IRFHM8337TRPBF Product Datasheet

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/irfhm8337pbf-html.html
background image

 

IRFHM8337TRPbF 

HEXFET

® 

Power MOSFET 

Base part number  

Package Type  

Standard Pack 

Form 

Quantity 

IRFHM8337PbF 

PQFN 3.3mm x 3.3mm 

Tape and Reel 

4000 

IRFHM8337TRPbF 

Orderable Part Number   

V

DSS 

30 

R

DS(on) 

max 

(@ V

GS 

= 10V) 

12.4

(@ V

GS 

= 4.5V) 

17.9 

Qg

 (typical) 

5.4 

nC 

I

D  

(@T

C

 = 25°C) 

18 A 

m



 

PQFN 3.3 x 3.3 mm 

Features 

 

Benefits 

Low Thermal Resistance to PCB (< 5.0°C/W) 

 

Enable better Thermal Dissipation 

Low Profile (<1.05 mm)         

results in Increased Power Density 

Industry-Standard Pinout     



Multi-Vendor Compatibility 

Compatible with Existing Surface Mount Techniques                                              

 

Easier Manufacturing 

RoHS Compliant, Halogen-Free 

 

Environmentally Friendlier 

MSL1,Consumer Qualification 

 

Increased Reliability  

Notes  through  are on page 8 

Absolute Maximum Ratings 

 

 

 

  

Parameter Max. 

Units 

V

GS 

Gate-to-Source Voltage 

 ± 20 

I

D

 @ T

A

 = 25°C 

Continuous Drain Current, V

GS

 @ 10V 

12 

A  

I

D

 @ T

A

= 70°C 

Continuous Drain Current, V

GS

 @ 10V  

9.4 

I

DM 

Pulsed Drain Current  94 

I

D

 @ T

C(Bottom)

 = 25°C 

Continuous Drain Current, V

GS

 @ 10V  

35 

I

D

 @ T

C(Bottom)

 = 100°C 

Continuous Drain Current, V

GS

 @ 10V  

22 

I

D

 @ T

C

 = 25°C 

Continuous Drain Current, V

GS

 @ 10V 

 (Source Bonding Technology Limited) 

18 

P

D

 @T

A

 = 25°C 

Power Dissipation  2.8 

P

D

 @T

C(Bottom)

 = 25°C 

Power Dissipation  25 

  

Linear Derating Factor  0.02 

W/°C 

T

J  

Operating Junction and 

-55  to + 150 

°C 

T

STG 

Storage Temperature Range 

  

Applications  


System/load switch,  



Charge or discharge switch for battery protection 

 

 

2016-2-23 

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/irfhm8337pbf-html.html
background image

 

IRFHM8337TRPbF 

 

2016-2-23 

Static @ T

J

 = 25°C (unless otherwise specified) 

 

 

 

 

 

  

Parameter Min. 

Typ. 

Max. 

Units 

Conditions 

BV

DSS 

Drain-to-Source Breakdown Voltage 

30 

––– 

––– 

V

GS

 = 0V, I

D

 = 250µA 

BV

DSS

/

T

J  

Breakdown Voltage Temp. Coefficient 

––– 

0.02 

––– 

V/°C  Reference to 25°C, I

D

 = 1mA  

R

DS(on) 

  

Static Drain-to-Source On-Resistance   

––– 9.4 12.4 

m

 

V

GS

 = 10V, I

D

 = 12A 

 

 

––– 14.5 17.9 

V

GS

 = 4.5V, I

D

 =9.4A  

V

GS(th) 

Gate Threshold Voltage 

1.35 

1.8 

2.35 

V

DS

 = V

GS

, I

D

 = 25µA   

V

GS(th) 

Gate Threshold Voltage Coefficient 

––– 

-6.2 

–––  mV/°C 

I

DSS  

Drain-to-Source Leakage Current   

––– ––– 1.0 

µA  

V

DS

 = 24V, V

GS

 = 0V 

––– ––– 150 

V

DS

 = 24V, V

GS

 = 0V,T

J

 = 125°C 

I

GSS 

  

Gate-to-Source Forward Leakage ––– 

––– 

100 

µA 

V

GS

 = 20V 

Gate-to-Source Reverse Leakage 

––– 

––– 

 -100 

V

GS

 =-20 V 

gfs Forward 

Transconductance 

17 

––– 

––– 

V

DS

 = 15V, I

D

 = 9.4A 

Q

Total Gate Charge  

––– 

5.4 

8.1 

 

  

Q

gs1 

Pre-Vth Gate-to-Source Charge 

––– 

1.1 

–––   

V

DS

 = 15V 

Q

gs2 

Post-Vth Gate-to-Source Charge 

––– 

0.7 

––– 

nC V

GS

 = 4.5V  

Q

gd 

Gate-to-Drain Charge 

––– 

2.2 

–––   

I

D

 = 9.4A 

Q

godr 

Gate Charge Overdrive 

––– 

1.5 

–––   

  

Q

sw 

Switch Charge (Q

gs2

 + Q

gd

) ––– 

2.9 

––– 

 

  

Q

oss 

Output Charge 

––– 

3.8 

––– 

nC  V

DS

 = 16V, V

GS

 = 0V 

R

Gate Resistance 

––– 

2.0 

––– 

 

  

t

d(on) 

Turn-On Delay Time 

––– 

9.0 

––– 

 

V

DD

 = 15V, V

GS

 = 4.5V 

t

Rise Time 

––– 

11 

––– 

ns I

D

 = 9.4A 

t

d(off) 

Turn-Off Delay Time 

––– 

9.9 

–––   

R

G

= 1.3

 

t

Fall Time 

––– 

5.6 

–––   

  

C

iss 

Input Capacitance 

––– 

755 

––– 

 

V

GS

 = 0V 

C

oss 

Output Capacitance 

––– 

171 

––– 

pF V

DS

 = 15V 

C

rss 

Reverse Transfer Capacitance 

––– 

83 

–––   

ƒ = 1.0MHz 

 

 

 

  

Parameter Typ. 

Max. 

Units 

R

JC

 (Bottom)  Junction-to-Case  ––– 

5.0 

  

R

JC

 (Top) 

Junction-to-Case  ––– 

50 

°C/W 

R

JA

  

Junction-to-Ambient  ––– 

45 

  

R

JA

 (<10s) 

Junction-to-Ambient  ––– 

31 

  

Thermal Resistance  

Diode Characteristics 

 

 

 

 

 

  

        Parameter 

Min. 

Typ. 

Max.  Units 

Conditions 

I

Continuous Source Current  

––– 

––– 

18 MOSFET 

symbol 

  

(Body Diode) 

showing  the 

I

SM 

Pulsed Source Current 

––– 

––– 

94 

integral reverse 

  

(Body Diode)  

p-n junction diode. 

V

SD 

Diode Forward Voltage 

––– 

––– 

1.0 

T

J

 = 25°C, I

S

 = 9.4A, V

GS

 = 0V 

t

rr 

Reverse Recovery Time 

––– 

20 

30 

ns 

T

J

 = 25°C, I

F

 = 9.4A, V

DD

 = 15V 

Q

rr 

Reverse Recovery Charge 

––– 

27 

41 

nC  di/dt = 200A/µs   

A  

Avalanche Characteristics 

 

 

 

  

Parameter Typ. 

Max. 

Units 

E

AS 

Single Pulse Avalanche Energy  ––– 

13 mJ 

D

S

G

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/irfhm8337pbf-html.html
background image

 

IRFHM8337TRPbF 

 

2016-2-23 

Fig 1.  Typical Output Characteristics 

Fig 4.  Normalized On-Resistance vs. Temperature 

Fig 5.  Typical Capacitance vs. Drain-to-Source Voltage 

Fig 6.  Typical Gate Charge vs. Gate-to-Source Voltage 

Fig 3.  Typical Transfer Characteristics 

Fig 2.  Typical Output Characteristics 

0.1

1

10

100

VDS, Drain-to-Source Voltage (V)

0.1

1

10

100

1000

I D

D

ra

in

-t

o

-S

ou

rc

C

u

rr

en

(A

)

VGS

TOP           10V

5.0V

4.5V

3.5V

3.3V

3.0V

2.9V

BOTTOM

2.7V

60µs PULSE WIDTH

 Tj = 25°C

2.7V

0.1

1

10

100

VDS, Drain-to-Source Voltage (V)

1

10

100

1000

I D

, D

ra

in

-t

o-

S

o

ur

ce

 C

u

rr

en

(A

)

2.7V

60µs PULSE WIDTH

Tj = 150°C

VGS

TOP           10V

5.0V

4.5V

3.5V

3.3V

3.0V

2.9V

BOTTOM

2.7V

1

2

3

4

5

6

VGS, Gate-to-Source Voltage (V)

0.1

1

10

100

I D

, D

ra

in

-t

o-

S

ou

rc

C

ur

re

nt

 

(A

)

TJ = 25°C

TJ = 150°C

VDS = 15V

60µs PULSE WIDTH

-60 -40 -20 0 20 40 60 80 100 120 140 160

TJ , Junction Temperature (°C)

0.6

0.8

1.0

1.2

1.4

1.6

1.8

R

D

S

(o

n)

 ,

 D

ra

in

-t

o-

S

ou

rc

O

R

es

is

ta

nc

   

   

   

   

   

   

   

 (

N

or

m

al

iz

ed

)

ID = 12A

VGS = 10V

1

10

100

VDS, Drain-to-Source Voltage (V)

10

100

1000

10000

C

, C

ap

ac

ita

nc

(p

F

)

VGS   = 0V,       f = 1 MHZ

Ciss    = Cgs + Cgd,  C ds SHORTED
Crss    = Cgd 
Coss   = Cds + Cgd

Coss

Crss

Ciss

0

2

4

6

8

10

12

14

16

 QG,  Total Gate Charge (nC)

0.0

2.0

4.0

6.0

8.0

10.0

12.0

14.0

V

G

S

, G

at

e-

to

-S

ou

rc

V

ol

ta

ge

 (

V

)

VDS= 24V

VDS= 15V

ID= 9.4A

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/irfhm8337pbf-html.html
background image

 

IRFHM8337TRPbF 

 

2016-2-23 

Fig 8.  Maximum Safe Operating Area  

Fig 7.  Typical Source-Drain Diode Forward Voltage 

25

50

75

100

125

150

 TA , Ambient Temperature (°C)

0

2

4

6

8

10

12

I D

,   

D

ra

in

 C

ur

re

nt

 (

A

)

Fig 9.  Maximum Drain Current vs. Ambient Temperature 

1E-006

1E-005

0.0001

0.001

0.01

0.1

1

10

100

1000

t1 , Rectangular Pulse Duration (sec)

0.01

0.1

1

10

100

T

he

rma

l R

es

po

ns

Z

 th

JA

 )

 °

C

/W

0.20

0.10

D = 0.50

0.02
0.01

0.05

SINGLE PULSE

( THERMAL RESPONSE )

Notes:

1. Duty Factor D = t1/t2

2. Peak Tj = P dm x Zthja + TA

-75 -50 -25

0

25

50

75 100 125 150

TJ , Temperature ( °C )

0.5

1.0

1.5

2.0

2.5

V

G

S

(t

h)

, G

at

T

hr

es

ho

ld

 V

ol

ta

ge

 (

V

)

ID = 25µA

Fig 10.  

Threshold Voltage Vs. Temperature 

Fig 11.  Maximum Effective Transient Thermal Impedance, Junction-to-Case  

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

VSD, Source-to-Drain Voltage (V)

0.1

1

10

100

1000

I S

D

, R

ev

er

se

 D

ra

in

 C

ur

re

nt

 (

A

)

TJ = 25°C

TJ = 150°C

VGS = 0V

0

1

10

100

VDS, Drain-to-Source Voltage (V)

0.1

1

10

100

1000

I D

,  

D

ra

in

-t

o-

S

ou

rc

C

ur

re

nt

 (

A

)

OPERATION IN THIS AREA 

LIMITED BY R DS(on)

TA = 25°C

Tj = 150°C

Single Pulse

100µsec

1msec

10msec

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/irfhm8337pbf-html.html
background image

 

IRFHM8337TRPbF 

 

2016-2-23 

25

50

75

100

125

150

Starting TJ , Junction Temperature (°C)

0

10

20

30

40

50

60

E

A

S

 , 

S

in

gl

P

ul

se

 A

va

la

nc

he

 E

ne

rg

(m

J)

ID

TOP          2.95A
  

3.63A

BOTTOM  9.40A

Fig 13.  Maximum Avalanche Energy vs. Drain Current 

Fig 14. Single avalanche event: pulse current vs. pulse width  

2

4

6

8

10

12

14

16

18

20

VGS, Gate -to -Source Voltage  (V)

5

10

15

20

25

30

35

R

D

S

(o

n)

,  

D

ra

in

-t

-S

ou

rc

e

 O

n

 R

es

is

ta

nc

(m

)

ID = 12A

TJ = 25°C

TJ = 125°C

Fig 12.  On– Resistance vs. Gate Voltage 

1.0E-05

1.0E-04

1.0E-03

1.0E-02

1.0E-01

tav (sec)

0.01

0.1

1

10

100

A

va

la

nc

he

 C

ur

re

nt

 (

A

)

Allowed avalanche Current vs avalanche 
pulsewidth, tav, assuming 

 j = 25°C and 

Tstart = 125°C.

Allowed avalanche Current vs avalanche 
pulsewidth, tav, assuming 

Tj = 125°C and 

Tstart =25°C (Single Pulse)

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/irfhm8337pbf-html.html
background image

 

IRFHM8337TRPbF 

 

2016-2-23 

Fig 15. Peak Diode Recovery dv/dt Test Circuit for N-Channel HEXFET

® 

Power MOSFETs 

Fig 18.  Gate Charge Test Circuit 

Vds

Vgs

Id

Vgs(th)

Qgs1 Qgs2

Qgd

Qgodr

Fig 19.   Gate Charge Waveform 

Fig 17a.  Switching Time Test Circuit 

Fig 17b.  Switching Time Waveforms 

Fig 16a.  Unclamped Inductive Test Circuit 

R G

I

AS

0.01

tp

D.U.T

L

VDS

+

- VDD

DRIVER

A

15V

20V

tp

V

(BR)DSS

I

AS

Fig 16b.  Unclamped Inductive Waveforms 

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/irfhm8337pbf-html.html
background image

 

IRFHM8337TRPbF 

 

2016-2-23 

Placement and Layout Guidelines 

The typical application topology for this product is the synchronous buck converter. These converters operate at high 
frequencies (typically around 400 kHz). During turn-on and turn-off switching cycles, the high di/dt currents circulating in 
the parasitic elements of the circuit induce high voltage ringing which may exceed the device rating and lead to undesir-
able effects. One of the major contributors to the increase in parasitics is the PCB power circuit inductance.  
 
This section introduces a simple guideline that mitigates the effect of these parasitics on the performance of the circuit 
and provides reliable operation of the devices. 
 
To reduce high frequency switching noise and the effects of Electromagnetic Interference (EMI) when the control 
MOSFET (Q1) is turned on, the layout shown in Figure 19 is recommended. The input bypass capacitors, control 
MOSFET and output capacitors are placed in a tight loop to minimize parasitic inductance which in turn lowers the am-
plitude of the switch node ringing, and minimizes exposure of the MOSFETs to repetitive avalanche conditions.  
 
When the synchronous MOSFET (Q2) is turned on, high average DC current flows through the path indicated in Figure 
19. Therefore, the Q2 turn-on path should be laid out with a tight loop and wide traces at both ends of the inductor to 
minimize loop resistance. 

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/irfhm8337pbf-html.html
background image

 

IRFHM8337TRPbF 

 

2016-2-23 

For more information on board mounting, including footprint and stencil recommendation, please refer to application note 
AN-1136: 

http://www.irf.com/technical-info/appnotes/an-1136.pdf

 

For more information on package inspection techniques, please refer to application note AN-1154: 

http://www.irf.com/technical-info/appnotes/an-1154.pdf 

PQFN 3.3 x 3.3 Outline “C” Package Details 

PQFN 3.3 x 3.3 Outline “G” Package Details 

5

8

7

6

#1

3

2

4

#1

2

3

4

8

7

6

5

5

8

7

6

1

3

2

4

1

2

3

4

8

7

6

5

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/irfhm8337pbf-html.html
background image

 

IRFHM8337TRPbF 

 

2016-2-23 

Note: For the most current drawing please refer to IR website at 

http://www.irf.com/package/

 

PQFN 3.3 x 3.3 Tape and Reel 

Bo

W

P1

Ao

Ko

CODE

TAPE DIMENSIONS

REEL DIMENSIONS

QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE 

Dimension design to accommodate the component width
Dimension design to accommodate the component lenght
Dimension design to accommodate the component thickness

Pitch between successive cavity centers

Overall width of the carrier tape

Bo

W

P1

Ao

Ko

DIMENSION (MM)

CODE

MIN

MAX

DIMENSION (INCH)

MIN

MAX

3.50

3.70

.138

.146

1.10

1.30

7.90

8.10

.043

.051

11.80

12.20

.311

.319

12.30

12.50

.465

.480

.484

.492

3.50

3.70

.138

.146

DESCRIPTION

W1

Qty

4000

Reel Diameter

13   Inches

 

 

 

Note: For the most current drawing please refer to IR website at 

http://www.irf.com/package/

 

PQFN 3.3 x 3.3 Part Marking 

 

XXXX

?YWW?

XXXXX

INTERNATIONAL

RECTIFIER LOGO

PART NUMBER

MARKING CODE

(Per Marking Spec)

ASSEMBLY
SITE CODE

(Per SCOP 200-002)

DATE CODE

LOT CODE

(Eng Mode - Min last 4 digits of EATI#)

(Prod Mode - 4 digits of SPN code)

PIN 1

IDENTIFIER

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/irfhm8337pbf-html.html
background image

 

IRFHM8337TRPbF 

10 

 

2016-2-23 

† 

 Qualification standards can be found at International Rectifier’s web site: 

http://www.irf.com/product-info/reliability/

 

††     Higher qualification ratings may be available should the user have such requirements. 
          Please contact your International Rectifier sales representative for further information:  

           

http://www.irf.com/whoto-call/salesrep/

 

†††    Applicable version of JEDEC standard at the time of product release. 

Qualification Information

† 

 

Qualification Level 

Moisture Sensitivity Level  

PQFN 3.3mm x 3.3mm 

MSL1 

(per JEDEC J-STD-020D

†††

RoHS Compliant 

Yes 

Consumer

†† 

(per JEDEC JESD47F guidelines) 

Notes:

 

Repetitive rating;  pulse width limited by max. junction temperature.

 

Starting T

J

 = 25°C, L = 0.297mH, R

G

 = 50

, I

AS

 = 9.4A.  

 

Pulse width 

 400µs; duty cycle  2%. 

  R

 is measured at TJ of approximately 90°C. 

 

When mounted on 1 inch square  PCB (FR-4). Please refer to AN-994 for more details:  

 

http://www.irf.com/technical-info/appnotes/an-994.pdf

 



Calculated continuous current based on maximum allowable junction temperature.  

  Current limited  to 18A by  source bonding technology. 

  Pulse drain current is limited to 72A by source bonding technology. 

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/irfhm8337pbf-html.html
background image

 

IRFHM8337TRPbF 

HEXFET

® 

Power MOSFET 

Base part number  

Package Type  

Standard Pack 

Form 

Quantity 

IRFHM8337PbF 

PQFN 3.3mm x 3.3mm 

Tape and Reel 

4000 

IRFHM8337TRPbF 

Orderable Part Number   

V

DSS 

30 

R

DS(on) 

max 

(@ V

GS 

= 10V) 

12.4

(@ V

GS 

= 4.5V) 

17.9 

Qg

 (typical) 

5.4 

nC 

I

D  

(@T

C

 = 25°C) 

18 A 

m



 

PQFN 3.3 x 3.3 mm 

Features 

 

Benefits 

Low Thermal Resistance to PCB (< 5.0°C/W) 

 

Enable better Thermal Dissipation 

Low Profile (<1.05 mm)         

results in Increased Power Density 

Industry-Standard Pinout     



Multi-Vendor Compatibility 

Compatible with Existing Surface Mount Techniques                                              

 

Easier Manufacturing 

RoHS Compliant, Halogen-Free 

 

Environmentally Friendlier 

MSL1,Consumer Qualification 

 

Increased Reliability  

Notes  through  are on page 8 

Absolute Maximum Ratings 

 

 

 

  

Parameter Max. 

Units 

V

GS 

Gate-to-Source Voltage 

 ± 20 

I

D

 @ T

A

 = 25°C 

Continuous Drain Current, V

GS

 @ 10V 

12 

A  

I

D

 @ T

A

= 70°C 

Continuous Drain Current, V

GS

 @ 10V  

9.4 

I

DM 

Pulsed Drain Current  94 

I

D

 @ T

C(Bottom)

 = 25°C 

Continuous Drain Current, V

GS

 @ 10V  

35 

I

D

 @ T

C(Bottom)

 = 100°C 

Continuous Drain Current, V

GS

 @ 10V  

22 

I

D

 @ T

C

 = 25°C 

Continuous Drain Current, V

GS

 @ 10V 

 (Source Bonding Technology Limited) 

18 

P

D

 @T

A

 = 25°C 

Power Dissipation  2.8 

P

D

 @T

C(Bottom)

 = 25°C 

Power Dissipation  25 

  

Linear Derating Factor  0.02 

W/°C 

T

J  

Operating Junction and 

-55  to + 150 

°C 

T

STG 

Storage Temperature Range 

  

Applications  


System/load switch,  



Charge or discharge switch for battery protection 

 

 

2016-2-23 

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/irfhm8337pbf-html.html
background image

 

IRFHM8337TRPbF 

 

2016-2-23 

Static @ T

J

 = 25°C (unless otherwise specified) 

 

 

 

 

 

  

Parameter Min. 

Typ. 

Max. 

Units 

Conditions 

BV

DSS 

Drain-to-Source Breakdown Voltage 

30 

––– 

––– 

V

GS

 = 0V, I

D

 = 250µA 

BV

DSS

/

T

J  

Breakdown Voltage Temp. Coefficient 

––– 

0.02 

––– 

V/°C  Reference to 25°C, I

D

 = 1mA  

R

DS(on) 

  

Static Drain-to-Source On-Resistance   

––– 9.4 12.4 

m

 

V

GS

 = 10V, I

D

 = 12A 

 

 

––– 14.5 17.9 

V

GS

 = 4.5V, I

D

 =9.4A  

V

GS(th) 

Gate Threshold Voltage 

1.35 

1.8 

2.35 

V

DS

 = V

GS

, I

D

 = 25µA   

V

GS(th) 

Gate Threshold Voltage Coefficient 

––– 

-6.2 

–––  mV/°C 

I

DSS  

Drain-to-Source Leakage Current   

––– ––– 1.0 

µA  

V

DS

 = 24V, V

GS

 = 0V 

––– ––– 150 

V

DS

 = 24V, V

GS

 = 0V,T

J

 = 125°C 

I

GSS 

  

Gate-to-Source Forward Leakage ––– 

––– 

100 

µA 

V

GS

 = 20V 

Gate-to-Source Reverse Leakage 

––– 

––– 

 -100 

V

GS

 =-20 V 

gfs Forward 

Transconductance 

17 

––– 

––– 

V

DS

 = 15V, I

D

 = 9.4A 

Q

Total Gate Charge  

––– 

5.4 

8.1 

 

  

Q

gs1 

Pre-Vth Gate-to-Source Charge 

––– 

1.1 

–––   

V

DS

 = 15V 

Q

gs2 

Post-Vth Gate-to-Source Charge 

––– 

0.7 

––– 

nC V

GS

 = 4.5V  

Q

gd 

Gate-to-Drain Charge 

––– 

2.2 

–––   

I

D

 = 9.4A 

Q

godr 

Gate Charge Overdrive 

––– 

1.5 

–––   

  

Q

sw 

Switch Charge (Q

gs2

 + Q

gd

) ––– 

2.9 

––– 

 

  

Q

oss 

Output Charge 

––– 

3.8 

––– 

nC  V

DS

 = 16V, V

GS

 = 0V 

R

Gate Resistance 

––– 

2.0 

––– 

 

  

t

d(on) 

Turn-On Delay Time 

––– 

9.0 

––– 

 

V

DD

 = 15V, V

GS

 = 4.5V 

t

Rise Time 

––– 

11 

––– 

ns I

D

 = 9.4A 

t

d(off) 

Turn-Off Delay Time 

––– 

9.9 

–––   

R

G

= 1.3

 

t

Fall Time 

––– 

5.6 

–––   

  

C

iss 

Input Capacitance 

––– 

755 

––– 

 

V

GS

 = 0V 

C

oss 

Output Capacitance 

––– 

171 

––– 

pF V

DS

 = 15V 

C

rss 

Reverse Transfer Capacitance 

––– 

83 

–––   

ƒ = 1.0MHz 

 

 

 

  

Parameter Typ. 

Max. 

Units 

R

JC

 (Bottom)  Junction-to-Case  ––– 

5.0 

  

R

JC

 (Top) 

Junction-to-Case  ––– 

50 

°C/W 

R

JA

  

Junction-to-Ambient  ––– 

45 

  

R

JA

 (<10s) 

Junction-to-Ambient  ––– 

31 

  

Thermal Resistance  

Diode Characteristics 

 

 

 

 

 

  

        Parameter 

Min. 

Typ. 

Max.  Units 

Conditions 

I

Continuous Source Current  

––– 

––– 

18 MOSFET 

symbol 

  

(Body Diode) 

showing  the 

I

SM 

Pulsed Source Current 

––– 

––– 

94 

integral reverse 

  

(Body Diode)  

p-n junction diode. 

V

SD 

Diode Forward Voltage 

––– 

––– 

1.0 

T

J

 = 25°C, I

S

 = 9.4A, V

GS

 = 0V 

t

rr 

Reverse Recovery Time 

––– 

20 

30 

ns 

T

J

 = 25°C, I

F

 = 9.4A, V

DD

 = 15V 

Q

rr 

Reverse Recovery Charge 

––– 

27 

41 

nC  di/dt = 200A/µs   

A  

Avalanche Characteristics 

 

 

 

  

Parameter Typ. 

Max. 

Units 

E

AS 

Single Pulse Avalanche Energy  ––– 

13 mJ 

D

S

G

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/irfhm8337pbf-html.html
background image

 

IRFHM8337TRPbF 

 

2016-2-23 

Fig 1.  Typical Output Characteristics 

Fig 4.  Normalized On-Resistance vs. Temperature 

Fig 5.  Typical Capacitance vs. Drain-to-Source Voltage 

Fig 6.  Typical Gate Charge vs. Gate-to-Source Voltage 

Fig 3.  Typical Transfer Characteristics 

Fig 2.  Typical Output Characteristics 

0.1

1

10

100

VDS, Drain-to-Source Voltage (V)

0.1

1

10

100

1000

I D

D

ra

in

-t

o

-S

ou

rc

C

u

rr

en

(A

)

VGS

TOP           10V

5.0V

4.5V

3.5V

3.3V

3.0V

2.9V

BOTTOM

2.7V

60µs PULSE WIDTH

 Tj = 25°C

2.7V

0.1

1

10

100

VDS, Drain-to-Source Voltage (V)

1

10

100

1000

I D

, D

ra

in

-t

o-

S

o

ur

ce

 C

u

rr

en

(A

)

2.7V

60µs PULSE WIDTH

Tj = 150°C

VGS

TOP           10V

5.0V

4.5V

3.5V

3.3V

3.0V

2.9V

BOTTOM

2.7V

1

2

3

4

5

6

VGS, Gate-to-Source Voltage (V)

0.1

1

10

100

I D

, D

ra

in

-t

o-

S

ou

rc

C

ur

re

nt

 

(A

)

TJ = 25°C

TJ = 150°C

VDS = 15V

60µs PULSE WIDTH

-60 -40 -20 0 20 40 60 80 100 120 140 160

TJ , Junction Temperature (°C)

0.6

0.8

1.0

1.2

1.4

1.6

1.8

R

D

S

(o

n)

 ,

 D

ra

in

-t

o-

S

ou

rc

O

R

es

is

ta

nc

   

   

   

   

   

   

   

 (

N

or

m

al

iz

ed

)

ID = 12A

VGS = 10V

1

10

100

VDS, Drain-to-Source Voltage (V)

10

100

1000

10000

C

, C

ap

ac

ita

nc

(p

F

)

VGS   = 0V,       f = 1 MHZ

Ciss    = Cgs + Cgd,  C ds SHORTED
Crss    = Cgd 
Coss   = Cds + Cgd

Coss

Crss

Ciss

0

2

4

6

8

10

12

14

16

 QG,  Total Gate Charge (nC)

0.0

2.0

4.0

6.0

8.0

10.0

12.0

14.0

V

G

S

, G

at

e-

to

-S

ou

rc

V

ol

ta

ge

 (

V

)

VDS= 24V

VDS= 15V

ID= 9.4A

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/irfhm8337pbf-html.html
background image

 

IRFHM8337TRPbF 

 

2016-2-23 

Fig 8.  Maximum Safe Operating Area  

Fig 7.  Typical Source-Drain Diode Forward Voltage 

25

50

75

100

125

150

 TA , Ambient Temperature (°C)

0

2

4

6

8

10

12

I D

,   

D

ra

in

 C

ur

re

nt

 (

A

)

Fig 9.  Maximum Drain Current vs. Ambient Temperature 

1E-006

1E-005

0.0001

0.001

0.01

0.1

1

10

100

1000

t1 , Rectangular Pulse Duration (sec)

0.01

0.1

1

10

100

T

he

rma

l R

es

po

ns

Z

 th

JA

 )

 °

C

/W

0.20

0.10

D = 0.50

0.02
0.01

0.05

SINGLE PULSE

( THERMAL RESPONSE )

Notes:

1. Duty Factor D = t1/t2

2. Peak Tj = P dm x Zthja + TA

-75 -50 -25

0

25

50

75 100 125 150

TJ , Temperature ( °C )

0.5

1.0

1.5

2.0

2.5

V

G

S

(t

h)

, G

at

T

hr

es

ho

ld

 V

ol

ta

ge

 (

V

)

ID = 25µA

Fig 10.  

Threshold Voltage Vs. Temperature 

Fig 11.  Maximum Effective Transient Thermal Impedance, Junction-to-Case  

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

VSD, Source-to-Drain Voltage (V)

0.1

1

10

100

1000

I S

D

, R

ev

er

se

 D

ra

in

 C

ur

re

nt

 (

A

)

TJ = 25°C

TJ = 150°C

VGS = 0V

0

1

10

100

VDS, Drain-to-Source Voltage (V)

0.1

1

10

100

1000

I D

,  

D

ra

in

-t

o-

S

ou

rc

C

ur

re

nt

 (

A

)

OPERATION IN THIS AREA 

LIMITED BY R DS(on)

TA = 25°C

Tj = 150°C

Single Pulse

100µsec

1msec

10msec

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/irfhm8337pbf-html.html
background image

 

IRFHM8337TRPbF 

 

2016-2-23 

25

50

75

100

125

150

Starting TJ , Junction Temperature (°C)

0

10

20

30

40

50

60

E

A

S

 , 

S

in

gl

P

ul

se

 A

va

la

nc

he

 E

ne

rg

(m

J)

ID

TOP          2.95A
  

3.63A

BOTTOM  9.40A

Fig 13.  Maximum Avalanche Energy vs. Drain Current 

Fig 14. Single avalanche event: pulse current vs. pulse width  

2

4

6

8

10

12

14

16

18

20

VGS, Gate -to -Source Voltage  (V)

5

10

15

20

25

30

35

R

D

S

(o

n)

,  

D

ra

in

-t

-S

ou

rc

e

 O

n

 R

es

is

ta

nc

(m

)

ID = 12A

TJ = 25°C

TJ = 125°C

Fig 12.  On– Resistance vs. Gate Voltage 

1.0E-05

1.0E-04

1.0E-03

1.0E-02

1.0E-01

tav (sec)

0.01

0.1

1

10

100

A

va

la

nc

he

 C

ur

re

nt

 (

A

)

Allowed avalanche Current vs avalanche 
pulsewidth, tav, assuming 

 j = 25°C and 

Tstart = 125°C.

Allowed avalanche Current vs avalanche 
pulsewidth, tav, assuming 

Tj = 125°C and 

Tstart =25°C (Single Pulse)

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/irfhm8337pbf-html.html
background image

 

IRFHM8337TRPbF 

 

2016-2-23 

Fig 15. Peak Diode Recovery dv/dt Test Circuit for N-Channel HEXFET

® 

Power MOSFETs 

Fig 18.  Gate Charge Test Circuit 

Vds

Vgs

Id

Vgs(th)

Qgs1 Qgs2

Qgd

Qgodr

Fig 19.   Gate Charge Waveform 

Fig 17a.  Switching Time Test Circuit 

Fig 17b.  Switching Time Waveforms 

Fig 16a.  Unclamped Inductive Test Circuit 

R G

I

AS

0.01

tp

D.U.T

L

VDS

+

- VDD

DRIVER

A

15V

20V

tp

V

(BR)DSS

I

AS

Fig 16b.  Unclamped Inductive Waveforms 

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/irfhm8337pbf-html.html
background image

 

IRFHM8337TRPbF 

 

2016-2-23 

Placement and Layout Guidelines 

The typical application topology for this product is the synchronous buck converter. These converters operate at high 
frequencies (typically around 400 kHz). During turn-on and turn-off switching cycles, the high di/dt currents circulating in 
the parasitic elements of the circuit induce high voltage ringing which may exceed the device rating and lead to undesir-
able effects. One of the major contributors to the increase in parasitics is the PCB power circuit inductance.  
 
This section introduces a simple guideline that mitigates the effect of these parasitics on the performance of the circuit 
and provides reliable operation of the devices. 
 
To reduce high frequency switching noise and the effects of Electromagnetic Interference (EMI) when the control 
MOSFET (Q1) is turned on, the layout shown in Figure 19 is recommended. The input bypass capacitors, control 
MOSFET and output capacitors are placed in a tight loop to minimize parasitic inductance which in turn lowers the am-
plitude of the switch node ringing, and minimizes exposure of the MOSFETs to repetitive avalanche conditions.  
 
When the synchronous MOSFET (Q2) is turned on, high average DC current flows through the path indicated in Figure 
19. Therefore, the Q2 turn-on path should be laid out with a tight loop and wide traces at both ends of the inductor to 
minimize loop resistance. 

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/irfhm8337pbf-html.html
background image

 

IRFHM8337TRPbF 

 

2016-2-23 

For more information on board mounting, including footprint and stencil recommendation, please refer to application note 
AN-1136: 

http://www.irf.com/technical-info/appnotes/an-1136.pdf

 

For more information on package inspection techniques, please refer to application note AN-1154: 

http://www.irf.com/technical-info/appnotes/an-1154.pdf 

PQFN 3.3 x 3.3 Outline “C” Package Details 

PQFN 3.3 x 3.3 Outline “G” Package Details 

5

8

7

6

#1

3

2

4

#1

2

3

4

8

7

6

5

5

8

7

6

1

3

2

4

1

2

3

4

8

7

6

5

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/irfhm8337pbf-html.html
background image

 

IRFHM8337TRPbF 

 

2016-2-23 

Note: For the most current drawing please refer to IR website at 

http://www.irf.com/package/

 

PQFN 3.3 x 3.3 Tape and Reel 

Bo

W

P1

Ao

Ko

CODE

TAPE DIMENSIONS

REEL DIMENSIONS

QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE 

Dimension design to accommodate the component width
Dimension design to accommodate the component lenght
Dimension design to accommodate the component thickness

Pitch between successive cavity centers

Overall width of the carrier tape

Bo

W

P1

Ao

Ko

DIMENSION (MM)

CODE

MIN

MAX

DIMENSION (INCH)

MIN

MAX

3.50

3.70

.138

.146

1.10

1.30

7.90

8.10

.043

.051

11.80

12.20

.311

.319

12.30

12.50

.465

.480

.484

.492

3.50

3.70

.138

.146

DESCRIPTION

W1

Qty

4000

Reel Diameter

13   Inches

 

 

 

Note: For the most current drawing please refer to IR website at 

http://www.irf.com/package/

 

PQFN 3.3 x 3.3 Part Marking 

 

XXXX

?YWW?

XXXXX

INTERNATIONAL

RECTIFIER LOGO

PART NUMBER

MARKING CODE

(Per Marking Spec)

ASSEMBLY
SITE CODE

(Per SCOP 200-002)

DATE CODE

LOT CODE

(Eng Mode - Min last 4 digits of EATI#)

(Prod Mode - 4 digits of SPN code)

PIN 1

IDENTIFIER

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/irfhm8337pbf-html.html
background image

 

IRFHM8337TRPbF 

10 

 

2016-2-23 

† 

 Qualification standards can be found at International Rectifier’s web site: 

http://www.irf.com/product-info/reliability/

 

††     Higher qualification ratings may be available should the user have such requirements. 
          Please contact your International Rectifier sales representative for further information:  

           

http://www.irf.com/whoto-call/salesrep/

 

†††    Applicable version of JEDEC standard at the time of product release. 

Qualification Information

† 

 

Qualification Level 

Moisture Sensitivity Level  

PQFN 3.3mm x 3.3mm 

MSL1 

(per JEDEC J-STD-020D

†††

RoHS Compliant 

Yes 

Consumer

†† 

(per JEDEC JESD47F guidelines) 

Notes:

 

Repetitive rating;  pulse width limited by max. junction temperature.

 

Starting T

J

 = 25°C, L = 0.297mH, R

G

 = 50

, I

AS

 = 9.4A.  

 

Pulse width 

 400µs; duty cycle  2%. 

  R

 is measured at TJ of approximately 90°C. 

 

When mounted on 1 inch square  PCB (FR-4). Please refer to AN-994 for more details:  

 

http://www.irf.com/technical-info/appnotes/an-994.pdf

 



Calculated continuous current based on maximum allowable junction temperature.  

  Current limited  to 18A by  source bonding technology. 

  Pulse drain current is limited to 72A by source bonding technology. 

Maker
Infineon Technologies