HEXFET
®
Power MOSFET
Benefits
l
Improved Gate, Avalanche and Dynamic dV/dt Ruggedness
l
Fully Characterized Capacitance and Avalanche SOA
l
Enhanced body diode dV/dt and dI/dt Capability
l
Lead-Free
l
RoHS Compliant, Halogen-Free*
Fig 1. Typical On-Resistance vs. Gate Voltage
Fig 2. Maximum Drain Current vs. Case Temperature
Applications
l
Brushed Motor drive applications
l
BLDC Motor drive applications
l
Battery powered circuits
l
Half-bridge and full-bridge topologies
l
Synchronous rectifier applications
l
Resonant mode power supplies
l
OR-ing and redundant power switches
l
DC/DC and AC/DC converters
l
DC/AC Inverters
G
D
S
Gate
Drain
Source
TO-220AB
IRFB7437PbF
S
D
G
D
25
50
75
100
125
150
175
TC , Case Temperature (°C)
0
50
100
150
200
250
I D
,
D
ra
in
C
ur
re
nt
(
A
)
LIMITED BY PACKAGE
V
DSS
40V
R
DS(on)
typ.
1.5mΩ
max.
2.0m
Ω
I
D
(Silicon Limited)
250Ac
I
D
(Package Limited)
195A
4.0
6.0
8.0
10.0 12.0 14.0 16.0 18.0 20.0
VGS, Gate-to-Source Voltage (V)
0
1
2
3
4
5
6
R
D
S
(o
n)
,
D
ra
in
-t
o
-S
ou
rc
e
O
n
R
es
is
ta
nc
e
(m
Ω
)
TJ = 25°C
TJ = 125°C
ID = 100A
D
S
G
Strong
IR
FET
IRFB7437PbF
Form
Quantity
IRFB7437PbF
TO-220
Tube
50
IRFB7437PbF
Base Part Number
Package Type
Standard Pack
Orderable Part Number
1
www.irf.com
©
2015 International Rectifier
Submit Datasheet Feedback
January 6, 2015
2
www.irf.com
©
2015 International Rectifier
Submit Datasheet Feedback
January 6, 2015
IRFB7437PbF
Notes:
Calculated continuous current based on maximum allowable junction
temperature. Bond wire current limit is 195A. Note that current
limitations arising from heating of the device leads may occur with
some lead mounting arrangements.
(Refer to AN-1140)
Repetitive rating; pulse width limited by max. junction
temperature.
Limited by T
Jmax
, starting T
J
= 25°C, L = 0.069mH
R
G
= 50
Ω, I
AS
= 100A, V
GS
=10V.
I
SD
≤ 100A, di/dt ≤ 1166A/μs, V
DD
≤ V
(BR)DSS
, T
J
≤ 175°C.
Pulse width
≤ 400μs; duty cycle ≤ 2%.
C
oss
eff. (TR) is a fixed capacitance that gives the same charging time
as C
oss
while V
DS
is rising from 0 to 80% V
DSS
.
C
oss
eff. (ER) is a fixed capacitance that gives the same energy as
C
oss
while V
DS
is rising from 0 to 80% V
DSS
.
R
θ
is measured at T
J
approximately 90°C.
Limited by T
Jmax
starting
T
J
= 25°C, L= 1mH, R
G
= 50
Ω, I
AS
= 40A, V
GS
=10V.
* Halogen -Free since April 30, 2014
Absolute Maximum Ratings
Symbol
Parameter
Units
I
D
@ T
C
= 25°C
Continuous Drain Current, V
GS
@ 10V (Silicon Limited)
I
D
@ T
C
= 100°C
Continuous Drain Current, V
GS
@ 10V (Silicon Limited)
I
D
@ T
C
= 25°C
Continuous Drain Current, V
GS
@ 10V (Wire Bond Limited)
I
DM
Pulsed Drain Current
d
P
D
@T
C
= 25°C
Maximum Power Dissipation
W
Linear Derating Factor
W/°C
V
GS
Gate-to-Source Voltage
V
T
J
Operating Junction and
T
STG
Storage Temperature Range
Soldering Temperature, for 10 seconds (1.6mm from case)
Mounting torque, 6-32 or M3 screw
Avalanche Characteristics
E
AS (Thermally limited)
Single Pulse Avalanche Energy
e
mJ
E
AS (Thermally limited)
Single Pulse Avalanche Energy
k
I
AR
Avalanche Current
d
A
E
AR
Repetitive Avalanche Energy
d
mJ
Thermal Resistance
Symbol
Parameter
Typ.
Max.
Units
R
θJC
Junction-to-Case
j
–––
0.65
R
θCS
Case-to-Sink, Flat Greased Surface
0.50
–––
R
θJA
Junction-to-Ambient
j
–––
62
°C/W
A
°C
300
350
See Fig. 14, 15, 22a, 22b
230
Max.
250
c
180
1000
195
802
-55 to + 175
± 20
1.5
10lbf
x in (1.1Nx m)
Static @ T
J
= 25°C (unless otherwise specified)
Symbol
Parameter
Min.
Typ.
Max.
Units
V
(BR)DSS
Drain-to-Source Breakdown Voltage
40
–––
–––
V
ΔV
(BR)DSS
/
ΔT
J
Breakdown Voltage Temp. Coefficient
–––
0.029
–––
V/°C
R
DS(on)
Static Drain-to-Source On-Resistance
–––
1.5
2.0
m
Ω
–––
1.8
–––
V
GS(th)
Gate Threshold Voltage
2.2
3.0
3.9
V
I
DSS
Drain-to-Source Leakage Current
–––
–––
1.0
μA
–––
–––
150
I
GSS
Gate-to-Source Forward Leakage
–––
–––
100
nA
Gate-to-Source Reverse Leakage
–––
–––
-100
R
G
Internal Gate Resistance
–––
2.2
–––
Ω
V
DS
= 40V, V
GS
= 0V
V
DS
= 40V, V
GS
= 0V, T
J
= 125°C
V
GS
= 20V
V
GS
= -20V
Conditions
V
GS
= 0V, I
D
= 250μA
Reference to 25°C, I
D
= 1mA
d
V
GS
= 10V, I
D
= 100A
V
GS
= 6.0V, I
D
= 50A
V
DS
= V
GS
, I
D
= 150μA
3
www.irf.com
©
2015 International Rectifier
Submit Datasheet Feedback
January 6, 2015
IRFB7437PbF
Dynamic @ T
J
= 25°C (unless otherwise specified)
Symbol
Parameter
Min. Typ. Max. Units
gfs
Forward Transconductance
160
–––
–––
S
Q
g
Total Gate Charge
–––
150
225
nC
Q
gs
Gate-to-Source Charge
–––
41
–––
Q
gd
Gate-to-Drain ("Miller") Charge
–––
51
–––
Q
sync
Total Gate Charge Sync. (Q
g
- Q
gd
)
–––
99
–––
t
d(on)
Turn-On Delay Time
–––
19
–––
ns
t
r
Rise Time
–––
70
–––
t
d(off)
Turn-Off Delay Time
–––
78
–––
t
f
Fall Time
–––
53
–––
C
iss
Input Capacitance
–––
7330
–––
pF
C
oss
Output Capacitance
–––
1095
–––
C
rss
Reverse Transfer Capacitance
–––
745
–––
C
oss
eff. (ER) Effective Output Capacitance (Energy Related) i ––– 1310 –––
C
oss
eff. (TR) Effective Output Capacitance (Time Related)h
–––
1735
–––
Diode Characteristics
Symbol
Parameter
Min. Typ. Max. Units
I
S
Continuous Source Current
–––
––– 250c
A
(Body Diode)
I
SM
Pulsed Source Current
–––
–––
1000
A
(Body Diode)d
V
SD
Diode Forward Voltage
–––
1.0
1.3
V
dv/dt
Peak Diode Recovery
f
–––
3.1
–––
V/ns
t
rr
Reverse Recovery Time
–––
30
–––
ns
T
J
= 25°C
V
R
= 34V,
–––
30
–––
T
J
= 125°C
I
F
= 100A
Q
rr
Reverse Recovery Charge
–––
24
–––
nC T
J
= 25°C
di/dt = 100A/μs g
–––
25
–––
T
J
= 125°C
I
RRM
Reverse Recovery Current
–––
1.3
–––
A
T
J
= 25°C
T
J
= 175°C, I
S
= 100A, V
DS
= 40V g
I
D
= 30A
R
G
= 2.7Ω
V
DD
= 20V
Conditions
V
GS
= 10V g
V
GS
= 0V
V
DS
= 25V
ƒ = 1.0 MHz, See Fig. 5
V
GS
= 0V, V
DS
= 0V to 32V i, See Fig. 11
V
GS
= 0V, V
DS
= 0V to 32V h
T
J
= 25°C, I
S
= 100A, V
GS
= 0V g
integral reverse
p-n junction diode.
MOSFET symbol
showing the
V
GS
= 10V
g
I
D
= 100A, V
DS
=20V, V
GS
= 10V
Conditions
V
DS
= 10V, I
D
= 100A
I
D
= 100A
V
DS
=20V
D
S
G
4
www.irf.com
©
2015 International Rectifier
Submit Datasheet Feedback
January 6, 2015
IRFB7437PbF
Fig 3. Typical Output Characteristics
Fig 5. Typical Transfer Characteristics
Fig 6. Normalized On-Resistance vs. Temperature
Fig 4. Typical Output Characteristics
Fig 8. Typical Gate Charge vs. Gate-to-Source Voltage
Fig 7. Typical Capacitance vs. Drain-to-Source Voltage
0.1
1
10
100
VDS, Drain-to-Source Voltage (V)
1
10
100
1000
I D
, D
ra
in
-t
o-
S
ou
rc
e
C
ur
re
nt
(
A
)
VGS
TOP
15V
10V
8.0V
7.0V
6.0V
5.5V
5.0V
BOTTOM
4.5V
≤60μs PULSE WIDTH
Tj = 25°C
4.5V
0.1
1
10
100
VDS, Drain-to-Source Voltage (V)
10
100
1000
I D
, D
ra
in
-t
o-
S
ou
rc
e
C
ur
re
nt
(
A
)
VGS
TOP
15V
10V
8.0V
7.0V
6.0V
5.5V
5.0V
BOTTOM
4.5V
≤60μs PULSE WIDTH
Tj = 175°C
4.5V
-60 -40 -20 0 20 40 60 80 100120140160180
TJ , Junction Temperature (°C)
0.6
0.8
1.0
1.2
1.4
1.6
1.8
2.0
R
D
S
(o
n)
,
D
ra
in
-t
o-
S
ou
rc
e
O
n
R
es
is
ta
nc
e
(
N
or
m
al
iz
ed
)
ID = 100A
VGS = 10V
1
10
100
VDS, Drain-to-Source Voltage (V)
100
1000
10000
100000
C
, C
ap
ac
ita
nc
e
(p
F
)
VGS = 0V, f = 1 MHZ
Ciss = Cgs + Cgd, Cds SHORTED
Crss = Cgd
Coss = Cds + Cgd
Coss
Crss
Ciss
0
40
80
120
160
200
QG Total Gate Charge (nC)
0
2
4
6
8
10
12
14
V
G
S
, G
at
e-
to
-S
ou
rc
e
V
ol
ta
ge
(
V
)
VDS= 32V
VDS= 20V
ID= 100A
3
4
5
6
7
8
VGS, Gate-to-Source Voltage (V)
1.0
10
100
1000
I D
, D
ra
in
-t
o-
S
ou
rc
e
C
ur
re
nt
(A
)
TJ = 25°C
TJ = 175°C
VDS = 10V
≤60μs PULSE WIDTH
5
www.irf.com
©
2015 International Rectifier
Submit Datasheet Feedback
January 6, 2015
IRFB7437PbF
Fig 10. Maximum Safe Operating Area
Fig 11. Drain-to-Source Breakdown Voltage
Fig 9. Typical Source-Drain Diode
Forward Voltage
Fig 12. Typical C
OSS
Stored Energy
Fig 13. Typical On-Resistance vs. Drain Current
0.0
0.5
1.0
1.5
2.0
2.5
VSD, Source-to-Drain Voltage (V)
0.1
1
10
100
1000
I S
D
, R
ev
er
se
D
ra
in
C
ur
re
nt
(
A
)
TJ = 25°C
TJ = 175°C
VGS = 0V
-60 -40 -20 0 20 40 60 80 100120140160180
TJ , Temperature ( °C )
40
42
44
46
48
50
V
(B
R
)D
S
S
,
D
ra
in
-t
o-
S
ou
rc
e
B
re
ak
do
w
n
V
ol
ta
ge
(
V
)
Id = 1.0mA
0
10
20
30
40
50
VDS, Drain-to-Source Voltage (V)
0.0
0.2
0.4
0.6
0.8
1.0
1.2
E
ne
rg
y
(μ
J)
0.1
1
10
VDS, Drain-toSource Voltage (V)
0.1
1
10
100
1000
I D
,
D
ra
in
-t
o-
S
ou
rc
e
C
ur
re
nt
(
A
)
Tc = 25°C
Tj = 175°C
Single Pulse
1msec
10msec
100μsec
DC
OPERATION IN THIS AREA
LIMITED BY RDS(on)
Limited by Package
0
100
200
300
400
500
ID , Drain Current (A)
1
2
3
4
5
6
7
8
R
D
S
(
on
) ,
D
ra
in
-t
o-
S
ou
rc
e
O
n
R
es
is
ta
nc
e
(m
Ω
)
VGS = 5.5V
VGS = 6.0V
VGS = 7.0V
VGS = 8.0V
VGS = 10V
6
www.irf.com
©
2015 International Rectifier
Submit Datasheet Feedback
January 6, 2015
IRFB7437PbF
Fig 14. Maximum Effective Transient Thermal Impedance, Junction-to-Case
Fig 15. Typical Avalanche Current vs.Pulsewidth
Fig 16. Maximum Avalanche Energy vs. Temperature
Notes on Repetitive Avalanche Curves , Figures 14, 15:
(For further info, see AN-1005 at www.irf.com)
1. Avalanche failures assumption:
Purely a thermal phenomenon and failure occurs at a temperature far in
excess of T
jmax
. This is validated for every part type.
2. Safe operation in Avalanche is allowed as long asT
jmax
is not exceeded.
3. Equation below based on circuit and waveforms shown in Figures 22a, 22b.
4. P
D (ave)
= Average power dissipation per single avalanche pulse.
5. BV = Rated breakdown voltage (1.3 factor accounts for voltage increase
during avalanche).
6. I
av
= Allowable avalanche current.
7.
ΔT
=
Allowable rise in junction temperature, not to exceed
T
jmax
(assumed as
25°C in Figure 14, 15).
t
av =
Average time in avalanche.
D = Duty cycle in avalanche = t
av
·f
Z
thJC
(D, t
av
) = Transient thermal resistance, see Figures 13)
P
D (ave)
= 1/2 ( 1.3·BV·I
av
) =
DT/ Z
thJC
I
av
=
2
DT/ [1.3·BV·Z
th
]
E
AS (AR)
= P
D (ave)
·t
av
1E-006
1E-005
0.0001
0.001
0.01
0.1
t1 , Rectangular Pulse Duration (sec)
0.0001
0.001
0.01
0.1
1
T
he
rm
al
R
es
po
ns
e
(
Z
th
JC
)
0.20
0.10
D = 0.50
0.02
0.01
0.05
SINGLE PULSE
( THERMAL RESPONSE )
Notes:
1. Duty Factor D = t1/t2
2. Peak Tj = P dm x Zthjc + Tc
1.0E-06
1.0E-05
1.0E-04
1.0E-03
1.0E-02
1.0E-01
tav (sec)
1
10
100
1000
A
va
la
nc
he
C
ur
re
nt
(
A
)
Allowed avalanche Current vs avalanche
pulsewidth, tav, assuming ΔΤ j = 25°C and
Tstart = 150°C. (Single Pulse)
Allowed avalanche Current vs avalanche
pulsewidth, tav, assuming ΔTj = 150°C and
Tstart =25°C (Single Pulse)
25
50
75
100
125
150
175
Starting TJ , Junction Temperature (°C)
0
50
100
150
200
250
300
350
E
A
R
,
A
va
la
nc
he
E
ne
rg
y
(m
J)
TOP Single Pulse
BOTTOM 1% Duty Cycle
ID = 100A
7
www.irf.com
©
2015 International Rectifier
Submit Datasheet Feedback
January 6, 2015
IRFB7437PbF
Fig. 18 - Typical Recovery Current vs. di
f
/dt
Fig 17. Threshold Voltage vs. Temperature
Fig. 20 - Typical Stored Charge vs. di
f
/dt
Fig. 19 - Typical Recovery Current vs. di
f
/dt
Fig. 21 - Typical Stored Charge vs. di
f
/dt
-75 -50 -25 0
25 50 75 100 125 150 175
TJ , Temperature ( °C )
1.0
1.5
2.0
2.5
3.0
3.5
4.0
4.5
V
G
S
(t
h)
,
G
at
e
th
re
sh
ol
d
V
ol
ta
ge
(
V
)
ID = 150μA
ID = 1.0mA
ID = 1.0A
0
200
400
600
800
1000
diF /dt (A/μs)
0
2
4
6
8
10
I R
R
(
A
)
IF = 100A
VR = 34V
TJ = 25°C
TJ = 125°C
0
200
400
600
800
1000
diF /dt (A/μs)
0
2
4
6
8
10
I R
R
(
A
)
IF = 60A
VR = 34V
TJ = 25°C
TJ = 125°C
0
200
400
600
800
1000
diF /dt (A/μs)
0
20
40
60
80
100
120
140
Q
R
R
(
nC
)
IF = 60A
VR = 34V
TJ = 25°C
TJ = 125°C
0
200
400
600
800
1000
diF /dt (A/μs)
0
20
40
60
80
100
120
140
Q
R
R
(
nC
)
IF = 100A
VR = 34V
TJ = 25°C
TJ = 125°C
8
www.irf.com
©
2015 International Rectifier
Submit Datasheet Feedback
January 6, 2015
IRFB7437PbF
Fig 24a. Switching Time Test Circuit
Fig 24b. Switching Time Waveforms
Fig 23b. Unclamped Inductive Waveforms
Fig 23a. Unclamped Inductive Test Circuit
tp
V
(BR)DSS
I
AS
RG
IAS
0.01
Ω
tp
D.U.T
L
VDS
+
- VDD
DRIVER
A
15V
20V
V
GS
Fig 25a. Gate Charge Test Circuit
Fig 25b. Gate Charge Waveform
Vds
Vgs
Id
Vgs(th)
Qgs1 Qgs2
Qgd
Qgodr
Fig 22.
Peak Diode Recovery dv/dt Test Circuit for N-Channel
HEXFET
®
Power MOSFETs
Circuit Layout Considerations
• Low Stray Inductance
• Ground Plane
• Low Leakage Inductance
Current Transformer
P.W.
Period
di/dt
Diode Recovery
dv/dt
Ripple
≤ 5%
Body Diode Forward Drop
Re-Applied
Voltage
Reverse
Recovery
Current
Body Diode Forward
Current
V
GS
=10V
V
DD
I
SD
Driver Gate Drive
D.U.T. I
SD
Waveform
D.U.T. V
DS
Waveform
Inductor Curent
D =
P.W.
Period
*
V
GS
= 5V for Logic Level Devices
*
+
-
+
+
+
-
-
-
R
G
V
DD
• dv/dt controlled by R
G
• Driver same type as D.U.T.
• I
SD
controlled by Duty Factor "D"
• D.U.T. - Device Under Test
D.U.T
Inductor Current
D.U.T.
V
DS
I
D
I
G
3mA
V
GS
.3
μF
50K
Ω
.2
μF
12V
Current Regulator
Same Type as D.U.T.
Current Sampling Resistors
+
-
V
DS
90%
10%
V
GS
t
d(on)
t
r
t
d(off)
t
f
V
DS
Pulse Width ≤ 1 µs
Duty Factor ≤ 0.1 %
R
D
V
GS
R
G
D.U.T.
10V
+
-
V
DD
V
GS
9
www.irf.com
©
2015 International Rectifier
Submit Datasheet Feedback
January 6, 2015
IRFB7437PbF
TO-220AB Part Marking Information
TO-220AB Package Outline
Dimensions are shown in millimeters (inches)
TO-220AB packages are not recommended for Surface Mount Application.
Note: For the most current drawing please refer to IR website at:
http://www.irf.com/package/
10
www.irf.com
©
2015 International Rectifier
Submit Datasheet Feedback
January 6, 2015
IRFB7437PbF
IR WORLD HEADQUARTERS: 101 N. Sepulveda Blvd., El Segundo, California 90245, USA
To contact International Rectifier, please visit
http://www.irf.com/whoto-call/
Qualification standards can be found at International Rectifiers web site:
http://www.irf.com/product-info/reliability/
Applicable version of JEDEC standard at the time of product release.
Qualification level
Moisture Sensitivity Level
TO-220
Not applicable
RoHS compliant
(per JEDEC JESD47F
††
guidelines)
Yes
Qualification information†
Industrial
Revision History
Date
Comment
• Updated data sheet with new IR corporate template.
• Updated typo on the fig.19 and fig.21, unit of y-axis from "A" to "nC" on page7.
• Updated package outline and part marking on page 9.
• Added bullet point in the Benefits "RoHS Compliant, Halogen -Free" on page 1.
• Updated E
AS (L =1mH)
= 802mJ on page 2
• Updated note 9 “Limited by T
Jmax
, starting T
J
= 25°C, L = 1mH, R
G
= 50
Ω, I
AS
= 40A, V
GS
=10V”. on page 2
4/22/2014
1/6/2015
HEXFET
®
Power MOSFET
Benefits
l
Improved Gate, Avalanche and Dynamic dV/dt Ruggedness
l
Fully Characterized Capacitance and Avalanche SOA
l
Enhanced body diode dV/dt and dI/dt Capability
l
Lead-Free
l
RoHS Compliant, Halogen-Free*
Fig 1. Typical On-Resistance vs. Gate Voltage
Fig 2. Maximum Drain Current vs. Case Temperature
Applications
l
Brushed Motor drive applications
l
BLDC Motor drive applications
l
Battery powered circuits
l
Half-bridge and full-bridge topologies
l
Synchronous rectifier applications
l
Resonant mode power supplies
l
OR-ing and redundant power switches
l
DC/DC and AC/DC converters
l
DC/AC Inverters
G
D
S
Gate
Drain
Source
TO-220AB
IRFB7437PbF
S
D
G
D
25
50
75
100
125
150
175
TC , Case Temperature (°C)
0
50
100
150
200
250
I D
,
D
ra
in
C
ur
re
nt
(
A
)
LIMITED BY PACKAGE
V
DSS
40V
R
DS(on)
typ.
1.5mΩ
max.
2.0m
Ω
I
D
(Silicon Limited)
250Ac
I
D
(Package Limited)
195A
4.0
6.0
8.0
10.0 12.0 14.0 16.0 18.0 20.0
VGS, Gate-to-Source Voltage (V)
0
1
2
3
4
5
6
R
D
S
(o
n)
,
D
ra
in
-t
o
-S
ou
rc
e
O
n
R
es
is
ta
nc
e
(m
Ω
)
TJ = 25°C
TJ = 125°C
ID = 100A
D
S
G
Strong
IR
FET
IRFB7437PbF
Form
Quantity
IRFB7437PbF
TO-220
Tube
50
IRFB7437PbF
Base Part Number
Package Type
Standard Pack
Orderable Part Number
1
www.irf.com
©
2015 International Rectifier
Submit Datasheet Feedback
January 6, 2015
2
www.irf.com
©
2015 International Rectifier
Submit Datasheet Feedback
January 6, 2015
IRFB7437PbF
Notes:
Calculated continuous current based on maximum allowable junction
temperature. Bond wire current limit is 195A. Note that current
limitations arising from heating of the device leads may occur with
some lead mounting arrangements.
(Refer to AN-1140)
Repetitive rating; pulse width limited by max. junction
temperature.
Limited by T
Jmax
, starting T
J
= 25°C, L = 0.069mH
R
G
= 50
Ω, I
AS
= 100A, V
GS
=10V.
I
SD
≤ 100A, di/dt ≤ 1166A/μs, V
DD
≤ V
(BR)DSS
, T
J
≤ 175°C.
Pulse width
≤ 400μs; duty cycle ≤ 2%.
C
oss
eff. (TR) is a fixed capacitance that gives the same charging time
as C
oss
while V
DS
is rising from 0 to 80% V
DSS
.
C
oss
eff. (ER) is a fixed capacitance that gives the same energy as
C
oss
while V
DS
is rising from 0 to 80% V
DSS
.
R
θ
is measured at T
J
approximately 90°C.
Limited by T
Jmax
starting
T
J
= 25°C, L= 1mH, R
G
= 50
Ω, I
AS
= 40A, V
GS
=10V.
* Halogen -Free since April 30, 2014
Absolute Maximum Ratings
Symbol
Parameter
Units
I
D
@ T
C
= 25°C
Continuous Drain Current, V
GS
@ 10V (Silicon Limited)
I
D
@ T
C
= 100°C
Continuous Drain Current, V
GS
@ 10V (Silicon Limited)
I
D
@ T
C
= 25°C
Continuous Drain Current, V
GS
@ 10V (Wire Bond Limited)
I
DM
Pulsed Drain Current
d
P
D
@T
C
= 25°C
Maximum Power Dissipation
W
Linear Derating Factor
W/°C
V
GS
Gate-to-Source Voltage
V
T
J
Operating Junction and
T
STG
Storage Temperature Range
Soldering Temperature, for 10 seconds (1.6mm from case)
Mounting torque, 6-32 or M3 screw
Avalanche Characteristics
E
AS (Thermally limited)
Single Pulse Avalanche Energy
e
mJ
E
AS (Thermally limited)
Single Pulse Avalanche Energy
k
I
AR
Avalanche Current
d
A
E
AR
Repetitive Avalanche Energy
d
mJ
Thermal Resistance
Symbol
Parameter
Typ.
Max.
Units
R
θJC
Junction-to-Case
j
–––
0.65
R
θCS
Case-to-Sink, Flat Greased Surface
0.50
–––
R
θJA
Junction-to-Ambient
j
–––
62
°C/W
A
°C
300
350
See Fig. 14, 15, 22a, 22b
230
Max.
250
c
180
1000
195
802
-55 to + 175
± 20
1.5
10lbf
x in (1.1Nx m)
Static @ T
J
= 25°C (unless otherwise specified)
Symbol
Parameter
Min.
Typ.
Max.
Units
V
(BR)DSS
Drain-to-Source Breakdown Voltage
40
–––
–––
V
ΔV
(BR)DSS
/
ΔT
J
Breakdown Voltage Temp. Coefficient
–––
0.029
–––
V/°C
R
DS(on)
Static Drain-to-Source On-Resistance
–––
1.5
2.0
m
Ω
–––
1.8
–––
V
GS(th)
Gate Threshold Voltage
2.2
3.0
3.9
V
I
DSS
Drain-to-Source Leakage Current
–––
–––
1.0
μA
–––
–––
150
I
GSS
Gate-to-Source Forward Leakage
–––
–––
100
nA
Gate-to-Source Reverse Leakage
–––
–––
-100
R
G
Internal Gate Resistance
–––
2.2
–––
Ω
V
DS
= 40V, V
GS
= 0V
V
DS
= 40V, V
GS
= 0V, T
J
= 125°C
V
GS
= 20V
V
GS
= -20V
Conditions
V
GS
= 0V, I
D
= 250μA
Reference to 25°C, I
D
= 1mA
d
V
GS
= 10V, I
D
= 100A
V
GS
= 6.0V, I
D
= 50A
V
DS
= V
GS
, I
D
= 150μA
3
www.irf.com
©
2015 International Rectifier
Submit Datasheet Feedback
January 6, 2015
IRFB7437PbF
Dynamic @ T
J
= 25°C (unless otherwise specified)
Symbol
Parameter
Min. Typ. Max. Units
gfs
Forward Transconductance
160
–––
–––
S
Q
g
Total Gate Charge
–––
150
225
nC
Q
gs
Gate-to-Source Charge
–––
41
–––
Q
gd
Gate-to-Drain ("Miller") Charge
–––
51
–––
Q
sync
Total Gate Charge Sync. (Q
g
- Q
gd
)
–––
99
–––
t
d(on)
Turn-On Delay Time
–––
19
–––
ns
t
r
Rise Time
–––
70
–––
t
d(off)
Turn-Off Delay Time
–––
78
–––
t
f
Fall Time
–––
53
–––
C
iss
Input Capacitance
–––
7330
–––
pF
C
oss
Output Capacitance
–––
1095
–––
C
rss
Reverse Transfer Capacitance
–––
745
–––
C
oss
eff. (ER) Effective Output Capacitance (Energy Related) i ––– 1310 –––
C
oss
eff. (TR) Effective Output Capacitance (Time Related)h
–––
1735
–––
Diode Characteristics
Symbol
Parameter
Min. Typ. Max. Units
I
S
Continuous Source Current
–––
––– 250c
A
(Body Diode)
I
SM
Pulsed Source Current
–––
–––
1000
A
(Body Diode)d
V
SD
Diode Forward Voltage
–––
1.0
1.3
V
dv/dt
Peak Diode Recovery
f
–––
3.1
–––
V/ns
t
rr
Reverse Recovery Time
–––
30
–––
ns
T
J
= 25°C
V
R
= 34V,
–––
30
–––
T
J
= 125°C
I
F
= 100A
Q
rr
Reverse Recovery Charge
–––
24
–––
nC T
J
= 25°C
di/dt = 100A/μs g
–––
25
–––
T
J
= 125°C
I
RRM
Reverse Recovery Current
–––
1.3
–––
A
T
J
= 25°C
T
J
= 175°C, I
S
= 100A, V
DS
= 40V g
I
D
= 30A
R
G
= 2.7Ω
V
DD
= 20V
Conditions
V
GS
= 10V g
V
GS
= 0V
V
DS
= 25V
ƒ = 1.0 MHz, See Fig. 5
V
GS
= 0V, V
DS
= 0V to 32V i, See Fig. 11
V
GS
= 0V, V
DS
= 0V to 32V h
T
J
= 25°C, I
S
= 100A, V
GS
= 0V g
integral reverse
p-n junction diode.
MOSFET symbol
showing the
V
GS
= 10V
g
I
D
= 100A, V
DS
=20V, V
GS
= 10V
Conditions
V
DS
= 10V, I
D
= 100A
I
D
= 100A
V
DS
=20V
D
S
G
4
www.irf.com
©
2015 International Rectifier
Submit Datasheet Feedback
January 6, 2015
IRFB7437PbF
Fig 3. Typical Output Characteristics
Fig 5. Typical Transfer Characteristics
Fig 6. Normalized On-Resistance vs. Temperature
Fig 4. Typical Output Characteristics
Fig 8. Typical Gate Charge vs. Gate-to-Source Voltage
Fig 7. Typical Capacitance vs. Drain-to-Source Voltage
0.1
1
10
100
VDS, Drain-to-Source Voltage (V)
1
10
100
1000
I D
, D
ra
in
-t
o-
S
ou
rc
e
C
ur
re
nt
(
A
)
VGS
TOP
15V
10V
8.0V
7.0V
6.0V
5.5V
5.0V
BOTTOM
4.5V
≤60μs PULSE WIDTH
Tj = 25°C
4.5V
0.1
1
10
100
VDS, Drain-to-Source Voltage (V)
10
100
1000
I D
, D
ra
in
-t
o-
S
ou
rc
e
C
ur
re
nt
(
A
)
VGS
TOP
15V
10V
8.0V
7.0V
6.0V
5.5V
5.0V
BOTTOM
4.5V
≤60μs PULSE WIDTH
Tj = 175°C
4.5V
-60 -40 -20 0 20 40 60 80 100120140160180
TJ , Junction Temperature (°C)
0.6
0.8
1.0
1.2
1.4
1.6
1.8
2.0
R
D
S
(o
n)
,
D
ra
in
-t
o-
S
ou
rc
e
O
n
R
es
is
ta
nc
e
(
N
or
m
al
iz
ed
)
ID = 100A
VGS = 10V
1
10
100
VDS, Drain-to-Source Voltage (V)
100
1000
10000
100000
C
, C
ap
ac
ita
nc
e
(p
F
)
VGS = 0V, f = 1 MHZ
Ciss = Cgs + Cgd, Cds SHORTED
Crss = Cgd
Coss = Cds + Cgd
Coss
Crss
Ciss
0
40
80
120
160
200
QG Total Gate Charge (nC)
0
2
4
6
8
10
12
14
V
G
S
, G
at
e-
to
-S
ou
rc
e
V
ol
ta
ge
(
V
)
VDS= 32V
VDS= 20V
ID= 100A
3
4
5
6
7
8
VGS, Gate-to-Source Voltage (V)
1.0
10
100
1000
I D
, D
ra
in
-t
o-
S
ou
rc
e
C
ur
re
nt
(A
)
TJ = 25°C
TJ = 175°C
VDS = 10V
≤60μs PULSE WIDTH
5
www.irf.com
©
2015 International Rectifier
Submit Datasheet Feedback
January 6, 2015
IRFB7437PbF
Fig 10. Maximum Safe Operating Area
Fig 11. Drain-to-Source Breakdown Voltage
Fig 9. Typical Source-Drain Diode
Forward Voltage
Fig 12. Typical C
OSS
Stored Energy
Fig 13. Typical On-Resistance vs. Drain Current
0.0
0.5
1.0
1.5
2.0
2.5
VSD, Source-to-Drain Voltage (V)
0.1
1
10
100
1000
I S
D
, R
ev
er
se
D
ra
in
C
ur
re
nt
(
A
)
TJ = 25°C
TJ = 175°C
VGS = 0V
-60 -40 -20 0 20 40 60 80 100120140160180
TJ , Temperature ( °C )
40
42
44
46
48
50
V
(B
R
)D
S
S
,
D
ra
in
-t
o-
S
ou
rc
e
B
re
ak
do
w
n
V
ol
ta
ge
(
V
)
Id = 1.0mA
0
10
20
30
40
50
VDS, Drain-to-Source Voltage (V)
0.0
0.2
0.4
0.6
0.8
1.0
1.2
E
ne
rg
y
(μ
J)
0.1
1
10
VDS, Drain-toSource Voltage (V)
0.1
1
10
100
1000
I D
,
D
ra
in
-t
o-
S
ou
rc
e
C
ur
re
nt
(
A
)
Tc = 25°C
Tj = 175°C
Single Pulse
1msec
10msec
100μsec
DC
OPERATION IN THIS AREA
LIMITED BY RDS(on)
Limited by Package
0
100
200
300
400
500
ID , Drain Current (A)
1
2
3
4
5
6
7
8
R
D
S
(
on
) ,
D
ra
in
-t
o-
S
ou
rc
e
O
n
R
es
is
ta
nc
e
(m
Ω
)
VGS = 5.5V
VGS = 6.0V
VGS = 7.0V
VGS = 8.0V
VGS = 10V
6
www.irf.com
©
2015 International Rectifier
Submit Datasheet Feedback
January 6, 2015
IRFB7437PbF
Fig 14. Maximum Effective Transient Thermal Impedance, Junction-to-Case
Fig 15. Typical Avalanche Current vs.Pulsewidth
Fig 16. Maximum Avalanche Energy vs. Temperature
Notes on Repetitive Avalanche Curves , Figures 14, 15:
(For further info, see AN-1005 at www.irf.com)
1. Avalanche failures assumption:
Purely a thermal phenomenon and failure occurs at a temperature far in
excess of T
jmax
. This is validated for every part type.
2. Safe operation in Avalanche is allowed as long asT
jmax
is not exceeded.
3. Equation below based on circuit and waveforms shown in Figures 22a, 22b.
4. P
D (ave)
= Average power dissipation per single avalanche pulse.
5. BV = Rated breakdown voltage (1.3 factor accounts for voltage increase
during avalanche).
6. I
av
= Allowable avalanche current.
7.
ΔT
=
Allowable rise in junction temperature, not to exceed
T
jmax
(assumed as
25°C in Figure 14, 15).
t
av =
Average time in avalanche.
D = Duty cycle in avalanche = t
av
·f
Z
thJC
(D, t
av
) = Transient thermal resistance, see Figures 13)
P
D (ave)
= 1/2 ( 1.3·BV·I
av
) =
DT/ Z
thJC
I
av
=
2
DT/ [1.3·BV·Z
th
]
E
AS (AR)
= P
D (ave)
·t
av
1E-006
1E-005
0.0001
0.001
0.01
0.1
t1 , Rectangular Pulse Duration (sec)
0.0001
0.001
0.01
0.1
1
T
he
rm
al
R
es
po
ns
e
(
Z
th
JC
)
0.20
0.10
D = 0.50
0.02
0.01
0.05
SINGLE PULSE
( THERMAL RESPONSE )
Notes:
1. Duty Factor D = t1/t2
2. Peak Tj = P dm x Zthjc + Tc
1.0E-06
1.0E-05
1.0E-04
1.0E-03
1.0E-02
1.0E-01
tav (sec)
1
10
100
1000
A
va
la
nc
he
C
ur
re
nt
(
A
)
Allowed avalanche Current vs avalanche
pulsewidth, tav, assuming ΔΤ j = 25°C and
Tstart = 150°C. (Single Pulse)
Allowed avalanche Current vs avalanche
pulsewidth, tav, assuming ΔTj = 150°C and
Tstart =25°C (Single Pulse)
25
50
75
100
125
150
175
Starting TJ , Junction Temperature (°C)
0
50
100
150
200
250
300
350
E
A
R
,
A
va
la
nc
he
E
ne
rg
y
(m
J)
TOP Single Pulse
BOTTOM 1% Duty Cycle
ID = 100A
7
www.irf.com
©
2015 International Rectifier
Submit Datasheet Feedback
January 6, 2015
IRFB7437PbF
Fig. 18 - Typical Recovery Current vs. di
f
/dt
Fig 17. Threshold Voltage vs. Temperature
Fig. 20 - Typical Stored Charge vs. di
f
/dt
Fig. 19 - Typical Recovery Current vs. di
f
/dt
Fig. 21 - Typical Stored Charge vs. di
f
/dt
-75 -50 -25 0
25 50 75 100 125 150 175
TJ , Temperature ( °C )
1.0
1.5
2.0
2.5
3.0
3.5
4.0
4.5
V
G
S
(t
h)
,
G
at
e
th
re
sh
ol
d
V
ol
ta
ge
(
V
)
ID = 150μA
ID = 1.0mA
ID = 1.0A
0
200
400
600
800
1000
diF /dt (A/μs)
0
2
4
6
8
10
I R
R
(
A
)
IF = 100A
VR = 34V
TJ = 25°C
TJ = 125°C
0
200
400
600
800
1000
diF /dt (A/μs)
0
2
4
6
8
10
I R
R
(
A
)
IF = 60A
VR = 34V
TJ = 25°C
TJ = 125°C
0
200
400
600
800
1000
diF /dt (A/μs)
0
20
40
60
80
100
120
140
Q
R
R
(
nC
)
IF = 60A
VR = 34V
TJ = 25°C
TJ = 125°C
0
200
400
600
800
1000
diF /dt (A/μs)
0
20
40
60
80
100
120
140
Q
R
R
(
nC
)
IF = 100A
VR = 34V
TJ = 25°C
TJ = 125°C
8
www.irf.com
©
2015 International Rectifier
Submit Datasheet Feedback
January 6, 2015
IRFB7437PbF
Fig 24a. Switching Time Test Circuit
Fig 24b. Switching Time Waveforms
Fig 23b. Unclamped Inductive Waveforms
Fig 23a. Unclamped Inductive Test Circuit
tp
V
(BR)DSS
I
AS
RG
IAS
0.01
Ω
tp
D.U.T
L
VDS
+
- VDD
DRIVER
A
15V
20V
V
GS
Fig 25a. Gate Charge Test Circuit
Fig 25b. Gate Charge Waveform
Vds
Vgs
Id
Vgs(th)
Qgs1 Qgs2
Qgd
Qgodr
Fig 22.
Peak Diode Recovery dv/dt Test Circuit for N-Channel
HEXFET
®
Power MOSFETs
Circuit Layout Considerations
• Low Stray Inductance
• Ground Plane
• Low Leakage Inductance
Current Transformer
P.W.
Period
di/dt
Diode Recovery
dv/dt
Ripple
≤ 5%
Body Diode Forward Drop
Re-Applied
Voltage
Reverse
Recovery
Current
Body Diode Forward
Current
V
GS
=10V
V
DD
I
SD
Driver Gate Drive
D.U.T. I
SD
Waveform
D.U.T. V
DS
Waveform
Inductor Curent
D =
P.W.
Period
*
V
GS
= 5V for Logic Level Devices
*
+
-
+
+
+
-
-
-
R
G
V
DD
• dv/dt controlled by R
G
• Driver same type as D.U.T.
• I
SD
controlled by Duty Factor "D"
• D.U.T. - Device Under Test
D.U.T
Inductor Current
D.U.T.
V
DS
I
D
I
G
3mA
V
GS
.3
μF
50K
Ω
.2
μF
12V
Current Regulator
Same Type as D.U.T.
Current Sampling Resistors
+
-
V
DS
90%
10%
V
GS
t
d(on)
t
r
t
d(off)
t
f
V
DS
Pulse Width ≤ 1 µs
Duty Factor ≤ 0.1 %
R
D
V
GS
R
G
D.U.T.
10V
+
-
V
DD
V
GS
9
www.irf.com
©
2015 International Rectifier
Submit Datasheet Feedback
January 6, 2015
IRFB7437PbF
TO-220AB Part Marking Information
TO-220AB Package Outline
Dimensions are shown in millimeters (inches)
TO-220AB packages are not recommended for Surface Mount Application.
Note: For the most current drawing please refer to IR website at:
http://www.irf.com/package/
10
www.irf.com
©
2015 International Rectifier
Submit Datasheet Feedback
January 6, 2015
IRFB7437PbF
IR WORLD HEADQUARTERS: 101 N. Sepulveda Blvd., El Segundo, California 90245, USA
To contact International Rectifier, please visit
http://www.irf.com/whoto-call/
Qualification standards can be found at International Rectifiers web site:
http://www.irf.com/product-info/reliability/
Applicable version of JEDEC standard at the time of product release.
Qualification level
Moisture Sensitivity Level
TO-220
Not applicable
RoHS compliant
(per JEDEC JESD47F
††
guidelines)
Yes
Qualification information†
Industrial
Revision History
Date
Comment
• Updated data sheet with new IR corporate template.
• Updated typo on the fig.19 and fig.21, unit of y-axis from "A" to "nC" on page7.
• Updated package outline and part marking on page 9.
• Added bullet point in the Benefits "RoHS Compliant, Halogen -Free" on page 1.
• Updated E
AS (L =1mH)
= 802mJ on page 2
• Updated note 9 “Limited by T
Jmax
, starting T
J
= 25°C, L = 1mH, R
G
= 50
Ω, I
AS
= 40A, V
GS
=10V”. on page 2
4/22/2014
1/6/2015