IRFR_U4105ZPbF Product Data Sheet

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/irfr4105zpbf-html.html
background image

IRFR4105ZPbF
IRFU4105ZPbF

HEXFET

®

 Power MOSFET

V

DSS

 = 55V

R

DS(on)

 = 24.5m

I

D

 = 30A

09/27/10

www.irf.com

1

This HEXFET

®

 Power MOSFET utilizes the latest

processing techniques to achieve extremely low
on-resistance per silicon area.  Additional features
of this design  are a 175°C junction operating
temperature, fast switching speed and improved
repetitive avalanche rating. These features
combine to make this design an extremely efficient
and reliable device for use in  a wide variety of
applications.

S

D

G

Description

l

Advanced Process Technology

l

Ultra Low On-Resistance

l

175°C Operating Temperature

l

Fast Switching

l

Repetitive Avalanche Allowed up to Tjmax

l

Lead-Free

Features

D-Pak

IRFR4105ZPbF

I-Pak

IRFU4105ZPbF

HEXFET

®

 is a registered trademark of International Rectifier.

Absolute Maximum Ratings

Parameter

Units

I

D

 @ T

C

 = 25°C Continuous Drain Current, V

GS

 @ 10V 

(Silicon Limited)

I

D

 @ T

C

 = 100°C Continuous Drain Current, V

GS

 @ 10V 

A

I

DM

Pulsed Drain Current 

c

P

D

 @T

C

 = 25°C Power Dissipation  

W

Linear Derating Factor  

W/°C

V

GS

Gate-to-Source Voltage

V

E

AS (Thermally limited) 

Single Pulse Avalanche Energy

d

mJ

E

AS 

(Tested ) 

Single Pulse Avalanche Energy Tested Value 

h

I

AR

Avalanche Current

c

A

E

AR

Repetitive Avalanche Energy 

g

mJ

T

Operating Junction and

T

STG

Storage Temperature Range

°C

Soldering Temperature, for 10 seconds
Mounting Torque, 6-32 or M3 screw

Thermal Resistance

Parameter

Typ.

Max.

Units

R

θJC 

Junction-to-Case

–––

3.12

R

θJA 

Junction-to-Ambient (PCB mount) 

i

–––

40

°C/W

R

θJA 

Junction-to-Ambient –––

110

46

29

See Fig.12a, 12b, 15, 16

48

0.32

 ± 20

Max.

30
21

120

-55  to + 175

300 (1.6mm from case )

10 lbf

yin (1.1Nym)

PD - 95374B

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/irfr4105zpbf-html.html
background image

IRFR/U4105ZPbF

2

www.irf.com

Electrical Characteristics @ T

J

 = 25°C (unless otherwise specified)

Parameter

Min. Typ. Max. Units

V

(BR)DSS

Drain-to-Source Breakdown Voltage

55

–––

–––

V

∆V

(BR)DSS

/

∆T

Breakdown Voltage Temp. Coefficient

–––

0.053

–––

V/°C

R

DS(on)

Static Drain-to-Source On-Resistance

–––

19

24.5

m

V

GS(th)

Gate Threshold Voltage

2.0

–––

4.0

V

gfs

Forward Transconductance

16

–––

–––

S

I

DSS

Drain-to-Source Leakage Current

–––

–––

20

µA

–––

–––

250

I

GSS

Gate-to-Source Forward Leakage

–––

–––

200

nA

Gate-to-Source Reverse Leakage

–––

–––

-200

Q

g

Total Gate Charge

–––

18

27

Q

gs

Gate-to-Source Charge

–––

5.3

–––

nC

Q

gd

Gate-to-Drain ("Miller") Charge

–––

7.0

–––

t

d(on)

Turn-On Delay Time

–––

10

–––

t

r

Rise Time

–––

40

–––

t

d(off)

Turn-Off Delay Time

–––

26

–––

ns

t

f

Fall Time

–––

24

–––

L

D

Internal Drain Inductance

–––

4.5

–––

Between lead, 

nH

6mm (0.25in.)

L

S

Internal Source Inductance

–––

7.5

–––

from package

and center of die contact

C

iss

Input Capacitance

–––

740

–––

C

oss

Output Capacitance

–––

140

–––

C

rss

Reverse Transfer Capacitance

–––

74

–––

pF

C

oss

Output Capacitance

–––

450

–––

C

oss

Output Capacitance

–––

110

–––

C

oss

 eff.

Effective Output Capacitance

–––

180

–––

Source-Drain Ratings and Characteristics

        Parameter

Min. Typ. Max. Units

I

S

Continuous Source Current 

–––

–––

30

(Body Diode)

A

I

SM

Pulsed Source Current

–––

–––

120

(Body Diode)

c

V

SD

Diode Forward Voltage

–––

–––

1.3

V

t

rr

Reverse Recovery Time

–––

19

29

ns

Q

rr

Reverse Recovery Charge

–––

14

21

nC

t

on

Forward Turn-On Time

Intrinsic turn-on time is negligible (turn-on is dominated by LS+LD)

V

DS

 = 15V, I

D

 = 18A

I

D

 = 18A

V

DS

 = 44V

Conditions

V

GS

 = 10V 

e

V

GS

 = 0V

V

DS

 = 25V

ƒ = 1.0MHz

V

GS

 = 20V

V

GS

 = -20V

MOSFET symbol

showing  the
integral reverse

p-n junction diode.
T

J

 = 25°C, I

S

 = 18A, V

GS

 = 0V 

e

T

J

 = 25°C, I

F

 = 18A, V

DD

 = 28V

di/dt = 100A/µs 

e

Conditions

V

GS

 = 0V, I

D

 = 250µA

Reference to 25°C, I

D

 = 1mA 

V

GS

 = 10V, I

D

 = 18A 

e

V

DS

 = V

GS

, I

D

 = 250µA

V

DS

 = 55V, V

GS

 = 0V

V

DS

 = 55V, V

GS

 = 0V, T

J

 = 125°C

V

GS

 = 0V,  V

DS

 = 1.0V,  ƒ = 1.0MHz

V

GS

 = 0V,  V

DS

 = 44V,  ƒ = 1.0MHz

V

GS

 = 0V, V

DS

 = 0V to 44V 

f

V

GS

 = 10V 

e

V

DD

 = 28V

I

D

 = 18A

R

G

 = 24.5 

S

D

G

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/irfr4105zpbf-html.html
background image

IRFR/U4105ZPbF

www.irf.com

3

0

1

10

100

0.1

1

10

100

VDS, Drain-to-Source Voltage (V)

0.1

1

10

100

1000

I D

, D

ra

in

-t

o-

S

ou

rc

C

ur

re

nt

 (

A

)

60µs PULSE WIDTH

Tj = 25°C

4.5V

Fig 2.  Typical Output Characteristics

Fig 1.  Typical Output Characteristics

Fig 3.  Typical Transfer Characteristics

Fig 4.  Typical Forward Transconductance

Vs. Drain Current

            V

GS

 TOP          15V

                   10V

                8.0V

                   7.0V

                   6.0V

                   5.5V

                   5.0V

BOTTOM    4.5V

0

1

10

100

0.1

1

10

100

VDS, Drain-to-Source Voltage (V)

1

10

100

1000

I D

, D

ra

in

-t

o-

S

ou

rc

C

ur

re

nt

 (

A

)

60µs PULSE WIDTH

Tj = 175°C

4.5V

            V

GS

 TOP          15V

                  10V

                8.0V

                  7.0V

                  6.0V

                  5.5V

                  5.0V

BOTTOM   4.5V

4

5

6

7

8

9

10

VGS, Gate-to-Source Voltage (V)

0

1

10

100

1000

I D

, D

ra

in

-t

o-

S

ou

rc

C

ur

re

nt

 (

Α

)

VDS = 25V

60µs PULSE WIDTH

TJ = 25°C

TJ = 175°C

0

10

20

30

40

ID, Drain-to-Source Current (A)

0

5

10

15

20

25

30

G

fs

, F

or

w

ar

T

ra

ns

co

nd

uc

ta

nc

(S

)

TJ = 25°C

TJ = 175°C

VDS = 8.0V

380µs PULSE WIDTH

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/irfr4105zpbf-html.html
background image

IRFR/U4105ZPbF

4

www.irf.com

Fig 8.  Maximum Safe Operating Area

Fig 6.  Typical Gate Charge Vs.

Gate-to-Source Voltage

Fig 5.  Typical Capacitance Vs.

Drain-to-Source Voltage

Fig 7.  Typical Source-Drain Diode

Forward Voltage

1

10

100

VDS, Drain-to-Source Voltage (V)

0

200

400

600

800

1000

1200

C

, C

ap

ac

ita

nc

(p

F

)

Coss

Crss

Ciss

VGS   = 0V,       f = 1 MHZ

Ciss   = Cgs + Cgd,  C ds SHORTED

Crss   = Cgd 
Coss  = Cds + Cgd

0

5

10

15

20

25

30

 QG  Total Gate Charge (nC)

0

4

8

12

16

20

V

G

S

, G

at

e-

to

-S

ou

rc

V

ol

ta

ge

 (

V

)

VDS= 44V

VDS= 28V

VDS= 11V

ID= 18A

FOR TEST CIRCUIT
SEE FIGURE 13

0.0

0.5

1.0

1.5

2.0

VSD, Source-toDrain Voltage (V)

0.1

1.0

10.0

100.0

1000.0

I S

D

, R

ev

er

se

 D

ra

in

 C

ur

re

nt

 (

A

)

TJ = 25°C

TJ = 175°C

VGS = 0V

1

10

100

1000

VDS  , Drain-toSource Voltage (V)

0.1

1

10

100

1000

I D

,  

D

ra

in

-t

o-

S

ou

rc

C

ur

re

nt

 (

A

)

Tc = 25°C

Tj = 175°C

Single Pulse

1msec

10msec

OPERATION IN THIS AREA 

LIMITED BY R DS(on)

100µsec

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/irfr4105zpbf-html.html
background image

IRFR/U4105ZPbF

www.irf.com

5

Fig 11.  Maximum Effective Transient Thermal Impedance, Junction-to-Case

Fig 9.  Maximum Drain Current Vs.

Case Temperature

Fig 10.  Normalized On-Resistance

Vs. Temperature

25

50

75

100

125

150

175

TJ , Junction Temperature (°C)

0

5

10

15

20

25

30

I D

  ,

 D

ra

in

 C

ur

re

nt

 (

A

)

-60 -40 -20 0

20 40 60 80 100 120 140 160 180

TJ , Junction Temperature (°C)

0.5

1.0

1.5

2.0

2.5

R

D

S

(o

n)

 ,

 D

ra

in

-t

o-

S

ou

rc

O

R

es

is

ta

nc

   

   

   

   

   

   

   

 (

N

or

m

al

iz

ed

)

ID = 18A

VGS = 10V

1E-006

1E-005

0.0001

0.001

0.01

t1 , Rectangular Pulse Duration (sec)

0.001

0.01

0.1

1

10

T

he

rm

al

 R

es

po

ns

Z

 th

JC

 )

0.20

0.10

D = 0.50

0.02

0.01

0.05

SINGLE PULSE

( THERMAL RESPONSE )

Notes:

1. Duty Factor D = t1/t2

2. Peak Tj = P dm x Zthjc + Tc

Ri (°C/W)   

 τi (sec)

1.100       0.000174
1.601       0.000552
0.418       0.007193

τ

J

τ

J

τ

1

τ

1

τ

2

τ

2

τ

3

τ

3

R

1

R

1

R

2

R

2

R

3

R

3

τ

τ

C

Ci   i

/Ri

Ci= 

τi/Ri

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/irfr4105zpbf-html.html
background image

IRFR/U4105ZPbF

6

www.irf.com

Q

G

Q

GS

Q

GD

V

G

Charge

D.U.T.

V

DS

I

D

I

G

3mA

V

GS

.3

µF

50K

.2

µF

12V

Current Regulator

Same Type as D.U.T.

Current Sampling Resistors

+

-

10 V

Fig 13b.  Gate Charge Test Circuit

Fig 13a.  Basic Gate Charge Waveform

Fig 12c.  Maximum Avalanche Energy

Vs. Drain Current

Fig 12b.  Unclamped Inductive Waveforms

Fig 12a.  Unclamped Inductive Test Circuit

tp

V

(BR)DSS

I

AS

Fig 14.  Threshold Voltage Vs. Temperature

RG

IAS

0.01

tp

D.U.T

L

VDS

+

- VDD

DRIVER

A

15V

20V

V

GS

25

50

75

100

125

150

175

Starting TJ, Junction Temperature (°C)

0

20

40

60

80

100

120

E

A

S

, S

in

gl

P

ul

se

 A

va

la

nc

he

 E

ne

rg

(m

J)

                 I D

TOP  

       2.0A

               3.5A

BOTTOM 

  18A

-75 -50 -25

0

25

50

75 100 125 150 175

TJ , Temperature ( °C )

2.0

2.5

3.0

3.5

4.0

4.5

V

G

S

(t

h)

 G

at

th

re

sh

ol

V

ol

ta

ge

 (

V

)

ID = 250µA

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/irfr4105zpbf-html.html
background image

IRFR/U4105ZPbF

www.irf.com

7

Fig 15.  Typical Avalanche Current Vs.Pulsewidth

Fig 16.  Maximum Avalanche Energy

Vs. Temperature

Notes on Repetitive Avalanche Curves , Figures 15, 16:
(For further info, see AN-1005 at www.irf.com)
1. Avalanche failures assumption:

  Purely a thermal phenomenon and failure occurs at a

    temperature far in excess of T

jmax

. This is validated for

    every part type.
2. Safe operation in Avalanche is allowed as long asT

jmax

 is

  not exceeded.

3. Equation below based on circuit and waveforms shown in

  Figures 12a, 12b.

4. P

D (ave) 

= Average power dissipation per single

    avalanche pulse.
5. BV = Rated breakdown voltage (1.3 factor accounts for
    voltage increase during avalanche).
6. I

av 

= Allowable avalanche current.

7. 

∆T

 = 

Allowable rise in junction temperature, not to exceed

    T

jmax 

(assumed as 25°C in Figure 15, 16).

  t

av = 

Average time in avalanche.

  D = Duty cycle in avalanche =  t

av 

·f

  Z

thJC

(D, t

av

) = Transient thermal resistance, see figure 11)

P

D (ave)

 = 1/2 ( 1.3·BV·I

av

) =

 DT/ Z

thJC

I

av 

=

 

2

DT/ [1.3·BV·Z

th

]

E

AS (AR)

 = P

D (ave)

·t

av

1.0E-06

1.0E-05

1.0E-04

1.0E-03

1.0E-02

1.0E-01

tav (sec)

0.1

1

10

100

A

va

la

nc

he

 C

ur

re

nt

 (

A

)

0.05

Duty Cycle = Single Pulse

0.10

Allowed avalanche Current vs 
avalanche pulsewidth, tav 
assuming 

∆ Tj = 25°C due to 

avalanche losses. Note: In no 
case should Tj be allowed to 
exceed Tjmax

0.01

25

50

75

100

125

150

175

Starting TJ , Junction Temperature (°C)

0

5

10

15

20

25

30

E

A

R

 , 

A

va

la

nc

he

 E

ne

rg

(m

J)

TOP          Single Pulse                
BOTTOM   1% Duty Cycle
ID = 18A

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/irfr4105zpbf-html.html
background image

IRFR/U4105ZPbF

8

www.irf.com

Fig 17. 

Peak Diode Recovery dv/dt Test Circuit for N-Channel

HEXFET

®

 Power MOSFETs

Circuit Layout Considerations

   •  Low Stray Inductance

   •  Ground Plane

   •  Low Leakage Inductance

      Current Transformer

P.W.

Period

di/dt

Diode Recovery

dv/dt

Ripple 

≤ 5%

Body Diode  Forward Drop

Re-Applied

Voltage

Reverse

Recovery

Current

Body Diode Forward

Current

V

GS

=10V

V

DD

I

SD

Driver Gate Drive

D.U.T. I

SD

Waveform

D.U.T. V

DS

Waveform

Inductor Curent

D = 

P.W.

Period

*

 V

GS

 = 5V for Logic Level Devices

*

+

-

+

+

+

-

-

-

ƒ

„

‚

R

G

V

DD

•  dv/dt controlled by R

G

•  Driver same type as D.U.T.

•  I

SD

 controlled by Duty Factor "D"

•  D.U.T. - Device Under Test

D.U.T



V

DS

90%

10%
V

GS

t

d(on)

t

r

t

d(off)

t

f

V

DS

Pulse Width ≤ 1 µs

Duty Factor ≤ 0.1 %

R

D

V

GS

R

G

D.U.T.

10V

+

-

V

DD

Fig 18a.  Switching Time Test Circuit

Fig 18b.  Switching Time Waveforms

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/irfr4105zpbf-html.html
background image

IRFR/U4105ZPbF

www.irf.com

9

D-Pak (TO-252AA) Part Marking Information

D-Pak (TO-252AA) Package Outline

Dimensions  are  shown  in  millimeters  (inches)

INTERNATIONAL

ASSEMBLED ON WW 16, 2001
IN THE ASSEMBLY LINE "A"

OR

Note: "P" in assembly line position

EXAMPLE:

LOT CODE 1234

THIS IS AN IRFR120
WITH ASSEMBLY

indicates "Lead-Free"

PRODUCT (OPTIONAL)

P =  DESIGNATES LEAD-FREE

A =  ASSEMBLY SITE CODE

PART NUMBER

WEEK 16

DATE CODE
YEAR 1 =  2001

RECTIFIER

INTERNATIONAL

LOGO

LOT CODE

ASSEMBLY

34

12

IRFR120

116A

LINE A

34

RECTIFIER

LOGO

IRFR120

12

ASSEMBLY

LOT CODE

YEAR 1 =  2001

DATE CODE

PART NUMBER

WEEK 16

"P" in assembly line position indicates

"Lead-Free" qualification to the consumer-level

P =  DESIGNATES LEAD-FREE

PRODUCT QUALIFIED TO THE

CONSUMER LEVEL (OPTIONAL)

Notes:

1. For an Automotive Qualified version of this part please see

http://www.irf.com/product-info/datasheets/data/

    auirfr4105z.pdf

2. For the most current drawing please refer to IR website at http://www.irf.com/package/

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/irfr4105zpbf-html.html
background image

IRFR/U4105ZPbF

10

www.irf.com

I-Pak (TO-251AA) Package Outline

Dimensions  are  shown  in  millimeters  (inches)

I-Pak (TO-251AA) Part Marking Information

78

LINE A

LOGO

INTERNATIONAL

RECTIFIER

OR

PRODUCT (OPTIONAL)

P =  DESIGNATES  LEAD-FREE

A =  ASSEMBLY SITE CODE

IRFU120

PART NUMBER

WEEK 19

DATE CODE
YEAR 1 =  2001

RECTIFIER

INTERNATIONAL

LOGO

ASS EMBLY

LOT CODE

IRFU120

56

DATE CODE

PART NUMBER

LOT CODE

ASSEMBLY

56

78

YEAR 1 =  2001
WEEK 19

119A

indicates Lead-Free"

AS SEMBLED ON WW 19, 2001
IN THE ASS EMBLY LINE "A"

Note: "P" in assembly line position

EXAMPLE:

WITH AS SEMBLY

THIS IS  AN IRFU120

LOT CODE 5678

Notes:

1. For an Automotive Qualified version of this part please see

http://www.irf.com/product-info/datasheets/data/

    auirfr4105z.pdf

2. For the most current drawing please refer to IR website at http://www.irf.com/package/

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/irfr4105zpbf-html.html
background image

IRFR4105ZPbF
IRFU4105ZPbF

HEXFET

®

 Power MOSFET

V

DSS

 = 55V

R

DS(on)

 = 24.5m

I

D

 = 30A

09/27/10

www.irf.com

1

This HEXFET

®

 Power MOSFET utilizes the latest

processing techniques to achieve extremely low
on-resistance per silicon area.  Additional features
of this design  are a 175°C junction operating
temperature, fast switching speed and improved
repetitive avalanche rating. These features
combine to make this design an extremely efficient
and reliable device for use in  a wide variety of
applications.

S

D

G

Description

l

Advanced Process Technology

l

Ultra Low On-Resistance

l

175°C Operating Temperature

l

Fast Switching

l

Repetitive Avalanche Allowed up to Tjmax

l

Lead-Free

Features

D-Pak

IRFR4105ZPbF

I-Pak

IRFU4105ZPbF

HEXFET

®

 is a registered trademark of International Rectifier.

Absolute Maximum Ratings

Parameter

Units

I

D

 @ T

C

 = 25°C Continuous Drain Current, V

GS

 @ 10V 

(Silicon Limited)

I

D

 @ T

C

 = 100°C Continuous Drain Current, V

GS

 @ 10V 

A

I

DM

Pulsed Drain Current 

c

P

D

 @T

C

 = 25°C Power Dissipation  

W

Linear Derating Factor  

W/°C

V

GS

Gate-to-Source Voltage

V

E

AS (Thermally limited) 

Single Pulse Avalanche Energy

d

mJ

E

AS 

(Tested ) 

Single Pulse Avalanche Energy Tested Value 

h

I

AR

Avalanche Current

c

A

E

AR

Repetitive Avalanche Energy 

g

mJ

T

Operating Junction and

T

STG

Storage Temperature Range

°C

Soldering Temperature, for 10 seconds
Mounting Torque, 6-32 or M3 screw

Thermal Resistance

Parameter

Typ.

Max.

Units

R

θJC 

Junction-to-Case

–––

3.12

R

θJA 

Junction-to-Ambient (PCB mount) 

i

–––

40

°C/W

R

θJA 

Junction-to-Ambient –––

110

46

29

See Fig.12a, 12b, 15, 16

48

0.32

 ± 20

Max.

30
21

120

-55  to + 175

300 (1.6mm from case )

10 lbf

yin (1.1Nym)

PD - 95374B

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/irfr4105zpbf-html.html
background image

IRFR/U4105ZPbF

2

www.irf.com

Electrical Characteristics @ T

J

 = 25°C (unless otherwise specified)

Parameter

Min. Typ. Max. Units

V

(BR)DSS

Drain-to-Source Breakdown Voltage

55

–––

–––

V

∆V

(BR)DSS

/

∆T

Breakdown Voltage Temp. Coefficient

–––

0.053

–––

V/°C

R

DS(on)

Static Drain-to-Source On-Resistance

–––

19

24.5

m

V

GS(th)

Gate Threshold Voltage

2.0

–––

4.0

V

gfs

Forward Transconductance

16

–––

–––

S

I

DSS

Drain-to-Source Leakage Current

–––

–––

20

µA

–––

–––

250

I

GSS

Gate-to-Source Forward Leakage

–––

–––

200

nA

Gate-to-Source Reverse Leakage

–––

–––

-200

Q

g

Total Gate Charge

–––

18

27

Q

gs

Gate-to-Source Charge

–––

5.3

–––

nC

Q

gd

Gate-to-Drain ("Miller") Charge

–––

7.0

–––

t

d(on)

Turn-On Delay Time

–––

10

–––

t

r

Rise Time

–––

40

–––

t

d(off)

Turn-Off Delay Time

–––

26

–––

ns

t

f

Fall Time

–––

24

–––

L

D

Internal Drain Inductance

–––

4.5

–––

Between lead, 

nH

6mm (0.25in.)

L

S

Internal Source Inductance

–––

7.5

–––

from package

and center of die contact

C

iss

Input Capacitance

–––

740

–––

C

oss

Output Capacitance

–––

140

–––

C

rss

Reverse Transfer Capacitance

–––

74

–––

pF

C

oss

Output Capacitance

–––

450

–––

C

oss

Output Capacitance

–––

110

–––

C

oss

 eff.

Effective Output Capacitance

–––

180

–––

Source-Drain Ratings and Characteristics

        Parameter

Min. Typ. Max. Units

I

S

Continuous Source Current 

–––

–––

30

(Body Diode)

A

I

SM

Pulsed Source Current

–––

–––

120

(Body Diode)

c

V

SD

Diode Forward Voltage

–––

–––

1.3

V

t

rr

Reverse Recovery Time

–––

19

29

ns

Q

rr

Reverse Recovery Charge

–––

14

21

nC

t

on

Forward Turn-On Time

Intrinsic turn-on time is negligible (turn-on is dominated by LS+LD)

V

DS

 = 15V, I

D

 = 18A

I

D

 = 18A

V

DS

 = 44V

Conditions

V

GS

 = 10V 

e

V

GS

 = 0V

V

DS

 = 25V

ƒ = 1.0MHz

V

GS

 = 20V

V

GS

 = -20V

MOSFET symbol

showing  the
integral reverse

p-n junction diode.
T

J

 = 25°C, I

S

 = 18A, V

GS

 = 0V 

e

T

J

 = 25°C, I

F

 = 18A, V

DD

 = 28V

di/dt = 100A/µs 

e

Conditions

V

GS

 = 0V, I

D

 = 250µA

Reference to 25°C, I

D

 = 1mA 

V

GS

 = 10V, I

D

 = 18A 

e

V

DS

 = V

GS

, I

D

 = 250µA

V

DS

 = 55V, V

GS

 = 0V

V

DS

 = 55V, V

GS

 = 0V, T

J

 = 125°C

V

GS

 = 0V,  V

DS

 = 1.0V,  ƒ = 1.0MHz

V

GS

 = 0V,  V

DS

 = 44V,  ƒ = 1.0MHz

V

GS

 = 0V, V

DS

 = 0V to 44V 

f

V

GS

 = 10V 

e

V

DD

 = 28V

I

D

 = 18A

R

G

 = 24.5 

S

D

G

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/irfr4105zpbf-html.html
background image

IRFR/U4105ZPbF

www.irf.com

3

0

1

10

100

0.1

1

10

100

VDS, Drain-to-Source Voltage (V)

0.1

1

10

100

1000

I D

, D

ra

in

-t

o-

S

ou

rc

C

ur

re

nt

 (

A

)

60µs PULSE WIDTH

Tj = 25°C

4.5V

Fig 2.  Typical Output Characteristics

Fig 1.  Typical Output Characteristics

Fig 3.  Typical Transfer Characteristics

Fig 4.  Typical Forward Transconductance

Vs. Drain Current

            V

GS

 TOP          15V

                   10V

                8.0V

                   7.0V

                   6.0V

                   5.5V

                   5.0V

BOTTOM    4.5V

0

1

10

100

0.1

1

10

100

VDS, Drain-to-Source Voltage (V)

1

10

100

1000

I D

, D

ra

in

-t

o-

S

ou

rc

C

ur

re

nt

 (

A

)

60µs PULSE WIDTH

Tj = 175°C

4.5V

            V

GS

 TOP          15V

                  10V

                8.0V

                  7.0V

                  6.0V

                  5.5V

                  5.0V

BOTTOM   4.5V

4

5

6

7

8

9

10

VGS, Gate-to-Source Voltage (V)

0

1

10

100

1000

I D

, D

ra

in

-t

o-

S

ou

rc

C

ur

re

nt

 (

Α

)

VDS = 25V

60µs PULSE WIDTH

TJ = 25°C

TJ = 175°C

0

10

20

30

40

ID, Drain-to-Source Current (A)

0

5

10

15

20

25

30

G

fs

, F

or

w

ar

T

ra

ns

co

nd

uc

ta

nc

(S

)

TJ = 25°C

TJ = 175°C

VDS = 8.0V

380µs PULSE WIDTH

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/irfr4105zpbf-html.html
background image

IRFR/U4105ZPbF

4

www.irf.com

Fig 8.  Maximum Safe Operating Area

Fig 6.  Typical Gate Charge Vs.

Gate-to-Source Voltage

Fig 5.  Typical Capacitance Vs.

Drain-to-Source Voltage

Fig 7.  Typical Source-Drain Diode

Forward Voltage

1

10

100

VDS, Drain-to-Source Voltage (V)

0

200

400

600

800

1000

1200

C

, C

ap

ac

ita

nc

(p

F

)

Coss

Crss

Ciss

VGS   = 0V,       f = 1 MHZ

Ciss   = Cgs + Cgd,  C ds SHORTED

Crss   = Cgd 
Coss  = Cds + Cgd

0

5

10

15

20

25

30

 QG  Total Gate Charge (nC)

0

4

8

12

16

20

V

G

S

, G

at

e-

to

-S

ou

rc

V

ol

ta

ge

 (

V

)

VDS= 44V

VDS= 28V

VDS= 11V

ID= 18A

FOR TEST CIRCUIT
SEE FIGURE 13

0.0

0.5

1.0

1.5

2.0

VSD, Source-toDrain Voltage (V)

0.1

1.0

10.0

100.0

1000.0

I S

D

, R

ev

er

se

 D

ra

in

 C

ur

re

nt

 (

A

)

TJ = 25°C

TJ = 175°C

VGS = 0V

1

10

100

1000

VDS  , Drain-toSource Voltage (V)

0.1

1

10

100

1000

I D

,  

D

ra

in

-t

o-

S

ou

rc

C

ur

re

nt

 (

A

)

Tc = 25°C

Tj = 175°C

Single Pulse

1msec

10msec

OPERATION IN THIS AREA 

LIMITED BY R DS(on)

100µsec

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/irfr4105zpbf-html.html
background image

IRFR/U4105ZPbF

www.irf.com

5

Fig 11.  Maximum Effective Transient Thermal Impedance, Junction-to-Case

Fig 9.  Maximum Drain Current Vs.

Case Temperature

Fig 10.  Normalized On-Resistance

Vs. Temperature

25

50

75

100

125

150

175

TJ , Junction Temperature (°C)

0

5

10

15

20

25

30

I D

  ,

 D

ra

in

 C

ur

re

nt

 (

A

)

-60 -40 -20 0

20 40 60 80 100 120 140 160 180

TJ , Junction Temperature (°C)

0.5

1.0

1.5

2.0

2.5

R

D

S

(o

n)

 ,

 D

ra

in

-t

o-

S

ou

rc

O

R

es

is

ta

nc

   

   

   

   

   

   

   

 (

N

or

m

al

iz

ed

)

ID = 18A

VGS = 10V

1E-006

1E-005

0.0001

0.001

0.01

t1 , Rectangular Pulse Duration (sec)

0.001

0.01

0.1

1

10

T

he

rm

al

 R

es

po

ns

Z

 th

JC

 )

0.20

0.10

D = 0.50

0.02

0.01

0.05

SINGLE PULSE

( THERMAL RESPONSE )

Notes:

1. Duty Factor D = t1/t2

2. Peak Tj = P dm x Zthjc + Tc

Ri (°C/W)   

 τi (sec)

1.100       0.000174
1.601       0.000552
0.418       0.007193

τ

J

τ

J

τ

1

τ

1

τ

2

τ

2

τ

3

τ

3

R

1

R

1

R

2

R

2

R

3

R

3

τ

τ

C

Ci   i

/Ri

Ci= 

τi/Ri

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/irfr4105zpbf-html.html
background image

IRFR/U4105ZPbF

6

www.irf.com

Q

G

Q

GS

Q

GD

V

G

Charge

D.U.T.

V

DS

I

D

I

G

3mA

V

GS

.3

µF

50K

.2

µF

12V

Current Regulator

Same Type as D.U.T.

Current Sampling Resistors

+

-

10 V

Fig 13b.  Gate Charge Test Circuit

Fig 13a.  Basic Gate Charge Waveform

Fig 12c.  Maximum Avalanche Energy

Vs. Drain Current

Fig 12b.  Unclamped Inductive Waveforms

Fig 12a.  Unclamped Inductive Test Circuit

tp

V

(BR)DSS

I

AS

Fig 14.  Threshold Voltage Vs. Temperature

RG

IAS

0.01

tp

D.U.T

L

VDS

+

- VDD

DRIVER

A

15V

20V

V

GS

25

50

75

100

125

150

175

Starting TJ, Junction Temperature (°C)

0

20

40

60

80

100

120

E

A

S

, S

in

gl

P

ul

se

 A

va

la

nc

he

 E

ne

rg

(m

J)

                 I D

TOP  

       2.0A

               3.5A

BOTTOM 

  18A

-75 -50 -25

0

25

50

75 100 125 150 175

TJ , Temperature ( °C )

2.0

2.5

3.0

3.5

4.0

4.5

V

G

S

(t

h)

 G

at

th

re

sh

ol

V

ol

ta

ge

 (

V

)

ID = 250µA

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/irfr4105zpbf-html.html
background image

IRFR/U4105ZPbF

www.irf.com

7

Fig 15.  Typical Avalanche Current Vs.Pulsewidth

Fig 16.  Maximum Avalanche Energy

Vs. Temperature

Notes on Repetitive Avalanche Curves , Figures 15, 16:
(For further info, see AN-1005 at www.irf.com)
1. Avalanche failures assumption:

  Purely a thermal phenomenon and failure occurs at a

    temperature far in excess of T

jmax

. This is validated for

    every part type.
2. Safe operation in Avalanche is allowed as long asT

jmax

 is

  not exceeded.

3. Equation below based on circuit and waveforms shown in

  Figures 12a, 12b.

4. P

D (ave) 

= Average power dissipation per single

    avalanche pulse.
5. BV = Rated breakdown voltage (1.3 factor accounts for
    voltage increase during avalanche).
6. I

av 

= Allowable avalanche current.

7. 

∆T

 = 

Allowable rise in junction temperature, not to exceed

    T

jmax 

(assumed as 25°C in Figure 15, 16).

  t

av = 

Average time in avalanche.

  D = Duty cycle in avalanche =  t

av 

·f

  Z

thJC

(D, t

av

) = Transient thermal resistance, see figure 11)

P

D (ave)

 = 1/2 ( 1.3·BV·I

av

) =

 DT/ Z

thJC

I

av 

=

 

2

DT/ [1.3·BV·Z

th

]

E

AS (AR)

 = P

D (ave)

·t

av

1.0E-06

1.0E-05

1.0E-04

1.0E-03

1.0E-02

1.0E-01

tav (sec)

0.1

1

10

100

A

va

la

nc

he

 C

ur

re

nt

 (

A

)

0.05

Duty Cycle = Single Pulse

0.10

Allowed avalanche Current vs 
avalanche pulsewidth, tav 
assuming 

∆ Tj = 25°C due to 

avalanche losses. Note: In no 
case should Tj be allowed to 
exceed Tjmax

0.01

25

50

75

100

125

150

175

Starting TJ , Junction Temperature (°C)

0

5

10

15

20

25

30

E

A

R

 , 

A

va

la

nc

he

 E

ne

rg

(m

J)

TOP          Single Pulse                
BOTTOM   1% Duty Cycle
ID = 18A

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/irfr4105zpbf-html.html
background image

IRFR/U4105ZPbF

8

www.irf.com

Fig 17. 

Peak Diode Recovery dv/dt Test Circuit for N-Channel

HEXFET

®

 Power MOSFETs

Circuit Layout Considerations

   •  Low Stray Inductance

   •  Ground Plane

   •  Low Leakage Inductance

      Current Transformer

P.W.

Period

di/dt

Diode Recovery

dv/dt

Ripple 

≤ 5%

Body Diode  Forward Drop

Re-Applied

Voltage

Reverse

Recovery

Current

Body Diode Forward

Current

V

GS

=10V

V

DD

I

SD

Driver Gate Drive

D.U.T. I

SD

Waveform

D.U.T. V

DS

Waveform

Inductor Curent

D = 

P.W.

Period

*

 V

GS

 = 5V for Logic Level Devices

*

+

-

+

+

+

-

-

-

ƒ

„

‚

R

G

V

DD

•  dv/dt controlled by R

G

•  Driver same type as D.U.T.

•  I

SD

 controlled by Duty Factor "D"

•  D.U.T. - Device Under Test

D.U.T



V

DS

90%

10%
V

GS

t

d(on)

t

r

t

d(off)

t

f

V

DS

Pulse Width ≤ 1 µs

Duty Factor ≤ 0.1 %

R

D

V

GS

R

G

D.U.T.

10V

+

-

V

DD

Fig 18a.  Switching Time Test Circuit

Fig 18b.  Switching Time Waveforms

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/irfr4105zpbf-html.html
background image

IRFR/U4105ZPbF

www.irf.com

9

D-Pak (TO-252AA) Part Marking Information

D-Pak (TO-252AA) Package Outline

Dimensions  are  shown  in  millimeters  (inches)

INTERNATIONAL

ASSEMBLED ON WW 16, 2001
IN THE ASSEMBLY LINE "A"

OR

Note: "P" in assembly line position

EXAMPLE:

LOT CODE 1234

THIS IS AN IRFR120
WITH ASSEMBLY

indicates "Lead-Free"

PRODUCT (OPTIONAL)

P =  DESIGNATES LEAD-FREE

A =  ASSEMBLY SITE CODE

PART NUMBER

WEEK 16

DATE CODE
YEAR 1 =  2001

RECTIFIER

INTERNATIONAL

LOGO

LOT CODE

ASSEMBLY

34

12

IRFR120

116A

LINE A

34

RECTIFIER

LOGO

IRFR120

12

ASSEMBLY

LOT CODE

YEAR 1 =  2001

DATE CODE

PART NUMBER

WEEK 16

"P" in assembly line position indicates

"Lead-Free" qualification to the consumer-level

P =  DESIGNATES LEAD-FREE

PRODUCT QUALIFIED TO THE

CONSUMER LEVEL (OPTIONAL)

Notes:

1. For an Automotive Qualified version of this part please see

http://www.irf.com/product-info/datasheets/data/

    auirfr4105z.pdf

2. For the most current drawing please refer to IR website at http://www.irf.com/package/

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/irfr4105zpbf-html.html
background image

IRFR/U4105ZPbF

10

www.irf.com

I-Pak (TO-251AA) Package Outline

Dimensions  are  shown  in  millimeters  (inches)

I-Pak (TO-251AA) Part Marking Information

78

LINE A

LOGO

INTERNATIONAL

RECTIFIER

OR

PRODUCT (OPTIONAL)

P =  DESIGNATES  LEAD-FREE

A =  ASSEMBLY SITE CODE

IRFU120

PART NUMBER

WEEK 19

DATE CODE
YEAR 1 =  2001

RECTIFIER

INTERNATIONAL

LOGO

ASS EMBLY

LOT CODE

IRFU120

56

DATE CODE

PART NUMBER

LOT CODE

ASSEMBLY

56

78

YEAR 1 =  2001
WEEK 19

119A

indicates Lead-Free"

AS SEMBLED ON WW 19, 2001
IN THE ASS EMBLY LINE "A"

Note: "P" in assembly line position

EXAMPLE:

WITH AS SEMBLY

THIS IS  AN IRFU120

LOT CODE 5678

Notes:

1. For an Automotive Qualified version of this part please see

http://www.irf.com/product-info/datasheets/data/

    auirfr4105z.pdf

2. For the most current drawing please refer to IR website at http://www.irf.com/package/

Maker
Infineon Technologies