INSULATED GATE BIPOLAR TRANSISTOR WITH
ULTRAFAST SOFT RECOVERY DIODE
Features
01/07/13
Absolute Maximum Ratings
Parameter
Max.
Units
V
CES
Collector-to-Emitter Voltage
600
V
I
C
@ T
C
= 25°C
Continuous Collector Current
18
I
C
@ T
C
= 100°C
Continuous Collector Current
10
I
CM
Pulsed Collector Current
26
I
LM
Clamped Inductive Load Current
26
A
I
F
@ T
C
= 25°C
Diode Continuous Forward Current
18
I
F
@ T
C
= 100°C
Diode Continuous Forward Current
10
I
FM
Diode Maximum Forward Current
26
V
GE
Gate-to-Emitter Voltage
± 20
V
P
D
@ T
C
= 25°C
Maximum Power Dissipation
90
P
D
@ T
C
= 100°C
Maximum Power Dissipation
36
T
J
Operating Junction and
-55 to +150
T
STG
Storage Temperature Range
°C
Soldering Temperature, for 10 sec.
300 (0.063 in. (1.6mm) from case)
• Low VCE (on) Non Punch Through IGBT Technology.
• Low Diode VF.
• 10μs Short Circuit Capability.
• Square RBSOA.
• Ultrasoft Diode Reverse Recovery Characteristics.
• Positive VCE (on) Temperature Coefficient.
• Lead-Free
Benefits
W
www.irf.com
1
• Benchmark Efficiency for Motor Control.
• Rugged Transient Performance.
• Low EMI.
• Excellent Current Sharing in Parallel Operation.
Thermal Resistance
Parameter
Min.
Typ.
Max.
Units
R
θJC
Junction-to-Case - IGBT
–––
–––
1.4
R
θJC
Junction-to-Case - Diode
–––
–––
4.4
R
θCS
Case-to-Sink, flat, greased surface
–––
0.50
–––
°C/W
R
θJA
Junction-to-Ambient, typical socket mount
–––
–––
62
R
θJA
Junction-to-Ambient (PCB Mount, steady state)
–––
–––
40
Wt
Weight
–––
1.44
–––
g
IRGB6B60KDPbF
IRGS6B60KDPbF
IRGSL6B60KDPbF
E
G
n-channel
C
V
CES
= 600V
I
C
= 10A, T
C
=100°C
t
sc
> 10μs, T
J
=150°C
V
CE(on)
typ. = 1.8V
D
2
Pak
IRGS6B60KDPbF
TO-220AB
IRGB6B60KDPbF
TO-262
IRGSL6B60KDPbF
PD - 95229C
IRGB/S/SL6B60KDPbF
2
www.irf.com
Electrical Characteristics @ T
J
= 25°C (unless otherwise specified)
Ref.Fig.
5, 6,7
9,10,11
9,10,11
12
Parameter
Min. Typ. Max. Units
Conditions
V
(BR)CES
Collector-to-Emitter Breakdown Voltage
600
––– –––
V
V
GE
= 0V, I
C
= 500μA
ΔV
(BR)CES
/
ΔT
J
Temperature Coeff. of Breakdown Voltage –––
0.3
––– V/°C
V
GE
= 0V, I
C
= 1.0mA, (25°C-150°C)
V
CE(on)
Collector-to-Emitter Saturation Voltage
1.5 1.80 2.20
V
I
C
= 5.0A, V
GE
= 15V
––– 2.20 2.50
I
C
= 5.0A,V
GE
= 15V, T
J
= 150°C
V
GE(th)
Gate Threshold Voltage
3.5
4.5
5.5
V
V
CE
= V
GE
, I
C
= 250μA
Δ
V
GE(th)
/
Δ
T
J
Temperature Coeff. of Threshold Voltage –––
-10
––– mV/°C V
CE
= V
GE
, I
C
= 1.0mA, (25°C-150°C)
g
fe
Forward Transconductance
–––
3.0
–––
S
V
CE
= 50V, I
C
= 5.0A, PW=80μs
I
CES
Zero Gate Voltage Collector Current
–––
1.0
150
μA
V
GE
= 0V, V
CE
= 600V
–––
200 500
V
GE
= 0V, V
CE
= 600V, T
J
= 150°C
V
FM
Diode Forward Voltage Drop
––– 1.25 1.45
I
C
= 5.0A
––– 1.20 1.40
V
I
C
= 5.0A T
J
= 150°C
I
GES
Gate-to-Emitter Leakage Current
–––
––– ±100
nA
V
GE
= ±20V
8
Parameter
Min. Typ. Max. Units
Conditions
Qg
Total Gate Charge (turn-on)
––– 18.2 –––
I
C
= 5.0A
Qge
Gate - Emitter Charge (turn-on)
–––
1.9
–––
nC
V
CC
= 400V
Qgc
Gate - Collector Charge (turn-on)
–––
9.2
–––
V
GE
= 15V
E
on
Turn-On Switching Loss
––– 110
210
μJ
I
C
= 5.0A, V
CC
= 400V
E
off
Turn-Off Switching Loss
––– 135
245
V
GE
= 15V,R
G
= 100
Ω, L =1.4mH
E
tot
Total Switching Loss
––– 245
455
Ls = 150nH
T
J
= 25°C
t
d(on)
Turn-On Delay Time
–––
25
34
I
C
= 5.0A, V
CC
= 400V
t
r
Rise Time
–––
17
26
V
GE
= 15V, R
G
= 100
Ω L =1.4mH
t
d(off)
Turn-Off Delay Time
––– 215
230
ns
Ls = 150nH, T
J
= 25°C
t
f
Fall Time
––– 13.2
22
E
on
Turn-On Switching Loss
––– 150
260
I
C
= 5.0A, V
CC
= 400V
E
off
Turn-Off Switching Loss
––– 190
300
μJ
V
GE
= 15V,R
G
= 100
Ω, L =1.4mH
E
tot
Total Switching Loss
––– 340
560
Ls = 150nH
T
J
= 150°C
t
d(on)
Turn-On Delay Time
–––
28
37
I
C
= 5.0A, V
CC
= 400V
t
r
Rise Time
–––
17
26
V
GE
= 15V, R
G
= 100
Ω L =1.4mH
t
d(off)
Turn-Off Delay Time
––– 240
255
ns
Ls = 150nH, T
J
= 150°C
t
f
Fall Time
–––
18
27
C
ies
Input Capacitance
––– 290
–––
V
GE
= 0V
C
oes
Output Capacitance
–––
34
–––
pF
V
CC
= 30V
C
res
Reverse Transfer Capacitance
–––
10
–––
f = 1.0MHz
T
J
= 150°C, I
C
= 26A, Vp =600V
V
CC
= 500V, V
GE
= +15V to 0V,
μs
T
J
= 150°C, Vp =600V, R
G
= 100
Ω
V
CC
= 360V, V
GE
= +15V to 0V
Erec
Reverse Recovery energy of the diode
–––
90
175
μJ
T
J
= 150°C
t
rr
Diode Reverse Recovery time
–––
70
80
ns
V
CC
= 400V, I
F
= 5.0A, L = 1.4mH
I
rr
Diode Peak Reverse Recovery Current
–––
10
14
A
V
GE
= 15V,R
G
= 100
Ω, Ls = 150nH
Switching Characteristics @ T
J
= 25°C (unless otherwise specified)
RBSOA
Reverse Bias Safe Operting Area
FULL SQUARE
SCSOA
Short Circuit Safe Operting Area
10
––– –––
Ref.Fig.
CT1
CT4
CT4
13,15
WF1WF2
4
CT2
CT3
WF4
17,18,19
20, 21
CT4,WF3
CT4
R
G
= 100
Ω
14, 16
CT4
WF1
WF2
Note:
to are on page 15
IRGB/S/SL6B60KDPbF
www.irf.com
3
Fig. 1 - Maximum DC Collector Current vs.
Case Temperature
Fig. 2 - Power Dissipation vs. Case
Temperature
Fig. 3 - Forward SOA
T
C
= 25°C; T
J
≤
150°C
Fig. 4 - Reverse Bias SOA
T
J
= 150°C; V
GE
=15V
0
20
40
60
80 100 120 140 160
TC (°C)
0
10
20
30
40
50
60
70
80
90
100
P
to
t (
W
)
1
10
100
1000
10000
VCE (V)
0.1
1
10
100
I C
(
A
)
10 μs
100 μs
1ms
DC
10
100
1000
VCE (V)
0
1
10
100
I C
A
)
0
20
40
60
80
100 120 140 160
TC (°C)
0
5
10
15
20
I C
(
A
)
IRGB/S/SL6B60KDPbF
4
www.irf.com
Fig. 6 - Typ. IGBT Output Characteristics
T
J
= 25°C; tp = 80μs
Fig. 5 - Typ. IGBT Output Characteristics
T
J
= -40°C; tp = 80μs
Fig. 8 - Typ. Diode Forward Characteristics
tp = 80μs
Fig. 7 - Typ. IGBT Output Characteristics
T
J
= 150°C; tp = 80μs
0
1
2
3
4
5
6
VCE (V)
0
2
4
6
8
10
12
14
16
18
20
I C
E
(
A
)
VGE = 18V
VGE = 15V
VGE = 12V
VGE = 10V
VGE = 8.0V
0
1
2
3
4
5
6
VCE (V)
0
2
4
6
8
10
12
14
16
18
20
I C
E
(
A
)
VGE = 18V
VGE = 15V
VGE = 12V
VGE = 10V
VGE = 8.0V
0.0
0.5
1.0
1.5
2.0
VF (V)
0
5
10
15
20
25
30
I F
(
A
)
-40°C
25°C
150°C
0
1
2
3
4
5
6
VCE (V)
0
2
4
6
8
10
12
14
16
18
20
I C
E
(
A
)
VGE = 18V
VGE = 15V
VGE = 12V
VGE = 10V
VGE = 8.0V
IRGB/S/SL6B60KDPbF
www.irf.com
5
Fig. 10 - Typical V
CE
vs. V
GE
T
J
= 25°C
Fig. 9 - Typical V
CE
vs. V
GE
T
J
= -40°C
Fig. 11 - Typical V
CE
vs. V
GE
T
J
= 150°C
Fig. 12 - Typ. Transfer Characteristics
V
CE
= 50V; tp = 10μs
5
10
15
20
VGE (V)
0
2
4
6
8
10
12
14
16
18
20
V
C
E
(
V
)
ICE = 3.0A
ICE = 5.0A
ICE = 10A
5
10
15
20
VGE (V)
0
2
4
6
8
10
12
14
16
18
20
V
C
E
(
V
)
ICE = 3.0A
ICE = 5.0A
ICE = 10A
0
5
10
15
20
VGE (V)
0
5
10
15
20
25
30
35
40
I C
E
(
A
)
TJ = 25°C
TJ = 150°C
TJ = 150°C
TJ = 25°C
5
10
15
20
VGE (V)
0
2
4
6
8
10
12
14
16
18
20
V
C
E
(
V
)
ICE = 3.0A
ICE = 5.0A
ICE = 10A
IRGB/S/SL6B60KDPbF
6
www.irf.com
Fig. 14 - Typ. Switching Time vs. I
C
T
J
= 150°C; L=1.4mH; V
CE
= 400V
R
G
= 100
Ω; V
GE
= 15V
Fig. 13 - Typ. Energy Loss vs. I
C
T
J
= 150°C; L=1.4mH; V
CE
= 400V
R
G
= 100
Ω; V
GE
= 15V
Fig. 16 - Typ. Switching Time vs. R
G
T
J
= 150°C; L=1.4mH; V
CE
= 400V
I
CE
= 5.0A; V
GE
= 15V
Fig. 15 - Typ. Energy Loss vs. R
G
T
J
= 150°C; L=1.4mH; V
CE
= 400V
I
CE
= 5.0A; V
GE
= 15V
0
50
100
150
200
RG (Ω)
0
50
100
150
200
250
E
ne
rg
y
(μ
J)
EON
EOFF
0
5
10
15
20
IC (A)
0
100
200
300
400
500
600
700
E
ne
rg
y
(μ
J)
EOFF
EON
0
5
10
15
20
IC (A)
1
10
100
1000
S
w
ic
hi
ng
T
im
e
(n
s)
tR
tdOFF
tF
tdON
0
50
100
150
200
RG (Ω)
1
10
100
1000
S
w
ic
hi
ng
T
im
e
(n
s)
tR
tdOFF
tF
tdON
IRGB/S/SL6B60KDPbF
www.irf.com
7
Fig. 17 - Typical Diode I
RR
vs. I
F
T
J
= 150°C
Fig. 18 - Typical Diode I
RR
vs. R
G
T
J
= 150°C; I
F
= 5.0A
Fig. 20 - Typical Diode Q
RR
V
CC
= 400V; V
GE
= 15V;T
J
= 150°C
Fig. 19- Typical Diode I
RR
vs. di
F
/dt
V
CC
= 400V; V
GE
= 15V;
I
CE
= 5.0A; T
J
= 150°C
0
50
100
150
200
RG (Ω)
0
4
8
12
16
20
I R
R
(
A
)
0
200
400
600
800
1000
diF /dt (A/μs)
0
4
8
12
16
20
I R
R
(
A
)
0
5
10
15
20
IF (A)
0
5
10
15
20
25
I R
R
(
A
)
RG = 22 Ω
RG =47 Ω
RG =100 Ω
RG =150 Ω
0
200
400
600
800
1000
diF /dt (A/μs)
0
200
400
600
800
1000
1200
Q
R
R
(
nC
)
22
Ω
47Ω
100 Ω
150Ω
10A
5.0A
3.0A
IRGB/S/SL6B60KDPbF
8
www.irf.com
Fig. 21 - Typical Diode E
RR
vs. I
F
T
J
= 150°C
Fig. 23 - Typical Gate Charge
vs. V
GE
I
CE
= 5.0A; L = 600μH
Fig. 22- Typ. Capacitance vs. V
CE
V
GE
= 0V; f = 1MHz
1
10
100
VCE (V)
1
10
100
1000
C
ap
ac
ita
nc
e
(p
F
)
Cies
Coes
Cres
0
5
10
15
20
Q G, Total Gate Charge (nC)
0
2
4
6
8
10
12
14
16
V
G
E
(
V
)
300V
400V
0
5
10
15
IF (A)
50
100
150
200
250
300
E
ne
rg
y
(μ
J)
47Ω
22Ω
100 Ω
150 Ω
IRGB/S/SL6B60KDPbF
www.irf.com
9
Fig 25. Maximum Transient Thermal Impedance, Junction-to-Case (DIODE)
Fig 24. Maximum Transient Thermal Impedance, Junction-to-Case (IGBT)
1E-6
1E-5
1E-4
1E-3
1E-2
1E-1
t1 , Rectangular Pulse Duration (sec)
0.001
0.01
0.1
1
10
T
he
rm
al
R
es
po
ns
e
(
Z
th
JC
)
0.20
0.10
D = 0.50
0.02
0.01
0.05
SINGLE PULSE
( THERMAL RESPONSE )
Notes:
1. Duty Factor D = t1/t2
2. Peak Tj = P dm x Zthjc + Tc
1E-6
1E-5
1E-4
1E-3
1E-2
1E-1
1E+0
t1 , Rectangular Pulse Duration (sec)
0.001
0.01
0.1
1
10
T
he
rm
al
R
es
po
ns
e
(
Z
th
JC
)
0.20
0.10
D = 0.50
0.02
0.01
0.05
SINGLE PULSE
( THERMAL RESPONSE )
Notes:
1. Duty Factor D = t1/t2
2. Peak Tj = P dm x Zthjc + Tc
Ri (°C/W)
τi (sec)
0.708 0.00022
0.447 0.00089
0.219 0.01037
τ
J
τ
J
τ
1
τ
1
τ
2
τ
2
τ
3
τ
3
R
1
R
1
R
2
R
2
R
3
R
3
τ
τ
C
Ci i
/Ri
Ci=
τi/Ri
Ri (°C/W)
τi (sec)
1.194 0.000172
2.424 0.001517
0.753 0.080325
τ
J
τ
J
τ
1
τ
1
τ
2
τ
2
τ
3
τ
3
R
1
R
1
R
2
R
2
R
3
R
3
τ
τ
C
Ci i
/Ri
Ci=
τi/Ri
IRGB/S/SL6B60KDPbF
10
www.irf.com
Fig.C.T.1 - Gate Charge Circuit (turn-off)
Fig.C.T.2 - RBSOA Circuit
1K
VCC
DUT
0
L
Fig.C.T.3 - S.C.SOA Circuit
Fig.C.T.4 - Switching Loss Circuit
Fig.C.T.5 - Resistive Load Circuit
L
Rg
VCC
diode clamp /
DUT
DUT /
DRIVER
- 5V
Rg
VCC
DUT
R =
V
CC
I
CM
L
Rg
80 V
DUT
480V
+
-
DC
Driver
DUT
360V