01_02-EN-html.html
background image

 

IRLIB9343PbF 

 

2017-04-27 

    

 

Qualification information

 

Qualification level 

Industrial

 

(per JEDEC JESD47F

 †

guidelines ) 

Moisture Sensitivity Level 

TO-220 Full-Pak 

N/A

  

(per JEDEC J-STD-020D

† 

RoHS compliant 

Yes 

†  

Applicable version of JEDEC standard at the time of product release. 

Revision History  

Date Comments 

04/27/2017 

 Changed datasheet with Infineon logo - all pages. 

 Corrected Package Outline on page 7. 

 Added disclaimer on last page. 

Trademarks of Infineon Technologies AG 

µHVIC™, µIPM™, µPFC™, AU-ConvertIR™, AURIX™, C166™, CanPAK™, CIPOS™, CIPURSE™, CoolDP™, CoolGaN™, COOLiR™, CoolMOS™, CoolSET™, 

CoolSiC™, DAVE™, DI-POL™, DirectFET™, DrBlade™, EasyPIM™, EconoBRIDGE™, EconoDUAL™, EconoPACK™, EconoPIM™, EiceDRIVER™, eupec™, FCOS™, 

GaNpowIR™, HEXFET™, HITFET™, HybridPACK™, iMOTION™, IRAM™, ISOFACE™, IsoPACK™, LEDrivIR™, LITIX™, MIPAQ™, ModSTACK™, my-d™, NovalithIC™, 

OPTIGA™, OptiMOS™, ORIGA™, PowIRaudio™, PowIRStage™, PrimePACK™, PrimeSTACK™, PROFET™, PRO-SIL™, RASIC™, REAL3™, SmartLEWIS™, SOLID 

FLASH™, SPOC™, StrongIRFET™, SupIRBuck™, TEMPFET™, TRENCHSTOP™, TriCore™, UHVIC™, XHP™, XMC™ 

 

Trademarks updated November 2015 

 

Other Trademarks 

All referenced product or service names and trademarks are the property of their respective owners. 

 Edition 2016-04-19 
Published by 
Infineon Technologies AG 
81726 Munich, Germany 
  
© 2016 Infineon Technologies AG. 

All Rights Reserved. 

  
Do you have a question about this 

document? 

Email: 

erratum@infineon.com

 

 

Document reference 
ifx1 

IMPORTANT NOTICE 

The information given in this document shall in no 

event be regarded as a guarantee of conditions or 

characteristics  (“Beschaffenheitsgarantie”) . 

  

With respect to any examples, hints or any typical 

values stated herein and/or any information 

regarding the application of the product, Infineon 

Technologies hereby disclaims any and all 

warranties and liabilities of any kind, including 

without limitation warranties of non-infringement 

of intellectual property rights of any third party. 

  

In addition, any information given in this 

document  is subject to customer’s compliance 

with its obligations stated in this document and 

any applicable legal requirements, norms and 

standards concerning customer’s products and 

any use of the product of Infineon Technologies in 

customer’s applications. 

  

The data contained in this document is exclusively 

intended for technically trained staff. It is the 

responsibility of customer’s technical 

departments to evaluate the suitability of the 

product for the intended application and the 

completeness of the product information given in 

this document with respect to such application. 

  

For further information on the product, technology, 

delivery terms and conditions and prices please 

contact your nearest Infineon Technologies office 

(

www.infineon.com

). 

 

 Please note that this product is not qualified 

according to the AEC Q100 or AEC Q101 documents 

of the Automotive Electronics Council.  

WARNINGS 

 Due to technical requirements products may 

contain dangerous substances. For information on 

the types in question please contact your nearest 

Infineon Technologies office.  

 

Except as otherwise explicitly approved by Infineon 

Technologies in a written document signed by 

authorized representatives of Infineon 

Technologies,  Infineon Technologies’ products 

may  not be used in any applications where a 

failure of the product or any consequences of the 

use thereof can reasonably be expected to result in 

personal injury.  

  

  

  

Maker
Infineon Technologies