IRFH7440PbF Product Datasheet

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/irfh7440pbf-html.html
background image

HEXFET

®

 Power MOSFET

Fig 1.   Typical On-Resistance vs. Gate Voltage

Fig 2.  Maximum Drain Current vs. Case Temperature

Benefits

l

Improved  Gate, Avalanche and Dynamic  dV/dt
Ruggedness

l

Fully Characterized Capacitance and Avalanche

     SOA

l

Enhanced body diode dV/dt and dI/dt Capability

RoHS Compliant containing no Lead, no Bromide,

and no Halogen

Applications

Brushed Motor drive applications

BLDC Motor drive applications

PWM Inverterized topologies

Battery powered circuits

Half-bridge and full-bridge topologies

Electronic ballast applications

Synchronous rectifier applications

Resonant mode power supplies

OR-ing and redundant power switches

DC/DC and AC/DC converters

4

6

8

10

12

14

16

18

20

VGS, Gate -to -Source Voltage  (V)

1.0

2.0

3.0

4.0

5.0

6.0

R

D

S

(o

n)

,  

D

ra

in

-t

-S

ou

rc

O

R

es

is

ta

nc

(m

Ω

)

ID = 50A

TJ = 25°C

TJ = 125°C

PQFN 5X6 mm

www.irf.com 

  © 2015 International Rectifier          

Submit Datasheet Feedback

                         July 7, 2015

1

IRFH7440PbF

Strong

IR

FET™

V

DSS

40V

R

DS(on)

   typ.

1.8m

Ω

              max.

 2.4m

Ω

I

D (Silicon Limited)

159A

c

I

D (Package Limited)

85A 

25

50

75

100

125

150

 TC , Case Temperature (°C)

0

50

100

150

200

I D

,   

D

ra

in

 C

ur

re

nt

 (

A

)

Limited By Package

Orderable Part Number

Note

Form

Quantity

IRFH7440PBF

PQFN 5mm x 6mm

Tape and Reel

4000

IRFH7440TRPBF

PQFN 5mm x 6mm

Tape and Reel

400

IRFH7440TR2PBF

EOL notice #259

Base Part Number

Package Type

Standard Pack

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/irfh7440pbf-html.html
background image

IRFH7440PbF

www.irf.com 

  © 2015 International Rectifier            

Submit Datasheet Feedback

                        July 7, 2015

2

Notes:



Calculated continuous current based on maximum allowable junction
temperature. Current is limited to 85A by source bond technology.
Note that current limitations arising from heating of the
device leads may occur with some lead mounting arrangements.
(Refer to AN-1140)

‚

Repetitive rating;  pulse width limited by max. junction
temperature.

ƒ

Limited by T

Jmax

, starting T

= 25°C, L = 0.097mH

R

= 50

Ω, I

AS 

= 50A, V

GS

 =10V.

„

I

SD 

≤ 50A, di/dt ≤ 1126A/μs, V

DD 

≤ V

(BR)DSS

, T

≤ 150°C.

…

Pulse width 

≤ 400μs; duty cycle ≤ 2%.

†

C

oss

 eff. (TR) is a fixed capacitance that gives the same charging time

as C

oss 

while V

DS 

is rising from 0 to 80% V

DSS

.

‡

C

oss

 eff. (ER) is a fixed capacitance that gives the same energy as

 C

oss 

while V

DS 

is rising from 0 to 80% V

DSS

.

ˆ

When mounted on 1 inch square 2 oz copper pad on 1.5 x 1.5 in. board of
FR-4 material.

‰

R

θ 

is measured at T

J

 approximately 90°C.

Š

Limited by T

Jmax

, starting T

= 25°C, L = 1mH, R

= 50

Ω, I

AS 

= 22A,

V

GS

 =10V.

Absolute Maximum Ratings

Symbol

Parameter

Units

I

D

 @ T

C

 = 25°C

Continuous Drain Current, V

GS

 @ 10V (Silicon Limited)

I

D

 @ T

C

 = 100°C

Continuous Drain Current, V

GS

 @ 10V (Silicon Limited)

I

D

 @ T

C

 = 25°C

Continuous Drain Current, V

GS

 @ 10V (Package Limited)

I

DM

Pulsed Drain Current 

d

P

D

 @T

C

 = 25°C

Maximum Power Dissipation  

W

Linear Derating Factor

W/°C

V

GS

Gate-to-Source Voltage

V

dv/dt

Peak Diode Recovery 

f

V/ns

T

Operating Junction and

T

STG

Storage Temperature Range

Avalanche Characteristics
E

AS (Thermally limited) 

Single Pulse Avalanche Energy 

e

mJ

E

AS (Thermally limited) 

Single Pulse Avalanche Energy 

l

I

AR

Avalanche Current

d

A

E

AR

Repetitive Avalanche Energy 

d

mJ

Thermal Resistance

Symbol

Parameter

Typ.

Max.

Units

R

θJC

 (Bottom)

Junction-to-Case 

k

–––

1.2

R

θJC

 (Top)

Junction-to-Case 

k

–––

31

R

θJA 

Junction-to-Ambient 

j

–––

35

R

θJA

 (<10s)

Junction-to-Ambient 

j

–––

22

°C/W

A

°C

121

See Fig. 14, 15, 22a, 22b

104

3.0

Max.

159

c

101

c

624

85

232

-55  to + 150

 ± 20

0.83

Static @ T

J

 = 25°C (unless otherwise specified)

Symbol

Parameter

Min.

Typ.

Max.

Units

V

(BR)DSS

Drain-to-Source Breakdown Voltage

40

–––

–––

V

ΔV

(BR)DSS

/ΔT

Breakdown Voltage Temp. Coefficient

–––

0.031

–––

V/°C

R

DS(on)

Static Drain-to-Source On-Resistance

–––

1.8

2.4

–––

2.7

–––

V

GS(th)

Gate Threshold Voltage

2.2

–––

3.9

V

I

DSS

Drain-to-Source Leakage Current

–––

–––

1.0

μA

–––

–––

150

I

GSS

Gate-to-Source Forward Leakage

–––

–––

100

nA

Gate-to-Source Reverse Leakage

–––

–––

-100

R

G

Internal Gate Resistance

–––

2.6

–––

Ω

Conditions

V

GS

 = 0V, I

D

 = 250μA

Reference to 25°C, I

D

 = 1.0mA 

d

V

GS

 = 10V, I

D

 = 50A 

g

V

DS

 = V

GS

, I

D

 = 100μA

V

GS

 = 20V

V

GS

 = -20V

V

DS

 = 40V, V

GS

 = 0V

V

DS

 = 40V, V

GS

 = 0V, T

J

 = 125°C

V

GS

 = 6.0V, I

D

 = 25A 

g

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/irfh7440pbf-html.html
background image

IRFH7440PbF

www.irf.com 

  © 2015 International Rectifier             

Submit Datasheet Feedback

                         July 7, 2015

3

S

D

G

Dynamic @ T

J

 = 25°C (unless otherwise specified)

Symbol

Parameter

Min.

Typ.

Max.

Units

gfs

Forward Transconductance

149

–––

–––

S

Q

g

Total Gate Charge

–––

92

138

nC

Q

gs

Gate-to-Source Charge

–––

22

–––

Q

gd

Gate-to-Drain ("Miller") Charge

–––

29

–––

Q

sync

Total Gate Charge Sync. (Q

g

 - Q

gd

)

–––

63

–––

t

d(on)

Turn-On Delay Time

–––

12

–––

ns

t

r

Rise Time

–––

45

–––

t

d(off)

Turn-Off Delay Time

–––

53

–––

t

f

Fall Time

–––

42

–––

C

iss

Input Capacitance

–––

4574

–––

pF

C

oss

Output Capacitance

–––

700

–––

C

rss

Reverse Transfer Capacitance

–––

466

–––

C

oss

 eff. (ER)

Effective Output Capacitance (Energy Related) 

–––

863

–––

C

oss

 eff. (TR)

Effective Output Capacitance (Time Related)

–––

1229

–––

Diode Characteristics

Symbol

        Parameter

Min.

Typ.

Max.

Units

I

S

Continuous Source Current 

–––

–––

85

c

A

(Body Diode)

I

SM

Pulsed Source Current

–––

–––

745

A

(Body Diode)

d

V

SD

Diode Forward Voltage

–––

0.9

1.3

V

t

rr

Reverse Recovery Time

–––

25

–––

ns

T

J

 = 25°C

V

R

 = 34V,

–––

27

–––

T

J

 = 125°C

I

F

 = 50A

Q

rr

Reverse Recovery Charge

–––

16

–––

nC

T

J

 = 25°C

di/dt = 100A/μs 

g

–––

17

–––

T

J

 = 125°C

I

RRM

Reverse Recovery Current

–––

1.2

–––

A

T

J

 = 25°C

I

D

 = 30A

R

G

 = 2.7Ω

V

GS

 = 10V 

g

V

DD

 = 20V

Conditions

V

DS

 = 10V, I

D

 = 50A

V

DS

 =20V

I

D

 = 50A

T

J

 = 25°C, I

S

 = 50A, V

GS

 = 0V 

g

integral reverse

p-n junction diode.

MOSFET symbol

showing  the

Conditions

V

GS

 = 10V 

g

V

GS

 = 0V

V

DS

 = 25V

ƒ = 1.0 MHz
V

GS

 = 0V, V

DS

 = 0V to 32V 

i

V

GS

 = 0V, V

DS

 = 0V to 32V 

h

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/irfh7440pbf-html.html
background image

IRFH7440PbF

www.irf.com 

  © 2015 International Rectifier            

Submit Datasheet Feedback

                        July 7, 2015

4

Fig 3.  Typical Output Characteristics

Fig 5.  Typical Transfer Characteristics

Fig 6.  Normalized On-Resistance vs. Temperature

Fig 4.  Typical Output Characteristics

Fig 8.  Typical Gate Charge vs. Gate-to-Source Voltage

Fig 7.  Typical Capacitance vs. Drain-to-Source Voltage

0.1

1

10

100

VDS, Drain-to-Source Voltage (V)

1

10

100

1000

I D

, D

ra

in

-t

o-

S

ou

rc

C

ur

re

nt

 (

A

)

VGS

TOP          

15V
10V

8.0V

7.0V

6.0V

5.5V

5.0V

BOTTOM

4.5V

≤60μs PULSE WIDTH

Tj = 25°C

4.5V

0.1

1

10

100

VDS, Drain-to-Source Voltage (V)

1

10

100

1000

I D

, D

ra

in

-t

o-

S

ou

rc

C

ur

re

nt

 (

A

)

4.5V

≤60μs PULSE WIDTH

Tj = 150°C

VGS

TOP          

15V
10V

8.0V

7.0V

6.0V

5.5V

5.0V

BOTTOM

4.5V

3

4

5

6

7

8

9

VGS, Gate-to-Source Voltage (V)

1.0

10

100

1000

I D

, D

ra

in

-t

o-

S

ou

rc

C

ur

re

nt

 (

A

)

TJ = 25°C

TJ = 150°C

VDS = 10V
≤60μs PULSE WIDTH

-60 -40 -20 0 20 40 60 80 100 120 140 160

TJ , Junction Temperature (°C)

0.6

0.8

1.0

1.2

1.4

1.6

1.8

R

D

S

(o

n)

 ,

 D

ra

in

-t

o-

S

ou

rc

O

R

es

is

ta

nc

   

   

   

   

   

   

   

 (

N

or

m

al

iz

ed

)

ID = 50A

VGS = 10V

1

10

100

VDS, Drain-to-Source Voltage (V)

100

1000

10000

100000

C

, C

ap

ac

ita

nc

(p

F

)

VGS   = 0V,       f = 1 MHZ

Ciss   = Cgs + Cgd,  C ds SHORTED

Crss   = Cgd 
Coss  = Cds + Cgd

Coss
Crss

Ciss

0

20

40

60

80

100

120

 QG,  Total Gate Charge (nC)

0.0

2.0

4.0

6.0

8.0

10.0

12.0

14.0

V

G

S

, G

at

e-

to

-S

ou

rc

V

ol

ta

ge

 (

V

)

VDS= 32V

VDS= 20V

ID= 50A

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/irfh7440pbf-html.html
background image

IRFH7440PbF

www.irf.com 

  © 2015 International Rectifier             

Submit Datasheet Feedback

                         July 7, 2015

5

Fig 10.  Maximum Safe Operating Area

Fig 11.  Drain-to-Source Breakdown Voltage

Fig 9.  Typical Source-Drain Diode

Forward Voltage

Fig 12.  Typical C

OSS

 Stored Energy

Fig 13.   Typical On-Resistance vs. Drain Current

-60 -40 -20 0 20 40 60 80 100 120 140 160

TJ , Temperature ( °C )

40

42

44

46

48

50

V

(B

R

)D

S

S

,  D

ra

in

-t

o-

S

ou

rc

B

re

ak

do

w

V

ol

ta

ge

 (

V

)

Id = 1.0mA

-5

0

5

10

15

20

25

30

35

40

VDS, Drain-to-Source Voltage (V)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

E

ne

rg

J)

0.1

1

10

100

VDS, Drain-to-Source Voltage (V)

0.1

1

10

100

1000

10000

I D

,  

D

ra

in

-t

o-

S

ou

rc

C

ur

re

nt

 (

A

)

Tc = 25°C

Tj = 150°C

Single Pulse

10msec

1msec

OPERATION IN THIS AREA 

LIMITED BY R DS(on)

100μsec

DC

Limited by 

package

0.0

0.5

1.0

1.5

2.0

2.5

VSD, Source-to-Drain Voltage (V)

1.0

10

100

1000

I S

D

, R

ev

er

se

 D

ra

in

 C

ur

re

nt

 (

A

)

TJ = 25°C

TJ = 150°C

VGS = 0V

0

100

200

300

400

500

ID, Drain Current (A)

0

10

20

30

40

R

D

S

(o

n)

,  

D

ra

in

-t

-S

ou

rc

O

R

es

is

ta

nc

(m

Ω

)

VGS = 5.0V

VGS = 6.0V

VGS = 7.0V

VGS = 8.0V

VGS =10V

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/irfh7440pbf-html.html
background image

IRFH7440PbF

www.irf.com 

  © 2015 International Rectifier            

Submit Datasheet Feedback

                        July 7, 2015

6

Fig 14.  Maximum Effective Transient Thermal Impedance, Junction-to-Case

Fig 15.  Typical Avalanche Current vs.Pulsewidth

Fig 16.  Maximum Avalanche Energy vs. Temperature

Notes on Repetitive Avalanche Curves , Figures 14, 15:
(For further info, see AN-1005 at www.irf.com)
1. Avalanche failures assumption:

Purely a thermal phenomenon and failure occurs at a temperature far in
excess of T

jmax

. This is validated for every part type.

2. Safe operation in Avalanche is allowed as long asT

jmax

 is not exceeded.

3. Equation below based on circuit and waveforms shown in Figures 16a, 16b.
4. P

D (ave) 

= Average power dissipation per single avalanche pulse.

5. BV = Rated breakdown voltage (1.3 factor accounts for voltage increase

during avalanche).

6. I

av 

= Allowable avalanche current.

7. 

ΔT

 = 

Allowable rise in junction temperature, not to exceed

 

T

jmax 

(assumed as

25°C in Figure 14, 15).
t

av = 

Average time in avalanche.

D = Duty cycle in avalanche =  t

av 

·f

Z

thJC

(D, t

av

) = Transient thermal resistance, see Figures 13)

P

D (ave)

 = 1/2 ( 1.3·BV·I

av

) =

 DT/ Z

thJC

I

av 

=

 

2

DT/ [1.3·BV·Z

th

]

E

AS (AR)

 = P

D (ave)

·t

av

1E-006

1E-005

0.0001

0.001

0.01

0.1

t1 , Rectangular Pulse Duration (sec)

0.001

0.01

0.1

1

10

T

he

rm

al

 R

es

po

ns

Z

 th

JC

 )

 °

C

/W

0.20

0.10

D = 0.50

0.02

0.01

0.05

SINGLE PULSE

( THERMAL RESPONSE )

Notes:

1. Duty Factor D = t1/t2

2. Peak Tj = P dm x Zthjc + Tc

25

50

75

100

125

150

Starting TJ , Junction Temperature (°C)

0

20

40

60

80

100

120

140

E

A

R

 , 

A

va

la

nc

he

 E

ne

rg

(m

J)

TOP          Single Pulse                
BOTTOM   1.0% Duty Cycle
ID = 50A

1.0E-06

1.0E-05

1.0E-04

1.0E-03

1.0E-02

1.0E-01

tav (sec)

0.1

1

10

100

A

va

la

nc

he

 C

ur

re

nt

 (

A

)

Allowed avalanche Current vs avalanche 
pulsewidth, tav, assuming 

ΔΤ j = 25°C and 

Tstart = 125°C.

Allowed avalanche Current vs avalanche 
pulsewidth, tav, assuming 

ΔTj = 125°C and 

Tstart =25°C (Single Pulse)

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/irfh7440pbf-html.html
background image

IRFH7440PbF

www.irf.com 

  © 2015 International Rectifier             

Submit Datasheet Feedback

                         July 7, 2015

7

Fig. 18 - Typical Recovery Current vs. di

f

/dt

Fig 17.  Threshold Voltage vs. Temperature

Fig. 20 - Typical Stored Charge vs. di

f

/dt

Fig. 19 - Typical Recovery Current vs. di

f

/dt

Fig. 21 - Typical Stored Charge vs. di

f

/dt

-75 -50 -25

0

25

50

75 100 125 150

TJ , Temperature ( °C )

1.5

2.0

2.5

3.0

3.5

4.0

4.5

V

G

S

(t

h)

,  G

at

th

re

sh

ol

V

ol

ta

ge

 (

V

)

ID = 100μA

ID = 1.0mA

ID = 1.0A

0

200

400

600

800

1000

diF /dt (A/μs)

0

2

4

6

8

10

I R

R

M

 (

A

)

IF = 30A
VR = 34V
TJ = 25°C
TJ = 125°C

0

200

400

600

800

1000

diF /dt (A/μs)

0

50

100

150

200

Q

R

R

 (

nC

)

IF = 50A
VR = 34V
TJ = 25°C
TJ = 125°C

0

200

400

600

800

1000

diF /dt (A/μs)

0

50

100

150

200

Q

R

R

 (

nC

)

IF = 30A
VR = 34V
TJ = 25°C
TJ = 125°C

0

200

400

600

800

1000

diF /dt (A/μs)

0

2

4

6

8

10

I R

R

M

 (

A

)

IF = 50A
VR = 34V
TJ = 25°C
TJ = 125°C

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/irfh7440pbf-html.html
background image

IRFH7440PbF

www.irf.com 

  © 2015 International Rectifier            

Submit Datasheet Feedback

                        July 7, 2015

8

Fig 23a.  Switching Time Test Circuit

Fig 23b.  Switching Time Waveforms

Fig 22b.  Unclamped Inductive Waveforms

Fig 22a.  Unclamped Inductive Test Circuit

tp

V

(BR)DSS

I

AS

RG

IAS

0.01

Ω

tp

D.U.T

L

VDS

+

- VDD

DRIVER

A

15V

20V

V

GS

Fig 24a.  Gate Charge Test Circuit

Fig 24b.   Gate Charge Waveform

Vds

Vgs

Id

Vgs(th)

Qgs1 Qgs2

Qgd

Qgodr

Fig 22. 

Peak Diode Recovery dv/dt Test Circuit for N-Channel

HEXFET

®

 Power MOSFETs

Circuit Layout Considerations

   •  Low Stray Inductance

   •  Ground Plane

   •  Low Leakage Inductance

      Current Transformer

P.W.

Period

di/dt

Diode Recovery

dv/dt

Ripple 

≤ 5%

Body Diode  Forward Drop

Re-Applied

Voltage

Reverse

Recovery

Current

Body Diode Forward

Current

V

GS

=10V

V

DD

I

SD

Driver Gate Drive

D.U.T. I

SD

Waveform

D.U.T. V

DS

Waveform

Inductor Curent

D = 

P.W.

Period

*

 V

GS

 = 5V for Logic Level Devices

*

+

-

+

+

+

-

-

-

ƒ

„

‚

R

G

V

DD

•  dv/dt controlled by R

G

•  Driver same type as D.U.T.

•  I

SD

 controlled by Duty Factor "D"

•  D.U.T. - Device Under Test

D.U.T



Inductor Current

D.U.T.

V

DS

I

D

I

G

3mA

V

GS

.3

μF

50K

Ω

.2

μF

12V

Current Regulator

Same Type as D.U.T.

Current Sampling Resistors

+

-

V

DS

90%

10%
V

GS

t

d(on)

t

r

t

d(off)

t

f

V

DS

Pulse Width ≤ 1 µs
Duty Factor ≤ 0.1 %

R

D

V

GS

R

G

D.U.T.

10V

+

-

V

DD

V

GS

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/irfh7440pbf-html.html
background image

IRFH7440PbF

www.irf.com 

  © 2015 International Rectifier             

Submit Datasheet Feedback

                         July 7, 2015

9

Note: For the most current drawing please refer to IR website at:

 http://www.irf.com/package/

For more information on board mounting, including footprint and stencil recommendation, please refer to application note
AN-1136: 

http://www.irf.com/technical-info/appnotes/an-1136.pdf

For more information on package inspection techniques, please refer to application note AN-1154:

http://www.irf.com/technical-info/appnotes/an-1154.pdf

PQFN 5x6 Outline "E" Package Details

PQFN 5x6 Outline "G" Package Details

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/irfh7440pbf-html.html
background image

IRFH7440PbF

www.irf.com 

  © 2015 International Rectifier            

Submit Datasheet Feedback

                        July 7, 2015

10

PQFN 5x6 Tape and Reel

Note: For the most current drawing please refer to IR website at:

 http://www.irf.com/package/

Bo

W

P 1

Ao

Ko

CODE

TAPE DIMENSIONS

REEL DIMENSIONS

QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE 

Dimension design to accommodate the component width
Dimension design to accommodate the component lenght
Dimension design to accommodate the component thickness

Pitch between successive cavity centers

Overall width of the carrier tape

DESCRIPTION

Type

Package

5 X 6 PQFN

Note:  All dimension are nominal

Diameter

Reel

QTY

Width

Reel

(mm)

Ao

(mm)

Bo

(mm)

Ko

(mm)

P1

(mm)

W

Quadrant

Pin 1

(Inch)

W1

(mm)

13

4000

12.4

6.300

5.300

1.20

8.00

12

Q1

PQFN 5x6 Part Marking

XXXX

XYWWX

XXXXX

INTERNATIONAL

RECTIFIER LOGO

PART NUMBER

(“4 or 5 digits”)

MARKING CODE

(Per Marking Spec)

ASSEMBLY
SITE CODE

(Per SCOP 200-002)

DATE CODE

PIN 1

IDENTIFIER

LOT CODE

(Eng Mode - Min last 4 digits of EATI#)

(Prod Mode - 4 digits of SPN code)

Maker
Infineon Technologies