IRFR_U3707ZPbF Product Datasheet

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/Infineon-IRFR3707Z-DS-v01_02-EN-html.html
background image

 

IRFR3707ZPbF 
IRFU3707ZPbF 

V

DSS 

30V 

R

DS(on)

 max   

9.5m



Qg

 

9.6nC  

 

2016-5-31 

 

Absolute Maximum Ratings 

Symbol Parameter 

Max. 

Units 

V

DS 

Drain -to-Source Voltage 

 30 

V

GS 

Gate-to-Source Voltage 

 ± 20 

I

D

 @ T

C

 = 25°C 

Continuous Drain Current, V

GS

 @ 10V  

56 

 

I

D

 @ T

C

 = 100°C 

Continuous Drain Current, V

GS

 @ 10V  

39 

I

DM 

Pulsed Drain Current  220 

 

P

D

 @T

C

 = 25°C 

Maximum Power Dissipation   

50 

P

D

 @T

C

 = 100°C 

Maximum Power Dissipation   

25 

  

Linear Derating Factor 

0.33 

W/°C 

T

J  

Operating Junction and 

-55  to + 175 

 

T

STG 

Storage Temperature Range 

  

°C 

  

Soldering Temperature, for 10 seconds (1.6mm from case) 

300 

 

D- Pak 

IRFR3707ZPbF 

G D S 

Gate Drain Source 

Applications 

  High Frequency Synchronous Buck   
 

Converters for Computer Processor Power 

  High Frequency Isolated DC-DC   

 

 

Converters with Synchronous Rectification  

 

for Telecom and Industrial Use 

I- Pak 

IRFU3707ZPbF 

HEXFET

® 

Power MOSFET 

Base part number 

Package Type 

Standard Pack 

Form 

Quantity 

IRFU3707ZPbF 

I-Pak 

Tube  

75 

IRFU3707ZPbF 

IRFR3707ZPbF 

D-Pak    

Tube  

75 

IRFR3707ZPbF 

Tape and Reel Left  

3000 

IRFR3707ZTRLPbF 

Orderable Part Number   

Benefits 

 Very 

Low 

R

DS(on) 

at 4.5V V

GS

 

  Ultra - Low Gate Impedance 

  Fully Characterized Avalanche Voltage and Current 

 Lead-Free 

Thermal Resistance  

Symbol Parameter 

Typ. 

Max. 

Units 

R

JC

  

Junction-to-Case  

––– 

3.0 

°C/W   

R

JA

  

Junction-to-Ambient ( PCB Mount)  ––– 

50 

R

JA

  

Junction-to-Ambient  

––– 

110 

Notes  through  are on page 2. 

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/Infineon-IRFR3707Z-DS-v01_02-EN-html.html
background image

 

IRFR/U3707ZPbF 

 

2016-5-31 

Notes:

  Repetitive rating;  pulse width limited by max. junction temperature 

  starting  T

J

 = 25°C, L = 0.58mH, R

G

 = 25

, I

AS

 = 12A. 

 Pulse width 

400µs; duty cycle  2%. 

  Calculated continuous current based on maximum allowable junction temperature. Package limitation current is 30A. 



When mounted on 1" square PCB (FR-4 or G-10 Material). For recommended footprint and soldering techniques refer to  

 

application note #AN-994. 

Static  @ T

= 25°C (unless otherwise specified) 

  

Parameter Min. 

Typ. 

Max. 

Units 

Conditions 

V

(BR)DSS 

Drain-to-Source Breakdown Voltage 

30 

––– 

––– 

V  V

GS

 = 0V, I

D

 = 250µA 

V

(BR)DSS

/

T

J  

Breakdown Voltage Temp. Coefficient 

–––  0.023  –––  V/°C  Reference to 25°C, I

D

 = 1mA  

R

DS(on) 

   

Static Drain-to-Source On-Resistance    

––– 7.5  9.5 

m



V

GS

 = 10V, I

D

 = 15A  

––– 10 12.5 

V

GS

 = 4.5V, I

D

 = 12A  

V

GS(th) 

Gate Threshold Voltage 

1.35  1.80  2.25 

V

DS

 = V

GS

, I

D

 = 25µA  

V

GS(th)

/

T

J  

Gate Threshold Voltage Temp. Coefficient 

––– 

-5.0 

–––  mV/°C 

I

DSS 

  

Drain-to-Source Leakage Current   

––– –––  1.0 

µA 

V

DS

 = 24V, V

GS

 = 0V 

––– ––– 150 

V

DS

 = 24V,V

GS

 = 0V,T

J

 =125°C 

I

GSS 

  

Gate-to-Source Forward Leakage 

––– 

––– 

100 

nA 

V

GS

 = 20V 

Gate-to-Source Reverse Leakage 

––– 

 

-100 

V

GS

 = -20V 

gfs 

Forward Trans conductance 

71 

––– 

––– 

S  V

DS

 = 15V, I

D

 = 12A 

Q

Total Gate Charge  

––– 

9.6 

14 

nC   

 

Q

gs1 

Pre-Vth Gate-to-Source Charge 

––– 

2.6 

––– 

V

DS

 = 15V 

Q

gs2 

Post-Vth Gate-to-Source Charge 

–––  0.90  ––– 

V

GS

 = 4.5V  

Q

gd 

Gate-to-Drain Charge 

––– 

3.5 

––– 

I

D

 = 12A 

Q

godr 

Gate Charge Overdrive 

––– 

2.6 

––– 

See Fig. 16 

Q

sw 

Switch Charge (Q

gs2

 + Q

gd

) ––– 

4.4 

––– 

 

Q

oss 

Output Charge 

––– 

5.8 

––– 

nC  V

DS

 = 15V, V

GS

 = 0V 

t

d(on) 

Turn-On Delay Time 

––– 

8.0 

––– 

ns 

V

DD

 = 16V,V

GS

 = 4.5V  

t

Rise Time 

––– 

11 

––– 

I

D

 = 12A 

t

d(off) 

Turn-Off Delay Time 

––– 

12 

––– 

Clamped Inductive Load 

t

Fall Time 

––– 

3.3 

––– 

 

C

iss 

Input Capacitance 

–––  1150  ––– 

pF   

V

GS

 = 0V 

C

oss 

Output Capacitance 

––– 

260 

––– 

V

DS

 = 15V 

C

rss 

Reverse Transfer Capacitance 

––– 

120 

––– 

ƒ = 1.0MHz 

Avalanche Characteristics  

E

AS  

Single Pulse Avalanche Energy  42 

mJ    

I

AR 

Avalanche Current  12 

E

AR 

Repetitive Avalanche Energy  5.0 

mJ 

 

 Parameter 

Max. 

Units 

Diode Characteristics 

  

        Parameter 

Min.  Typ.  Max.  Units 

Conditions 

I

  

Continuous Source Current  

––– ––– 56 

MOSFET symbol 

(Body Diode) 

showing  the 

I

SM 

  

Pulsed Source Current 

––– ––– 220 

integral reverse 

(Body Diode)

p-n junction diode. 

V

SD 

Diode Forward Voltage 

––– 

––– 

1.0 

V  T

J

 = 25°C,I

= 12A,V

GS

 = 0V 

t

rr  

Reverse Recovery Time  

––– 

25 

38 

ns   T

J

 = 25°C ,I

F

 = 12A, V

DS

 = 15V 

Q

rr  

Reverse Recovery Charge  

––– 

17 

26 

nC    di/dt = 100A/µs 

t

on 

Forward Turn-On Time 

Intrinsic turn-on time is negligible (turn-on is dominated by L

S

+L

D

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/Infineon-IRFR3707Z-DS-v01_02-EN-html.html
background image

 

IRFR/U3707ZPbF 

 

2016-5-31 

Fig. 2 Typical Output Characteristics 

Fig. 3 

Typical Transfer Characteristics

 

 

Fig. 4 Normalized On-Resistance 

vs. Temperature 

Fig. 1 Typical Output Characteristics 

0.1

1

10

VDS, Drain-to-Source Voltage (V)

0.001

0.01

0.1

1

10

100

1000

10000

I D

, D

ra

in

-t

o-

S

ou

rc

C

ur

re

nt

 (

A

)

2.2V

20µs PULSE WIDTH

Tj = 25°C

VGS

TOP           10V

6.0V

4.5V

4.0V

3.3V

2.8V

2.5V

BOTTOM

2.2V

0.1

1

10

VDS, Drain-to-Source Voltage (V)

0.1

1

10

100

1000

I D

, D

ra

in

-t

o-

S

ou

rc

C

ur

re

nt

 (

A

)

2.2V

20µs PULSE WIDTH

Tj = 175°C

VGS

TOP           10V

6.0V

4.5V

4.0V

3.3V

2.8V

2.5V

BOTTOM

2.2V

0

2

4

6

8

VGS, Gate-to-Source Voltage (V)

0.01

0.1

1

10

100

1000

I D

, D

ra

in

-t

o-

S

ou

rc

C

ur

re

nt

 

)

TJ = 25°C

TJ = 175°C

VDS = 10V

20µs PULSE WIDTH

-60 -40 -20 0 20 40 60 80 100 120 140 160 180

TJ , Junction Temperature (°C)

0.5

1.0

1.5

2.0

R

D

S

(o

n)

 ,

 D

ra

in

-t

o-

S

ou

rc

O

R

es

is

ta

nc

   

   

   

   

   

   

   

 (

N

or

m

al

iz

ed

)

ID = 30A

VGS = 10V

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/Infineon-IRFR3707Z-DS-v01_02-EN-html.html
background image

 

IRFR/U3707ZPbF 

 

2016-5-31 

Fig 5.  Typical Capacitance vs.  
 

      Drain-to-Source Voltage

 

 

Fig 8.  Maximum Safe Operating Area  

Fig. 7 Typical Source-to-Drain Diode 

 Forward Voltage 

Fig 6.  Typical Gate Charge vs. 
 

      Gate-to-Source Voltage

 

 

1

10

100

VDS, Drain-to-Source Voltage (V)

100

1000

10000

C

, C

ap

ac

ita

nc

e(

pF

)

VGS   = 0V,       f = 1 MHZ

Ciss    = Cgs + Cgd,  C ds SHORTED
Crss    = Cgd 
Coss   = Cds + Cgd

Coss

Crss

Ciss

0

2

4

6

8

10

12

 QG  Total Gate Charge (nC)

0.0

1.0

2.0

3.0

4.0

5.0

6.0

V

G

S

, G

at

e-

to

-S

ou

rc

V

ol

ta

ge

 (

V

)

VDS= 24V

VDS= 15V

ID= 12A

0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2

VSD, Source-to-Drain Voltage (V)

0.10

1.00

10.00

100.00

1000.00

I S

D

, R

ev

er

se

 D

ra

in

 C

ur

re

nt

 (

A

)

TJ = 25°C

TJ = 175°C

VGS = 0V

0

1

10

100

1000

VDS, Drain-to-Source Voltage (V)

0.1

1

10

100

1000

I D

,  

D

ra

in

-t

o-

S

ou

rc

C

ur

re

nt

 (

A

)

1msec

10msec

OPERATION IN THIS AREA 

LIMITED BY R DS(on)

100µsec

Tc = 25°C

Tj = 175°C

Single Pulse

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/Infineon-IRFR3707Z-DS-v01_02-EN-html.html
background image

 

IRFR/U3707ZPbF 

 

2016-5-31 

Fig 11.  Maximum Effective Transient Thermal Impedance, Junction-to-Case  

Fig 9.  Maximum Drain Current vs. Case Temperature 

Fig 10.  Threshold Voltage vs. Temperature 

25

50

75

100

125

150

175

 TC , Case Temperature (°C)

0

10

20

30

40

50

60

I D

,   

D

ra

in

 C

ur

re

nt

 (

A

)

Limited By Package

-75 -50 -25

0

25 50 75 100 125 150 175 200

TJ , Temperature ( °C )

1.0

1.5

2.0

2.5

V

G

S

(t

h)

 G

at

th

re

sh

ol

V

ol

ta

ge

 (

V

)

ID = 250µA

1E-006

1E-005

0.0001

0.001

0.01

0.1

t1 , Rectangular Pulse Duration (sec)

0.001

0.01

0.1

1

10

T

he

rm

al

 Re

sp

on

se

 (

 Z

 th

JC 

)

0.20

0.10

D = 0.50

0.02

0.01

0.05

SINGLE PULSE

( THERMAL RESPONSE )

Notes:

1. Duty Factor D = t1/t2

2. Peak Tj = P dm x Zthjc + Tc

Ri (°C/W) 

i (sec)

1.698 

0.000845 

0.481 

0.016503 

0.823 

0.000128 

J

J

1

1

2

2

3

3

R

1

R

1

R

2

R

2

R

3

R

3

C

C

Ci= 

iRi

Ci= 

iRi

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/Infineon-IRFR3707Z-DS-v01_02-EN-html.html
background image

 

IRFR/U3707ZPbF 

 

2016-5-31 

 

Fig 12a.  Unclamped Inductive Test Circuit 

Fig 12b.  Unclamped Inductive Waveforms 

R G

IAS

0.01

tp

D.U.T

L

VDS

+

- VDD

DRIVER

A

15V

20V

tp

V

(BR)DSS

I

AS

Fig 13b.  Gate Charge Test Circuit 

Fig 13a.   Gate Charge Waveform 

Fig 14a.  Switching Time Test Circuit 

25

50

75

100

125

150

175

Starting TJ , Junction Temperature (°C)

0

20

40

60

80

100

120

140

160

180

200

E

A

S

 , 

S

in

gl

P

ul

se

 A

va

la

nc

he

 E

ne

rg

(m

J)

ID

TOP         3.7A

5.6A

BOTTOM 12A

Fig 12c. Maximum Avalanche Energy 

 vs. Drain Current 

Fig 14b.  Switching Time Waveforms 

V

GS

Pulse Width < 1µs

Duty Factor < 0.1%

V

DD

V

DS

L

D

D.U.T

+

-

V

GS

V

DS

90%

10%

t

d(on)

t

d(off)

t

r

t

f

Vds

Vgs

Id

Vgs(th)

Qgs1 Qgs2

Qgd

Qgodr

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/Infineon-IRFR3707Z-DS-v01_02-EN-html.html
background image

 

IRFR/U3707ZPbF 

 

2016-5-31 

 

Fig 15. Peak Diode Recovery dv/dt Test Circuit for N-Channel HEXFET® Power MOSFETs 

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/Infineon-IRFR3707Z-DS-v01_02-EN-html.html
background image

 

IRFR/U3707ZPbF 

 

2016-5-31 

 Power MOSFET Selection for Non-Isolated DC/DC Converters 

Control FET 

Special attention has been given to the power losses in 
the switching elements of the circuit - Q1 and Q2. Power 
losses in the high side switch Q1, also called the Control 
FET, are impacted by the R

ds(on) 

of the MOSFET, but 

these conduction losses are only about one half of the 
total losses. 
 
Power losses in the control switch Q1 are given by; 
 

P

loss

 = P

conduction

+ P

switching

+ P

drive

+ P

output 

 

This can be expanded and approximated by; 
 
 
 
 
 
 

 
 
 
 
 

 
 
This simplified loss equation includes the terms Q

gs2

 and 

Q

oss

 which are new to Power MOSFET data sheets. 

Q

gs2

 is a subelement of traditional gate-source charge 

that is included in all MOSFET data sheets. The importance of 
splitting this gate-source charge into two sub elements, 
Q

gs1 

and Q

gs2

, can be seen from Fig 16.   

Q

gs2

 indicates the charge that must be supplied by the 

gate driver between the time that the threshold voltage 
has been reached  and the time the drain current rises to 
Id max  at which time the drain voltage begins to change. 
Minimizing Q

gs2

 is a critical factor in reducing switching 

losses in Q1. 
Q

oss

 is the charge that must be supplied to the output 

capacitance  of  the  MOSFET  during  every  switching  cycle.             
Figure A shows how Q

oss

 is formed by the parallel combination 

of the voltage dependent (non-linear) capacitance’s C

ds

 

and C

dg

 when multiplied by the power supply input buss 

voltage. 

 
 

P

loss

 I

rms

2

 R

ds(on)

       

 

Q

gd

i

g

 V

in

 f









 

Q

gs2

i

g

 V

in

 f











       

 Q

g

 V

g

 f

       

 Q

oss

2

V

in

 f









Synchronous FET 

The power loss equation for Q2 is approximated by; 
 
 
 
 
 
 
 
 
 
 
*dissipated primarily in Q1 
 
For the synchronous MOSFET Q2, R

ds(on) 

is an important 

characteristic; however, once again the importance of 
gate charge must not be overlooked since it impacts 
three critical areas. Under light load the MOSFET must 
still be turned on and off by the control I

C

 so the gate 

drive losses become much more significant.  Secondly, 
the output charge Q

oss

 and reverse recovery charge Q

rr

 

both generate losses that are transferred to Q1 and in-
crease the dissipation in that device. Thirdly, gate charge 
will impact the MOSFETs’ susceptibility to C

dv/dt 

turn on.  

The drain of Q2 is connected to the switching node of the 
converter and therefore sees transitions between ground 
and Vin. As Q1 turns on and off there is a rate of change 
of drain voltage dV/dt which is capacitive coupled to the 
gate of  Q2 and can induce a voltage spike on the gate 
that is sufficient to turn the MOSFET on, resulting in 
shoot-through current . The ratio of Q

gd

/Q

gs1

 must be min-

imized to reduce the potential for C

dv/dt 

turn on. 

 
 
 

 
 
 
 
 
 
 
 
 
Figure A:  Q

oss 

Characteristic 

P

loss

 P

conduction

 P

drive

 P

output

*

P

loss

 I

rms

2

 R

ds(on)

       

 Q

g

 V

g

 f

       

 Q

oss

2

V

in

 f









 Q

rr

 V

in

 f

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/Infineon-IRFR3707Z-DS-v01_02-EN-html.html
background image

 

IRFR/U3707ZPbF 

 

2016-5-31 

 

 

Note: For the most current drawing please refer to Infineon’s web site 

www.infineon.com

 

 

D-Pak (TO-252AA) Part Marking Information 

D-Pak (TO-252AA) Package Outline (Dimensions are shown in millimeters (inches)) 

INTERNATIONAL

ASSEMBLED ON WW 16, 2001
IN THE ASSEMBLY LINE "A"

OR

Note: "P" in assembly line position

EXAMPLE:

LOT CODE 1234

THIS IS AN IRFR120
WITH ASSEMBLY

indicates "Lead-Free"

PRODUCT (OPTIONAL)

P =  DESIGNATES LEAD-FREE

A =  ASSEMBLY SITE CODE

PART NUMBER

WEEK 16

DATE CODE
YEAR 1 =  2001

RECTIFIER

INTERNATIONAL

LOGO

LOT CODE

ASSEMBLY

34

12

IRFR120

116A

LINE A

34

RECTIFIER

LOGO

IRFR120

12

ASSEMBLY

LOT CODE

YEAR 1 =  2001

DATE CODE

PART NUMBER

WEEK 16

"P" in assembly line position indicates
"Lead-Free" qualification to the consumer-level

P =  DESIGNATES LEAD-FREE

PRODUCT QUALIFIED TO THE
CONSUMER LEVEL (OPTIONAL)

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/Infineon-IRFR3707Z-DS-v01_02-EN-html.html
background image

 

IRFR/U3707ZPbF 

10 

 

2016-5-31 

I-Pak (TO-251AA) Package Outline Dimensions are shown in millimeters (inches) 

I-Pak (TO-251AA) Part Marking Information 

78

LINE A

LOGO

INTERNATIONAL

RECTIFIER

OR

PRODUCT (OPTIONAL)

P =  DESIGNATES LEAD-FREE

A =  ASSEMBLY SITE CODE

IRFU120

PART NUMBER

WEEK 19

DATE CODE
YEAR 1 =  2001

RECTIFIER

INTERNATIONAL

LOGO

ASSEMBLY
LOT CODE

IRFU120

56

DATE CODE

PART NUMBER

LOT CODE

ASSEMBLY

56

78

YEAR 1 =  2001
WEEK 19

119A

indicates Lead-Free"

ASSEMBLED ON WW 19, 2001
IN THE ASSEMBLY LINE "A"

Note: "P" in assembly line position

EXAMPLE:

WITH ASSEMBLY

THIS IS AN IRFU120

LOT CODE 5678

Note: For the most current drawing please refer to Infineon’s web site 

www.infineon.com

 

 

Maker
Infineon Technologies