IRFP4868PbF Product Datasheet

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/Infineon-IRFP4868-DS-v01_02-EN-html.html
background image

 

IRFP4868PbF 

 

                    2017-06-21 

Applications 

 High Efficiency Synchronous Rectification in SMPS 

 Uninterruptible Power Supply 

 High Speed Power Switching 

 Hard Switched and High Frequency Circuits 

Benefits 

 Improved  Gate, Avalanche and Dynamic dV/dt  
 Ruggedness 
 Fully Characterized Capacitance and Avalanche SOA 

 Enhanced body diode dV/dt and dI/dt Capability   

 Lead-Free 

 

Gate Drain Source 

G D S 

 V

DSS 

300V 

 R

DS(on)

   typ. 

25.5m

 

              max. 

32m

 

 I

D  

70A 

Base Part Number 

Package Type  

Standard Pack 

Orderable Part Number 

 

 

Form Quantity 

 

IRFP4868PbF 

TO-247AC 

Tube 

25 IRFP4868PbF 

Absolute Maximum Ratings 

 

 

 

Symbol Parameter 

Max. 

Units 

I

D

 @ T

C

 = 25°C 

Continuous Drain Current, V

GS

 @ 10V 

70 

I

D

 @ T

C

 = 100°C 

Continuous Drain Current, V

GS

 @ 10V 

49 

I

DM 

Pulsed Drain Current  280 

P

D

 @T

C

 = 25°C 

Maximum Power Dissipation   

517 

  

Linear Derating Factor 

3.4 

W/°C 

V

GS 

Gate-to-Source Voltage 

 ± 20 

T

J  

Operating Junction and 

-55  to + 175   

°C 

T

STG 

Storage Temperature Range 

  

Soldering Temperature, for 10 seconds  
(1.6mm from case) 

300 

  

Mounting torque, 6-32 or M3 screw 

10lbf

in (1.1N

m) 

  

Avalanche Characteristics 

 

 

 

E

AS (Thermally limited)  

Single Pulse Avalanche Energy  1093 

mJ 

I

AR 

Avalanche Current  

See Fig. 14, 15, 22a, 22b   

E

AR 

Repetitive Avalanche Energy  mJ 

Thermal Resistance 

 

 

 

Symbol Parameter  Typ. 

Max. 

Units 

R

JC

  

Junction-to-Case  

––– 

0.29 

R

CS

  

Case-to-Sink, Flat Greased Surface  

0.24 ––– 

R

JA

  

Junction-to-Ambient 

––– 40 

  °C/W   

 

TO-247AC 

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/Infineon-IRFP4868-DS-v01_02-EN-html.html
background image

 

IRFP4868PbF 

 

2017-06-21 

Static @ T

J

 = 25°C (unless otherwise specified) 

 

 

 

 

 

Symbol Parameter 

Min. 

Typ. 

Max. 

Units 

Conditions 

V

(BR)DSS 

Drain-to-Source Breakdown Voltage 

300  –––  ––– 

V  V

GS

 = 0V, I

D

 = 250µA 

V

(BR)DSS

/

T

J  

Breakdown Voltage Temp. Coefficient 

–––  0.29  –––  V/°C  Reference to 25°C, I

D

 = 5mA 

R

DS(on) 

Static Drain-to-Source On-Resistance 

–––  25.5 

32 

m

  V

GS

 = 10V, I

D

 = 42A  

V

GS(th) 

Gate Threshold Voltage 

3.0 

––– 

5.0 

V  V

DS

 = V

GS

, I

D

 = 250µA 

I

DSS 

  

––– –––  20 

µA  

V

DS

 = 300V, V

GS

 = 0V 

––– ––– 250 

V

DS

 = 300V, V

GS

 = 0V, T

J

 = 125°C 

I

GSS 

  

Gate-to-Source Forward Leakage 

–––  –––  100 

nA  

V

GS

 = 20V 

Gate-to-Source Reverse Leakage 

–––  –––  -100 

V

GS

 = -20V 

R

Internal Gate Resistance 

––– 

1.1 

––– 

   

Dynamic @ T

J

 = 25°C (unless otherwise specified) 

 

 

 

 

 

Symbol Parameter 

Min. 

Typ. 

Max. 

Units 

Conditions 

gfs Forward 

Transconductance 

80 

––– 

––– 

V

DS

 = 50V, I

D

 = 42A 

Q

Total Gate Charge 

–––  180  270 

nC  

I

D

 = 42A 

Q

gs 

Gate-to-Source Charge 

––– 

60 

––– 

V

DS

 =150V 

Q

gd 

Gate-to-Drain ("Miller") Charge 

––– 57 ––– 

V

GS

 = 10V  

Q

sync 

Total Gate Charge Sync. (Q

g

 - Q

gd

) ––– 

123 

––– 

I

D

 = 42A, V

DS

 =0V, V

GS

 = 10V 

t

d(on) 

Turn-On Delay Time 

––– 

24 

––– 

ns  

V

DD

 = 195V 

t

Rise Time 

––– 

16 

––– 

I

D

 = 42A 

t

d(off) 

Turn-Off Delay Time 

––– 

62 

––– 

R

G

 = 1.0

 

t

Fall Time 

––– 

45 

––– 

V

GS

 = 10V  

C

iss 

Input Capacitance 

–––  10774  ––– 

pF 

V

GS

 = 0V 

C

oss 

Output Capacitance 

–––  612  ––– 

V

DS

 = 50V 

C

rss 

Reverse Transfer Capacitance 

–––  193  ––– 

ƒ = 1.0 MHz,  See Fig. 5 

C

oss

 eff. (ER)  Effective Output Capacitance  

(Energy Related)   

––– 406 ––– 

V

GS

 = 0V, V

DS

 = 0V to 240V , 

See Fig. 11 

C

oss

 eff. (TR)  Effective Output Capacitance  

(Time Related) 

––– 710 ––– 

V

GS

 = 0V, V

DS

 = 0V to 240V  

Diode Characteristics 

 

 

 

 

 

Symbol 

        Parameter 

Min.  Typ.  Max.  Units 

Conditions 

I

Continuous Source Current  

–––    –––    70   

A  

MOSFET symbol 

  

(Body Diode) 

showing  the 

I

SM 

Pulsed Source Current 

–––    –––    280    A   

integral reverse 

  

(Body Diode)  

p-n junction diode. 

V

SD 

Diode Forward Voltage 

–––  ––– 

1.3 

V  T

J

 = 25°C, I

S

 = 42A, V

GS

 = 0V  

dv/dt Peak 

Diode 

Recovery 

 ––– 

7.3 

––– 

V/ns 

T

J

 = 25°C, I

S

 = 42A, V

DS

 = 300V 

t

rr 

Reverse Recovery Time 

–––  351  ––– 

ns 

T

J

 = 25°C 

  

  

––– 454 ––– 

T

J

 = 125°C 

Q

rr 

Reverse Recovery Charge 

–––  2520  ––– 

nC   

T

J

 = 25°C 

  

  

––– 3686 ––– 

T

J

 = 125°C 

I

RRM 

Reverse Recovery Current 

––– 

16 

––– 

A  T

J

 = 25°C 

t

on 

Forward Turn-On Time 

Intrinsic turn-on time is negligible (turn-on is dominated by 
L

S

+L

D

)         

Drain-to-Source Leakage Current   

Notes: 

 Repetitive rating;  pulse width limited by max.  Junction 

     temperature. 

 Limited by T

Jmax

, starting T

J

 = 25°C, L = 1.2mH 

     R

G

 = 50

, I

AS

 = 42A, V

GS

 =10V. Part not 

  recommended for use above this value. 

  I

SD

 ≤ 42A, di/dt ≤ 1706A/µs, V

DD

 ≤ V

(BR)DSS

, T

J

 ≤ 175°C. 

 Pulse width ≤ 400µs; duty cycle ≤ 2%. 

 Coss eff. (TR) is a fixed capacitance that gives 

  the same charging time as Coss while V

DS

 is 

  rising from 0 to 80% V

DSS

 Coss eff. (ER) is a fixed capacitance that gives 

  the same energy as Coss while V

DS

 is rising 

  from 0 to 80% V

DSS

 R

 is measured at T

J

 approximately 90°C. 

 R

JC

 value shown is at time zero. 

D

S

G

V

R

 = 255V, 

I

F

 = 42A 

di/dt = 100A/µs  

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/Infineon-IRFP4868-DS-v01_02-EN-html.html
background image

 

IRFP4868PbF 

 

2017-06-21 

0.1

1

10

100

VDS, Drain-to-Source Voltage (V)

1

10

100

1000

I D

, D

ra

in

-t

o-

S

o

ur

ce

 C

ur

re

nt

 (

A

)

4.75V

60µs PULSE WIDTH

Tj = 175°C

VGS

TOP          

15V
12V
10V
8.0V
7.0V
6.0V
5.5V

BOTTOM

4.75V

Fig 2. Typical Output Characteristics 

3

4

5

6

7

8

VGS, Gate-to-Source Voltage (V)

0.1

1

10

100

1000

I D

, D

ra

in

-t

o-

S

ou

rc

C

ur

re

nt

 (

A

)

TJ = 25°C

TJ = 175°C

VDS = 50V
60µs PULSE WIDTH

Fig 3. 

Typical Transfer Characteristics

 

 

0.1

1

10

100

1000

VDS, Drain-to-Source Voltage (V)

0.01

0.1

1

10

100

1000

I D

D

ra

in

-t

o-

S

ou

rc

e

 C

ur

re

nt

 (

A

)

VGS

TOP          

15V
12V
10V
8.0V
7.0V
6.0V
5.5V

BOTTOM

4.75V

60µs PULSE WIDTH

Tj = 25°C

4.75V

Fig 1. Typical Output Characteristics 

-60 -40 -20 0 20 40 60 80 100120140160180

TJ , Junction Temperature (°C)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

R

D

S

(o

n)

 ,

 D

ra

in

-t

o-

S

ou

rc

O

R

es

is

ta

nc

   

   

   

   

   

   

   

 (

N

or

m

al

iz

ed

)

ID = 70A

VGS = 10V

Fig 4. 

Normalized On-Resistance vs. Temperature

 

 

0

30

60

90

120 150 180 210 240

 QG,  Total Gate Charge (nC)

0.0

2.0

4.0

6.0

8.0

10.0

12.0

14.0

V

G

S

, G

at

e-

to

-S

ou

rc

V

o

lta

g

(V

)

VDS= 240V
VDS= 150V
VDS= 60V

ID= 42A

Fig 6.  Typical Gate Charge vs. Gate-to-Source Voltage

 

 

1

10

100

1000

VDS, Drain-to-Source Voltage (V)

100

1000

10000

100000

C

, C

ap

a

ci

ta

nc

(p

F

)

VGS   = 0V,       f = 1 MHZ

Ciss   = Cgs + Cgd,  Cds SHORTED
Crss   = Cgd 
Coss  = Cds + Cgd

Coss

Crss

Ciss

Fig 5.  Typical Capacitance vs. Drain-to-Source Voltage

 

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/Infineon-IRFP4868-DS-v01_02-EN-html.html
background image

 

IRFP4868PbF 

 

2017-06-21 

-60 -40 -20 0 20 40 60 80 100120140160180

TJ , Temperature ( °C )

280

290

300

310

320

330

340

350

360

370

V

(B

R

)D

S

S

,  

D

ra

in

-t

o-

S

ou

rc

B

re

ak

d

ow

V

ol

ta

ge

 (

V

)

Id = 5mA

1

10

100

1000

VDS, Drain-to-Source Voltage (V)

0.1

1

10

100

1000

I D

,  

D

ra

in

-t

o-

S

ou

rc

C

ur

re

nt

 (

A

)

Tc = 25°C
Tj = 175°C
Single Pulse

10msec

1msec

OPERATION IN THIS AREA 
LIMITED BY RDS(on)

100µsec

DC

Fig 8.  Maximum Safe Operating Area  

25

50

75

100

125

150

175

 TC , Case Temperature (°C)

0

10

20

30

40

50

60

70

I D

,  

 D

ra

in

 C

ur

re

nt

 (

A

)

-50

0

50

100 150 200 250 300 350

VDS, Drain-to-Source Voltage (V)

0.0

5.0

10.0

15.0

20.0

E

ne

rg

J)

Fig 9.  Maximum Drain Current vs. Case Temperature 

25

50

75

100

125

150

175

Starting TJ , Junction Temperature (°C)

0

1000

2000

3000

4000

5000

E

A

S

 ,

 S

in

gl

P

ul

se

 A

va

la

n

ch

E

n

er

gy

 (

m

J)

ID

TOP         11A

20A

BOTTOM 42A

Fig 10.  Drain-to-Source Breakdown Voltage 

0.0

0.5

1.0

1.5

VSD, Source-to-Drain Voltage (V)

0.1

1

10

100

1000

I S

D

, R

ev

er

se

 D

ra

in

 C

ur

re

nt

 (

A

)

TJ = 25°C

TJ = 175°C

VGS = 0V

Fig 7. Typical Source-to-Drain Diode 

 Forward Voltage 

Fig 12.  Maximum Avalanche Energy vs. Drain Current 

Fig 11.  Typical Coss Stored Energy 

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/Infineon-IRFP4868-DS-v01_02-EN-html.html
background image

 

IRFP4868PbF 

 

2017-06-21 

1E-006

1E-005

0.0001

0.001

0.01

0.1

1

t1 , Rectangular Pulse Duration (sec)

0.0001

0.001

0.01

0.1

1

T

he

rma

l R

es

po

ns

Z

 th

JC

 )

 °

C

/W

0.20

0.10

D = 0.50

0.02

0.01

0.05

SINGLE PULSE

( THERMAL RESPONSE )

Notes:

1. Duty Factor D = t1/t2

2. Peak Tj = P dm x Zthjc + Tc

1.0E-06

1.0E-05

1.0E-04

1.0E-03

1.0E-02

1.0E-01

tav (sec)

0.1

1

10

100

1000

A

va

la

nc

he

 C

ur

re

nt

 (

A

)

0.05

Duty Cycle = Single Pulse

0.10

Allowed avalanche Current vs avalanche 
pulsewidth, tav, assuming  j = 25°C and 

Tstart = 150°C.

0.01

Allowed avalanche Current vs avalanche 
pulsewidth, tav, assuming Tj = 150°C and 

Tstart =25°C (Single Pulse)

Fig 13.  Maximum Effective Transient Thermal Impedance, Junction-to-Case  

Fig 14.  Typical Avalanche Current vs. Pulsewidth  

Notes on Repetitive Avalanche Curves , Figures 14, 15: 
(For further info, see AN-1005 at www.irf.com)
 
1. Avalanche failures assumption:  
  Purely a thermal phenomenon and failure occurs at a temperature 
  far in excess of Tjmax. This is validated for every part type. 
2. Safe operation in Avalanche is allowed as long as Tjmax is not 
 exceeded. 
3. Equation below based on circuit and waveforms shown in Figures 
 16a, 

16b. 

4. P

D (ave)

 = Average power dissipation per single avalanche pulse. 

5. BV = Rated breakdown voltage (1.3 factor accounts for voltage 
  increase during avalanche). 
6. I

av

 = Allowable avalanche current. 

7. 

T = Allowable rise in junction temperature, not to exceed Tjmax 

  (assumed as 25°C in Figure 14, 15).  
  t

av

 = Average time in avalanche. 

  D = Duty cycle in avalanche =  tav ·f 
  Z

thJC

(D, t

av

) = Transient thermal resistance, see Figures 13) 

 

P

D (ave)

 = 1/2 ( 1.3·BV·I

av

) = 

T/ Z

thJC

 

I

av

 = 2

T/ [1.3·BV·Z

th

E

AS (AR)

 = P

D (ave)

·t

av

  

25

50

75

100

125

150

175

Starting TJ , Junction Temperature (°C)

0

200

400

600

800

1000

1200

E

A

R

 ,

 A

va

la

nc

he

 E

ne

rg

(m

J)

TOP          Single Pulse                
BOTTOM   1.0% Duty Cycle
ID = 42A

Fig 15.  Maximum Avalanche Energy vs. Temperature 

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/Infineon-IRFP4868-DS-v01_02-EN-html.html
background image

 

IRFP4868PbF 

 

2017-06-21 

0

200

400

600

800

1000

diF /dt (A/µs)

10

20

30

40

50

60

70

I R

R

M

 (

A

)

IF = 28A
VR = 255V
TJ = 25°C
TJ = 125°C

0

200

400

600

800

1000

diF /dt (A/µs)

2000

3000

4000

5000

6000

Q

R

R

 (

nC

)

IF = 28A
VR = 255V
TJ = 25°C
TJ = 125°C

Fig. 17  Typical Recovery Current vs. di

f

/dt 

0

200

400

600

800

1000

diF /dt (A/µs)

2000

3000

4000

5000

6000

7000

8000

Q

R

R

 (

nC

)

IF = 42A
VR = 255V
TJ = 25°C
TJ = 125°C

Fig 18.  Typical Recovery Current vs. di

f

/dt 

Fig 19.  Typical Stored Charge vs. di

f

/dt 

-75 -50 -25 0

25 50 75 100 125 150 175

TJ , Temperature ( °C )

0.0

1.0

2.0

3.0

4.0

5.0

6.0

V

G

S

(t

h

),

 G

at

e

 th

re

sh

ol

V

ol

ta

ge

 (

V

)

ID = 250µA
ID = 1.0mA
ID = 1.0A

0

200

400

600

800

1000

diF /dt (A/µs)

10

20

30

40

50

60

70

80

90

I R

R

M

 (

A

)

IF = 42A
VR = 255V
TJ = 25°C
TJ = 125°C

Fig. 16 Threshold Voltage vs. Temperature 

Fig 20.  Typical Stored Charge vs. di

f

/dt 

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/Infineon-IRFP4868-DS-v01_02-EN-html.html
background image

 

IRFP4868PbF 

 

2017-06-21 

Fig 21. Peak Diode Recovery dv/dt Test Circuit for N-Channel HEXFET® Power MOSFETs 

Fig 22b.  Unclamped Inductive Waveforms 

Fig 22a.  Unclamped Inductive Test Circuit 

Fig 23a.  Switching Time Test Circuit 

Fig 23b.  Switching Time Waveforms 

Fig 24a.  Gate Charge Test Circuit 

Fig 24b.   Gate Charge Waveform 

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/Infineon-IRFP4868-DS-v01_02-EN-html.html
background image

 

IRFP4868PbF 

 

2017-06-21 

TO-247AC Package Outline 

 

Dimensions are shown in millimeters (inches)

 

YEAR 1 = 2001

DATE CODE

PART NUMBER

INTERNATIONAL

LOGO

RECTIFIER

ASSEMBLY

56           57

IRFPE30

 135H

LINE H

indicates "Lead-Free"

WEEK 35

LOT CODE

IN THE ASSEMBLY LINE "H"

ASSEMBLED ON WW 35, 2001

Notes: This part marking information applies to devices produced after 02/26/2001

Note: "P" in assembly line position

EXAMPLE:

WITH ASSEMBLY 

THIS IS AN IRFPE30 

LOT CODE 5657

TO-247AC Part Marking Information 

Note: For the most current drawing please refer to website at http://www.irf.com/package/ 

TO-247 package is not recommended for Surface Mount Application. 

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/Infineon-IRFP4868-DS-v01_02-EN-html.html
background image

 

IRFP4868PbF 

 

2017-06-21 

Qualification information

 

Qualification level 

Industrial

 

(per JEDEC JESD47F)

 

Moisture Sensitivity Level 

TO-247AC 

N/A 

 

RoHS compliant 

Yes 

 

 

†    Applicable version of JEDEC standard at the time of product release. 

Published by 
Infineon Technologies AG 
81726 München, Germany 

© 

Infineon Technologies AG 2015 

All Rights Reserved. 
 

IMPORTANT NOTICE 

The information given in this document shall in no event be regarded as a guarantee of conditions or characteristics 
(“Beschaffenheitsgarantie”). With respect to any examples, hints or any typical values stated herein and/or any 
information regarding the application of the product, Infineon Technologies hereby disclaims any and all warranties and 
liabilities of any kind, including without limitation warranties of non-infringement of intellectual property rights of any third 
party.  
In addition, any information given in this document is subject to customer’s compliance with its obligations stated in this 
document and any applicable legal requirements, norms and standards concerning customer’s products and any use of 
the product of Infineon Technologies in customer’s applications.  
 
The data contained in this document is exclusively intended for technically trained staff. It is the responsibility of 
customer’s technical departments to evaluate the suitability of the product for the intended application and the 
completeness of the product information given in this document with respect to such application.   
For further information on the product, technology, delivery terms and conditions and prices please contact your nearest 
Infineon Technologies office (

www.infineon.com

). 

WARNINGS 
Due to technical requirements products may contain dangerous substances. For information on the types in question 
please contact your nearest Infineon Technologies office. 
Except as otherwise explicitly approved by Infineon Technologies in a written document signed by authorized 
representatives of Infineon Technologies, Infineon Technologies’ products may not be used in any applications where a 
failure of the product or any consequences of the use thereof can reasonably be expected to result in personal injury.  

Revision History  

Date Comments 

06/21/2017 



Changed datasheet with Infineon logo-all pages 



Corrected Package outline on page 8. 



Added disclaimer on last page. 

Maker
Infineon Technologies