IRFI7536GPbF Product Datasheet

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/Infineon-IRFI7536G-DS-v01_02-EN-html.html
background image

 

IRFI7536GPbF 

V

DSS 

60V 

R

DS(on)

   typ.  

2.7m



I

D  

86A 

R

DS(on)

   max.  

3.4m



 

2017-04-27 

 

Absolute Maximum Ratings 

Symbol Parameter 

Max. 

Units 

I

D

 @ T

C

 = 25°C 

Continuous Drain Current, V

GS

 @ 10V  

86 

I

D

 @ T

C

 = 100°C 

Continuous Drain Current, V

GS

 @ 10V  

73 

I

DM 

Pulsed Drain Current  820 

P

D

 @T

C

 = 25°C 

Maximum Power Dissipation   

75 

  

Linear Derating Factor 

0.5 

W/°C 

V

GS 

Gate-to-Source Voltage 

± 20

 

T

J  

Operating Junction and 

-55  to + 175 

 

T

STG 

Storage Temperature Range 

  

°C 

  

Soldering Temperature, for 10 seconds (1.6mm from case) 

300 

 

 

Mounting torque, 6-32 or M3 screw 

10 lbf•in (1.1N•m) 

   

G D S 

Gate Drain Source 

Applications 

  High Efficiency Synchronous Rectification in SMPS 

  Uninterruptible Power Supply 

  High Speed Power Switching 

  Hard Switched and High Frequency Circuits 

HEXFET

® 

Power MOSFET 

TO-220 Full-Pak 

Base Part Number 

Package Type  

Standard Pack 

Orderable Part Number 

Form Quantity 

IRFI7536GPbF 

TO-220 Full-Pak 

Tube 

50 IRFI7536GPbF 

Thermal Resistance  

Symbol Parameter 

Typ. 

Max. 

Units 

R

JC

  

Junction-to-Case  ––– 

2.87 

R

JA

  

Junction-to-Ambient (PCB Mount) 

––– 

65 

°C/W   

Benefits 

  Improved  Gate, Avalanche and Dynamic dV/dt Ruggedness 

  Fully Characterized Capacitance and Avalanche SOA 

  Enhanced body diode dV/dt and dI/dt Capability   

 Lead-Free 

Avalanche Characteristics 

E

AS  

Single Pulse Avalanche Energy (Thermally Limited)  738  mJ  

I

AR 

Avalanche Current  

E

AR 

Repetitive Avalanche Energy  mJ 

See Fig. 14, 15, 22a, 22b 

 

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/Infineon-IRFI7536G-DS-v01_02-EN-html.html
background image

 

IRFI7536PbF 

 

2017-04-27 

Notes:

 Repetitive rating;  pulse width limited by max. junction temperature. (See fig. 11) 

  Limited by T

Jmax

, starting  T

J

 = 25°C, L = 0.26mH, R

G

 = 50

, I

AS

 = 75A, V

GS 

=10V. Part not recommended for use above this value. 

  I

SD

 

75A, di/dt 890A/µs, V

DD

 

V

(BR)DSS

, T

J

 

 175°C. 

 Pulse width 

400µs; duty cycle  2%. 

  C

oss eff. 

(TR) is a fixed capacitance that gives the same charging time as C

oss 

while V

DS

 is rising from 0 to 80% V

DSS

  C

oss eff. 

(ER) is a fixed capacitance that gives the same energy as C

oss

 while V

DS 

is rising from 0 to 80% V

DSS



R

 is measured at T

J

 approximately 90°C. 



R

JC

 value shown is at time zero. 

Electrical Characteristics @ T

= 25°C (unless otherwise specified) 

  

Parameter Min. 

Typ. 

Max. 

Units 

Conditions 

V

(BR)DSS 

Drain-to-Source Breakdown Voltage 

60 

––– 

––– 

V

GS

 = 0V, I

D

 = 250µA 

V

(BR)DSS

/

T

J  

Breakdown Voltage Temp. Coefficient 

––– 

29 

–––  mV/°C  Reference to 25°C, I

D

 = 1mA  

R

DS(on) 

  

Static Drain-to-Source On-Resistance   

––– 

2.7 

3.4 

m

 V

GS

 = 10V, I

D

 = 75A  

V

GS(th) 

Gate Threshold Voltage 

2.0 

––– 

4.0 

V

DS

 = V

GS

, I

D

 = 150µA 

R

G

 Internal 

Gate 

Resistance 

––– 

0.79 

––– 

 

 

I

DSS 

  

Drain-to-Source Leakage Current   

––– –––  20 

µA 

V

DS

 = 60 V, V

GS

 = 0V 

––– ––– 250 

V

DS

 = 60V,V

GS

 = 0V,T

J

 =125°C 

I

GSS 

  

Gate-to-Source Forward Leakage 

––– 

––– 

100 

nA 

V

GS

 = 20V 

Gate-to-Source Reverse Leakage 

––– 

–––  -100 

V

GS

 = -20V 

gfs 

Forward Trans conductance 

88 

––– 

––– 

V

DS

 = 25V, I

D

 = 75A 

Source-Drain Ratings and Characteristics 

  

        Parameter 

Min.  Typ.  Max.  Units 

Conditions 

I

  

Continuous Source Current  

––– –––  86 

MOSFET symbol 

(Body Diode) 

showing  the 

I

SM 

  

Pulsed Source Current 

––– ––– 820 

integral reverse 

(Body Diode)

p-n junction diode. 

V

SD 

Diode Forward Voltage 

––– 

––– 

1.3 

V  T

J

 = 25°C,I

= 75A,V

GS

 = 0V 

dv/dt 

Peak Diode Recovery dv/dt 

––– 

3.3 

–––  V/ns  T

J

 = 25°C, I

= 75A, V

DS

 = 60V  

t

rr   

Reverse Recovery Time   

––– 43 ––– 

ns   

T

J

 = 25°C  

 53 

––– 

T

J

 = 125°C  

Q

rr   

Reverse Recovery Charge   

––– 58 ––– 

nC   

 T

J

 = 25°C 

––– 65 ––– 

T

J

 = 125°C 

I

RRM 

Reverse Recovery Current 

––– 

2.4 

––– 

T

J

 = 25°C  

Dynamic @ T

= 25°C (unless otherwise specified) 

Q

Total Gate Charge  

––– 

130  195 

nC  

I

D

 = 75A 

Q

gs 

Gate-to-Source Charge 

––– 

31 

––– 

V

DS

 = 30V 

Q

gd 

Gate-to-Drain Charge 

––– 

42 

––– 

V

GS

 = 10V  

Q

sync 

Total Gate Charge Sync. (Qg - Qgd) 

––– 

88 

––– 

 

t

d(on) 

Turn-On Delay Time 

––– 

22 

––– 

ns 

V

DD

 = 39V 

t

Rise Time 

––– 

77 

––– 

I

D

 = 75A 

t

d(off) 

Turn-Off Delay Time 

––– 

55 

––– 

R

G

= 2.7



t

Fall Time 

––– 

64 

––– 

V

GS

 = 10V  

C

iss 

Input Capacitance 

–––  6600  ––– 

pF  

V

GS

 = 0V 

C

oss 

Output Capacitance 

––– 

720  ––– 

V

DS

 = 48V 

C

rss 

Reverse Transfer Capacitance 

––– 

400  ––– 

ƒ = 1.0MHz, See Fig. 5 

C

oss eff. (ER) 

Effective Output Capacitance (Energy Related)   –––  1080  ––– 

V

GS

=0V,V

DS

= 0V to 48V See Fig.11 

C

oss eff. (TR) 

Effective Output Capacitance (Time Related) 

–––  1400  ––– 

V

GS

 = 0V, V

DS

 = 0V to 48V  

V

R

 = 51V 

I

F

=75A 

di/dt= 100A/µs  

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/Infineon-IRFI7536G-DS-v01_02-EN-html.html
background image

 

IRFI7536PbF 

 

2017-04-27 

Fig. 3 

Typical Transfer Characteristics

 

 

Fig. 4 Normalized On-Resistance vs. Temperature 

Fig. 1 Typical Output Characteristics 

0.01

0.1

1

10

100

VDS, Drain-to-Source Voltage (V)

1

10

100

1000

I D

, D

ra

in

-t

o

-S

ou

rc

e

 C

u

rr

en

(A

)

VGS

TOP           15V

12V

10V

6.0V

5.0V

4.75V

4.50V

BOTTOM

4.25V

60µs PULSE WIDTH

Tj = 25°C

4.25V

0.01

0.1

1

10

100

VDS, Drain-to-Source Voltage (V)

1

10

100

1000

I D

, D

ra

in

-t

o-

S

ou

rc

C

u

rr

en

t (

A

)

4.25V

60µs PULSE WIDTH

Tj = 175°C

VGS

TOP           15V

12V

10V

6.0V

5.0V

4.75V

4.50V

BOTTOM

4.25V

Fig. 2 Typical Output Characteristics 

2

3

4

5

6

7

VGS, Gate-to-Source Voltage (V)

1.0

10

100

1000

I D

, D

ra

in

-t

o-

S

ou

rc

C

ur

re

nt

 

(A

)

TJ = 25°C

TJ = 175°C

VDS = 25V

60µs PULSE WIDTH

Fig 5.  Typical Capacitance vs. Drain-to-Source Voltage

 

Fig 6.  Typical Gate Charge vs. Gate-to-Source Voltage

 

 

-60 -40 -20 0 20 40 60 80 100120140160180

TJ , Junction Temperature (°C)

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

2.2

R

D

S

(o

n)

 ,

 D

ra

in

-t

o-

S

ou

rc

O

R

es

is

ta

nc

   

   

   

   

   

   

   

 (

N

or

m

al

iz

ed

)

ID = 75A

VGS = 10V

1

10

100

VDS, Drain-to-Source Voltage (V)

100

1000

10000

100000

C

, C

ap

ac

ita

nc

(p

F

)

VGS   = 0V,       f = 1 MHZ

Ciss    = Cgs + Cgd,  C ds SHORTED
Crss    = Cgd 
Coss   = Cds + Cgd

Coss

Crss

Ciss

0

20

40

60

80 100 120 140 160 180

 QG,  Total Gate Charge (nC)

0.0

2.0

4.0

6.0

8.0

10.0

12.0

14.0

V

G

S

, G

at

e-

to

-S

ou

rc

V

ol

ta

ge

 (

V

)

VDS= 48V

VDS= 30V

VDS= 12V

ID= 75A

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/Infineon-IRFI7536G-DS-v01_02-EN-html.html
background image

 

IRFI7536PbF 

 

2017-04-27 

 

Fig 8.  Maximum Safe Operating Area  

Fig. 7. Typical Source-to-Drain Diode Forward Voltage 

0.0

0.5

1.0

1.5

2.0

2.5

3.0

VSD, Source-to-Drain Voltage (V)

1.0

10

100

1000

I S

D

, R

ev

er

se

 D

ra

in

 C

ur

re

nt

 (

A

)

TJ = 25°C

TJ = 175°C

VGS = 0V

0.1

1

10

100

VDS, Drain-to-Source Voltage (V)

0.1

1

10

100

1000

10000

I D

,  

D

ra

in

-t

o-

S

ou

rc

C

ur

re

nt

 (

A

)

Tc = 25°C

Tj = 175°C

Single Pulse

1msec

10msec

OPERATION IN THIS AREA 

LIMITED BY RDS(on)

100µsec

DC

Fig 10.  Drain-to-Source Breakdown Voltage 

Fig 12.  Maximum Avalanche Energy vs. Drain Current 

Fig. 11. Typical C

OSS

 Stored Energy 

25

50

75

100

125

150

175

 TC , Case Temperature (°C)

0

20

40

60

80

100

I D

,   

D

ra

in

 C

ur

re

nt

 (

A

)

Fig. 9.  Maximum Drain Current vs. Case Temperature 

0

10

20

30

40

50

60

70

VDS, Drain-to-Source Voltage (V)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

E

ne

rg

J)

-60 -40 -20 0 20 40 60 80 100 120140160 180

TJ , Temperature ( °C )

60

62

64

66

68

70

72

V

(B

R

)D

S

S

,  D

ra

in

-t

o-

S

ou

rc

B

re

ak

do

w

V

ol

ta

ge

 (

V

)

ID = 1.0mA

25

50

75

100

125

150

175

Starting TJ , Junction Temperature (°C)

0

500

1000

1500

2000

2500

3000

E

A

S

 , 

S

in

gl

P

ul

se

 A

va

la

nc

he

 E

ne

rg

(m

J)

ID

TOP         8.6A

12A

BOTTOM 75A

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/Infineon-IRFI7536G-DS-v01_02-EN-html.html
background image

 

IRFI7536PbF 

 

2017-04-27 

Fig 13.  Maximum Effective Transient Thermal Impedance, Junction-to-Case  

Fig 15.

 Maximum Avalanche Energy vs. Temperature 

Fig 14.  Single Avalanche Event: Pulse Current vs. Pulse Width 

 

Notes on Repetitive Avalanche Curves , Figures 14, 15: 
(For further info, see AN-1005 at www.infineon.com) 
1.Avalanche failures assumption:  
   Purely a thermal phenomenon and failure occurs at a  
   temperature far in excess of T

jmax

. This is validated for every part type. 

2. Safe operation in Avalanche is allowed as long asT

jmax

 is not exceeded. 

3. Equation below based on circuit and waveforms shown in Figures 16a, 16b. 
4. P

D (ave) 

= Average power dissipation per single avalanche pulse. 

5. BV = Rated breakdown voltage (1.3 factor accounts for voltage increase 
    during avalanche). 
6. I

av

 = Allowable avalanche current. 

7. 

T = Allowable rise in junction temperature, not to exceed T

jmax  

    (assumed as 25°C in Figure 14, 15).  
    t

av

 = Average time in avalanche. 

    D = Duty cycle in avalanche =  tav ·f 
    Z

thJC

(D, t

av

) = Transient thermal resistance, see Figures 13) 

 

 

P

D (ave) 

= 1/2 ( 1.3·BV·I

av

) = 

T/ Z

thJC

 

 

 

I

av

 = 2

T/ [1.3·BV·Z

th

 

 

E

AS (AR) 

= P

D (ave)·

t

av

  

1E-006

1E-005

0.0001

0.001

0.01

0.1

1

10

100

t1 , Rectangular Pulse Duration (sec)

0.0001

0.001

0.01

0.1

1

10

T

he

rm

al

 R

es

po

ns

Z

 th

JC

 )

 °

C

/W

0.20
0.10

D = 0.50

0.02

0.01

0.05

SINGLE PULSE

( THERMAL RESPONSE )

Notes:

1. Duty Factor D = t1/t2

2. Peak Tj = P dm x Zthjc + Tc

1.0E-06

1.0E-05

1.0E-04

1.0E-03

1.0E-02

1.0E-01

1.0E+00

tav (sec)

0.1

1

10

100

1000

A

va

la

nc

he

 C

ur

re

nt

 (

A

)

Allowed avalanche Current vs avalanche 
pulsewidth, tav, assuming j = 25°C and 

Tstart = 150°C.

Allowed avalanche Current vs avalanche 
pulsewidth, tav, assuming Tj = 150°C and 

Tstart =25°C (Single Pulse)

25

50

75

100

125

150

175

Starting TJ , Junction Temperature (°C)

0

100

200

300

400

500

600

700

800

E

A

R

 , 

A

va

la

nc

he

 E

ne

rg

(m

J)

TOP          Single Pulse                
BOTTOM   1.0% Duty Cycle
ID = 75A

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/Infineon-IRFI7536G-DS-v01_02-EN-html.html
background image

 

IRFI7536PbF 

 

2017-04-27 

Fig 20.  Typical Stored Charge vs. dif/dt 

Fig 19.  Typical Stored Charge vs. dif/dt 

Fig 18.  Typical Recovery Current vs. dif/dt 

Fig 17.  Typical Recovery Current vs. dif/dt 

Fig 16.  Threshold Voltage vs. Temperature 

-75

-25

25

75

125

175

TJ , Temperature ( °C )

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

V

G

S

(t

h)

,  G

at

th

re

sh

ol

V

ol

ta

ge

 (

V

)

ID = 150µA

ID = 1.0mA

ID = 1.0A

0

200

400

600

800

1000

diF /dt (A/µs)

2

4

6

8

10

12

14

16

I R

R

M

 (

A

)

IF = 30A
VR = 51V
TJ = 25°C
TJ = 125°C

0

200

400

600

800

1000

diF /dt (A/µs)

2

4

6

8

10

12

14

16

I R

R

M

 (

A

)

IF = 45A
VR = 51V
TJ = 25°C
TJ = 125°C

0

200

400

600

800

1000

diF /dt (A/µs)

0

100

200

300

400

500

Q

R

R

 (

nC

)

IF = 30A
VR = 51V
TJ = 25°C
TJ = 125°C

0

200

400

600

800

1000

diF /dt (A/µs)

0

100

200

300

400

500

Q

R

R

 (

nC

)

IF = 45A
VR = 51V
TJ = 25°C
TJ = 125°C

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/Infineon-IRFI7536G-DS-v01_02-EN-html.html
background image

 

IRFI7536PbF 

 

2017-04-27 

Fig 21. Peak Diode Recovery dv/dt Test Circuit for N-Channel HEXFET

® 

Power MOSFETs 

Fig 22a.  Unclamped Inductive Test Circuit 

Fig 23a.  Switching Time Test Circuit 

Fig 22b.  Unclamped Inductive Waveforms 

Fig 23b.  Switching Time Waveforms 

Fig 24b.   Gate Charge Waveform 

RG

IAS

0.01

tp

D.U.T

L

VDS

+

- VDD

DRIVER

A

15V

20V

tp

V

(BR)DSS

I

AS

Fig 24a.  Gate Charge Test Circuit 

Vds

Vgs

Id

Vgs(th)

Qgs1 Qgs2

Qgd

Qgodr

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/Infineon-IRFI7536G-DS-v01_02-EN-html.html
background image

 

IRFI7536PbF 

 

2017-04-27 

 

TO-220 Full-Pak Package Outline (Dimensions are shown in millimeters (inches)) 

TO-220 Full-Pak Part Marking Information 

TO-220AB  Full-Pak packages are not recommended for Surface Mount Application. 

Note: For the most current drawing please refer to  website at 

http://www.irf.com/package/

 

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/Infineon-IRFI7536G-DS-v01_02-EN-html.html
background image

 

IRFI7536PbF 

 

2017-04-27 

 

Revision History  

Date Comments 

04/27/2017 



Changed datasheet with Infineon logo - all pages. 



Corrected Package Outline on page 8. 



Corrected Qual level from “TSOP-6” to “TO-220 Full-Pak” on page 9. 



Added disclaimer on last page. 

Qualification Information 

Qualification Level  

Industrial 

 (per JEDEC JESD47F) 

† 

TO-220 Full-Pak 

N/A

  

RoHS Compliant 

Yes 

Moisture Sensitivity Level    

†   Applicable version of JEDEC standard at the time of product release. 

Trademarks of Infineon Technologies AG 

µHVIC™, µIPM™, µPFC™, AU-ConvertIR™, AURIX™, C166™, CanPAK™, CIPOS™, CIPURSE™, CoolDP™, CoolGaN™, COOLiR™, CoolMOS™, CoolSET™, 

CoolSiC™, DAVE™, DI-POL™, DirectFET™, DrBlade™, EasyPIM™, EconoBRIDGE™, EconoDUAL™, EconoPACK™, EconoPIM™, EiceDRIVER™, eupec™, FCOS™, 

GaNpowIR™, HEXFET™, HITFET™, HybridPACK™, iMOTION™, IRAM™, ISOFACE™, IsoPACK™, LEDrivIR™, LITIX™, MIPAQ™, ModSTACK™, my-d™, NovalithIC™, 

OPTIGA™, OptiMOS™, ORIGA™, PowIRaudio™, PowIRStage™, PrimePACK™, PrimeSTACK™, PROFET™, PRO-SIL™, RASIC™, REAL3™, SmartLEWIS™, SOLID 

FLASH™, SPOC™, StrongIRFET™, SupIRBuck™, TEMPFET™, TRENCHSTOP™, TriCore™, UHVIC™, XHP™, XMC™ 

 

Trademarks updated November 2015 

 

Other Trademarks 

All referenced product or service names and trademarks are the property of their respective owners. 

 Edition 2016-04-19 
Published by 
Infineon Technologies AG 
81726 Munich, Germany 
  
© 2016 Infineon Technologies AG. 

All Rights Reserved. 

  
Do you have a question about this 

document? 

Email: 

erratum@infineon.com

 

 

Document reference 
ifx1 

IMPORTANT NOTICE 

The information given in this document shall in no 

event be regarded as a guarantee of conditions or 

characteristics  (“Beschaffenheitsgarantie”) . 

  

With respect to any examples, hints or any typical 

values stated herein and/or any information 

regarding the application of the product, Infineon 

Technologies hereby disclaims any and all 

warranties and liabilities of any kind, including 

without limitation warranties of non-infringement 

of intellectual property rights of any third party. 

  

In addition, any information given in this 

document  is subject to customer’s compliance 

with its obligations stated in this document and 

any applicable legal requirements, norms and 

standards concerning customer’s products and 

any use of the product of Infineon Technologies in 

customer’s applications. 

  

The data contained in this document is exclusively 

intended for technically trained staff. It is the 

responsibility of customer’s technical 

departments to evaluate the suitability of the 

product for the intended application and the 

completeness of the product information given in 

this document with respect to such application. 

  

For further information on the product, technology, 

delivery terms and conditions and prices please 

contact your nearest Infineon Technologies office 

(

www.infineon.com

). 

 

 Please note that this product is not qualified 

according to the AEC Q100 or AEC Q101 documents 

of the Automotive Electronics Council.  

WARNINGS 

 Due to technical requirements products may 

contain dangerous substances. For information on 

the types in question please contact your nearest 

Infineon Technologies office.  

 

Except as otherwise explicitly approved by Infineon 

Technologies in a written document signed by 

authorized representatives of Infineon 

Technologies,  Infineon Technologies’ products 

may  not be used in any applications where a 

failure of the product or any consequences of the 

use thereof can reasonably be expected to result in 

personal injury.  

  

  

  

Maker
Infineon Technologies