IRFB7434PbF Product Datasheet

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/Infineon-IRFB7434-DS-v01_02-EN-html.html
background image

 

 

  Strong

IR

FET™ 

    IRFB7434PbF  

HEXFET

® 

Power MOSFET 

D

S

G

Application 

 Brushed Motor drive applications 

 BLDC Motor drive applications 



Battery powered circuits 

Half-bridge and full-bridge topologies  

Synchronous rectifier applications 

 

Resonant mode power supplies 

 

OR-ing and redundant power switches 

DC/DC and AC/DC converters 

DC/AC Inverters 

Benefits 

 Improved  Gate, Avalanche and Dynamic dV/dt Ruggedness 

 Fully Characterized Capacitance and Avalanche SOA 

 Enhanced body diode dV/dt and dI/dt Capability   

 Lead-Free* 

 RoHS Compliant, Halogen-Free* 

V

DSS 

40V 

R

DS(on) 

typ.

 

1.25m



            max 

 

1.6m



I

D (Silicon Limited) 

317A 

I

D (Package Limited) 

195A 

 

Fig 1.  Typical On-Resistance vs. Gate Voltage 

Fig 2.  Maximum Drain Current vs. Case Temperature 

TO-220AB 

IRFB7434PbF 

G D S 

Gate Drain Source 

 

Base part number 

Package Type 

Standard Pack 

Orderable Part Number 

Form 

Quantity 

  

IRFB7434PbF 

TO-220 

Tube 

50 

IRFB7434PbF 

 

                   2018-07-10 

2

4

6

8

10

12

14

16

18

20

VGS, Gate -to -Source Voltage  (V)

0

1

2

3

4

5

R

D

S

(o

n)

,  

D

ra

in

-t

-S

ou

rc

e

 O

n

 R

es

is

ta

nc

e

 (

m

)

ID = 100A

TJ = 25°C

TJ = 125°C

25

50

75

100

125

150

175

 TC , Case Temperature (°C)

0

50

100

150

200

250

300

350

I D

,   

D

ra

in

 C

ur

re

nt

 (

A

)

Limited By  Package

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/Infineon-IRFB7434-DS-v01_02-EN-html.html
background image

 

2018-07-10 

 

IRFB7434PbF 

Absolute Maximum Rating 

 Symbol 

Parameter Max. 

Units 

I

D

 @ T

C

 = 25°C 

Continuous Drain Current, VGS @ 10V (Silicon Limited) 

317 

A  

I

D

 @ T

C

 = 100°C 

Continuous Drain Current, V

GS

 @ 10V (Silicon Limited) 

224 

I

D

 @ T

C

 = 25°C 

Continuous Drain Current, V

GS

 @ 10V (Wire Bond Limited) 

195 

I

DM 

Pulsed Drain Current 

1270 

P

D

 @T

C

 = 25°C 

Maximum Power Dissipation  

294 

 W 

  

Linear Derating Factor  

1.96 

W/°C 

V

GS 

Gate-to-Source Voltage 

 ± 20 

T

J  

T

STG 

Operating Junction and 
Storage Temperature Range 

-55  to + 175  

°C   

  

Soldering Temperature, for 10 seconds (1.6mm from case) 

300  

 

Mounting Torque, 6-32 or M3 Screw 

10 lbf·in (1.1 N·m)  

 

Avalanche Characteristics 

E

AS (Thermally limited) 

Single Pulse Avalanche Energy 

490 

mJ  

E

AS (Thermally limited) 

Single Pulse Avalanche Energy 

1098 

I

AR 

Avalanche Current  

See Fig 15, 16, 23a, 23b  

E

AR 

Repetitive Avalanche Energy  mJ 

Thermal Resistance  

 Symbol 

Parameter Typ. 

Max. 

Units 

R

JC 

Junction-to-Case 

––– 0.51 

°C/W  

R

CS 

Case-to-Sink, Flat Greased Surface 

0.50 ––– 

R

JA

  

Junction-to-Ambient 

––– 62 

Static @ T

J

 = 25°C (unless otherwise specified) 

 Symbol 

Parameter Min. 

Typ. 

Max. 

Units 

Conditions 

V

(BR)DSS 

Drain-to-Source Breakdown Voltage 

40 

–––  ––– 

V

GS

 = 0V, I

D

 = 250µA 

V

(BR)DSS

/

T

J  

Breakdown Voltage Temp. Coefficient 

–––  0.032  ––– 

V/°C  Reference to 25°C, I

D

 = 5mA  

R

DS(on) 

   

––– 1.25 1.6 

m



V

GS

 = 10V, I

D

 = 100A  

––– 1.8 ––– 

V

GS

 = 6.0V, I

D

 = 50A  

V

GS(th) 

Gate Threshold Voltage 

 2.2 

3.0 

3.9 

V

DS

 = V

GS

, I

D

 = 250µA 

I

DSS 

  

Drain-to-Source Leakage Current   

––– ––– 1.0 

µA 

V

DS

 =40 V, V

GS

 = 0V 

––– ––– 150 

V

DS

 =40V,V

GS

 = 0V,T

J

 =125°C 

I

GSS 

  

Gate-to-Source Forward Leakage 

––– 

–––  100 

nA 

V

GS

 = 20V 

Gate-to-Source Reverse Leakage 

––– 

–––  -100 

V

GS

 = -20V 

R

Gate Resistance 

––– 

2.1 

––– 



      

Static Drain-to-Source On-Resistance    

Notes: 



Calculated continuous current based on maximum allowable junction temperature. Bond wire current limit is 195A. Note that current 

 

 limitations arising from heating of the device leads may occur with some  lead mounting arrangements. (Refer to AN-1140)  

  Repetitive rating;  pulse width limited by max. junction temperature. 



Limited by T

Jmax

, starting T

J

 = 25°C, L = 0.099mH,R

G

 = 50

, I

AS

 = 100A, V

GS

 =10V.   

  I

SD

 

 100A, di/dt  1307A/µs, V

DD

 

 V

(BR)DSS

, T

J

 

 175°C.  

 Pulse width 

 400µs; duty cycle  2%. 

   C

oss

 eff. (TR) is a fixed capacitance that gives the same charging time as C

oss

 while V

DS

 is rising from 0 to 80% V

DSS

.

 



C

oss

 eff. (ER) is a fixed capacitance that gives the same energy as C

oss

 while VDS is rising from 0 to 80% V

DSS

.  

   R

 is measured at T

J

 approximately 90°C. 

 

    Limited by T

Jmax

, starting T

J

 = 25°C, L= 1mH, R

G

 = 50

, I

AS

 = 47A, V

GS

 =10V.  

*

  Halogen -Free since April 30, 2014 

 

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/Infineon-IRFB7434-DS-v01_02-EN-html.html
background image

 

2018-07-10 

 

IRFB7434PbF 

Dynamic  Electrical Characteristics @ T

J

 = 25°C (unless otherwise specified) 

 Symbol 

Parameter Min. 

Typ. 

Max. 

Units 

Conditions 

gfs Forward 

Transconductance 

211 

––– 

––– 

V

DS

 = 10V, I

D

 =100A 

Q

Total Gate Charge  

––– 

216 

324 

I

D

 = 100A 

Q

gs 

Gate-to-Source Charge 

––– 

51 

––– 

V

DS

 = 20V 

Q

gd 

Gate-to-Drain Charge 

––– 

77 

––– 

V

GS

 = 10V 

Q

sync 

Total Gate Charge Sync. (Qg– Qgd) 

––– 

139 

––– 

 

t

d(on) 

Turn-On Delay Time 

––– 

24 

––– 

ns 

V

DD

 = 20V 

t

Rise Time 

––– 

68 

––– 

I

D

 = 30A 

t

d(off) 

Turn-Off Delay Time 

––– 

115 

––– 

R

G

= 2.7



t

Fall Time 

––– 

68 

––– 

V

GS

 = 10V 

C

iss 

Input Capacitance 

–––  10820  ––– 

pF  

V

GS

 = 0V 

C

oss 

Output Capacitance 

––– 

1540 

––– 

V

DS

 = 25V 

C

rss 

Reverse Transfer Capacitance 

––– 

1140 

––– 

ƒ = 1.0MHz,  See Fig.5 

C

oss eff.(ER) 

Effective Output Capacitance  
(Energy Related) 

––– 1880 ––– 

V

GS

 = 0V, VDS = 0V to 32V 

C

oss eff.(TR) 

Output Capacitance (Time Related) 

––– 

2208 

––– 

V

GS

 = 0V, VDS = 0V to 32V 

Diode Characteristics  

 Symbol 

Parameter Min. 

Typ. 

Max. 

Units 

Conditions 

I

  

Continuous Source Current  

––– ––– 317 

MOSFET symbol 

(Body Diode) 

showing  the 

I

SM 

  

Pulsed Source Current 

––– ––– 1270 

integral reverse 

(Body Diode)

p-n junction diode. 

V

SD 

Diode Forward Voltage 

––– 

0.9 

1.3 

V  T

J

 = 25°C,I

= 100A,V

GS

 = 0V 

dv/dt 

Peak Diode Recovery dv/dt

––– 5.0 ––– 

V/ns 

T

J

 = 175°C,I

= 100A,V

DS

 = 40V 

t

rr  

Reverse Recovery Time  

––– 38 ––– 

ns  

T

J

 = 25°C          V

DD

 = 34V 

––– 37 ––– 

T

J

 = 125°C         I

F

 = 100A,  

Q

rr  

Reverse Recovery Charge  

––– 50 ––– 

nC  

 T

J

 = 25°C     di/dt = 100A/µs 

––– 50 ––– 

T

J

 = 125°C          

I

RRM 

Reverse Recovery Current 

––– 

1.9 

––– 

A  T

J

 = 25°C     

nC   

D

S

G

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/Infineon-IRFB7434-DS-v01_02-EN-html.html
background image

 

2018-07-10 

 

IRFB7434PbF 

Fig 6.  Normalized On-Resistance vs. Temperature 

Fig 5.  Typical Transfer Characteristics 

Fig 4.  Typical Output Characteristics 

Fig 3.  Typical Output Characteristics 

Fig 7.  Typical Capacitance vs. Drain-to-Source Voltage 

0.1

1

10

100

VDS, Drain-to-Source Voltage (V)

0.1

1

10

100

1000

I D

D

ra

in

-t

o

-S

ou

rc

e

 C

u

rr

e

nt

 (

A

)

VGS

TOP           15V

10V

8.0V

7.0V

6.0V

5.5V

5.0V

BOTTOM

4.5V

60µs 

PULSE WIDTH

Tj = 25°C

4.5V

2

4

6

8

10

VGS, Gate-to-Source Voltage (V)

0.1

1

10

100

1000

I D

, D

ra

in

-t

o-

S

ou

rc

C

ur

re

nt

 

(A

)

TJ = 25°C

TJ = 175°C

VDS = 10V

60µs PULSE WIDTH

0.1

1

10

100

VDS, Drain-to-Source Voltage (V)

100

1000

10000

100000

1000000

C

, C

ap

ac

ita

nc

(p

F

)

VGS   = 0V,       f = 1 MHZ

Ciss    = Cgs + Cgd,  C ds SHORTED
Crss    = Cgd 
Coss   = Cds + Cgd

Coss

Crss

Ciss

0.1

1

10

100

VDS, Drain-to-Source Voltage (V)

1

10

100

1000

I D

, D

ra

in

-t

o-

S

o

ur

ce

 C

u

rr

en

t (

A

)

4.5V

60µs 

PULSE WIDTH 

Tj = 175°C 

VGS

TOP           15V

10V

8.0V

7.0V

6.0V

5.5V

5.0V

BOTTOM

4.5V

-60

-20

20

60

100

140

180

TJ , Junction Temperature (°C)

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

R

D

S

(o

n)

 ,

 D

ra

in

-t

o-

S

ou

rc

O

R

es

is

ta

nc

   

   

   

   

   

   

   

 (

N

or

m

al

iz

ed

)

ID = 100A

VGS = 10V

0

50

100

150

200

250

300

 QG,  Total Gate Charge (nC)

0.0

2.0

4.0

6.0

8.0

10.0

12.0

14.0

V

G

S

, G

at

e-

to

-S

ou

rc

V

ol

ta

ge

 (

V

)

VDS= 32V

VDS= 20V

ID= 100A

Fig 8.  Typical Gate Charge vs.  

           Gate-to-Source Voltage 

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/Infineon-IRFB7434-DS-v01_02-EN-html.html
background image

 

2018-07-10 

 

IRFB7434PbF 

Fig 10.  Maximum Safe Operating Area  

Fig 9.  Typical Source-Drain Diode Forward Voltage 

Fig 12.  Typical C

oss

 Stored Energy  

Fig 13.  Typical On-Resistance vs. Drain Current 

Fig 11.  Drain-to-Source Breakdown Voltage 

0.0

0.5

1.0

1.5

2.0

2.5

VSD, Source-to-Drain Voltage (V)

0.1

1

10

100

1000

I S

D

, R

ev

er

se

 D

ra

in

 C

ur

re

nt

 (

A

)

TJ = 25°C

TJ = 175°C

VGS = 0V

-60

-20

20

60

100

140

180

TJ , Temperature ( °C )

40

41

42

43

44

45

46

47

48

49

50

V

(B

R

)D

S

S

,  D

ra

in

-t

o-

S

ou

rc

B

re

ak

do

w

V

ol

ta

ge

 (

V

)

Id = 5.0mA

0

100

200

300

400

500

ID, Drain Current (A)

0.0

5.0

10.0

15.0

20.0

R

D

S

(o

n)

,  

D

ra

in

-t

-S

ou

rc

O

R

es

is

ta

nc

(m

)

VGS = 7.0V

VGS = 8.0V

VGS = 10V

VGS = 6.0V

VGS = 5.5V

0

5

10

15

20

25

30

35

40

45

VDS, Drain-to-Source Voltage (V)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

E

ne

rg

J)

VDS= 0V to 32V

0.1

1

10

100

VDS, Drain-to-Source Voltage (V)

0.1

1

10

100

1000

10000

I D

,  

D

ra

in

-t

o-

S

ou

rc

C

ur

re

nt

 (

A

)

Tc = 25°C

Tj = 175°C

Single Pulse

10msec

1msec

OPERATION IN THIS AREA 
LIMITED BY RDS(on)

100µsec

DC

Limited By Package

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/Infineon-IRFB7434-DS-v01_02-EN-html.html
background image

 

2018-07-10 

 

IRFB7434PbF 

Fig 14.  Maximum Effective Transient Thermal Impedance, Junction-to-Case  

Fig 16.

 Maximum Avalanche Energy vs. Temperature 

Notes on Repetitive Avalanche Curves , Figures 15, 16: 
(For further info, see AN-1005 at www.irf.com) 
1.Avalanche failures assumption:  
 

Purely a thermal phenomenon and failure occurs at a  

 

temperature far in excess of T

jmax

. This is validated for every  

 part 

type. 

2. Safe operation in Avalanche is allowed as long asT

jmax

 is not  

   exceeded. 
3. Equation below based on circuit and waveforms shown in Figures  
    23a, 23b. 
4. P

D (ave) 

= Average power dissipation per single avalanche pulse. 

5. BV = Rated breakdown voltage (1.3 factor accounts for voltage 
 

 increase during avalanche). 

6. I

av

 = Allowable avalanche current. 

7. 

T = Allowable rise in junction temperature, not to exceed T

jmax  

    (assumed as 25°C in Figure 14, 15).  
 

t

av

 = Average time in avalanche. 

 

D = Duty cycle in avalanche =  tav ·f 

 

Z

thJC

(D, t

av

) = Transient thermal resistance, see Figures 14) 

 

 

PD (ave) = 1/2 ( 1.3·BV·I

av

) = 

T/ Z

thJC

 

 

 

I

av

 = 2

T/ [1.3·BV·Z

th

 

 

E

AS (AR) 

= P

D (ave)·

t

av

  

Fig 15. Avalanche Current vs. Pulse Width

 

1E-006

1E-005

0.0001

0.001

0.01

0.1

t1 , Rectangular Pulse Duration (sec)

0.0001

0.001

0.01

0.1

1

T

he

rm

al

 R

es

po

ns

Z

 th

JC

 )

 °

C

/W

0.20

0.10

D = 0.50

0.02

0.01

0.05

SINGLE PULSE

( THERMAL RESPONSE )

Notes:

1. Duty Factor D = t1/t2

2. Peak Tj = P dm x Zthjc + Tc

1.0E-06

1.0E-05

1.0E-04

1.0E-03

1.0E-02

1.0E-01

tav (sec)

1

10

100

1000

A

va

la

nc

he

 C

ur

re

nt

 (

A

)

Allowed avalanche Current vs avalanche 
pulsewidth, tav, assuming   j = 25°C and 

Tstart = 150°C.

Allowed avalanche Current vs avalanche 
pulsewidth, tav, assuming Tj = 150°C and 

Tstart =25°C (Single Pulse)

25

50

75

100

125

150

175

Starting TJ , Junction Temperature (°C)

0

100

200

300

400

500

600

E

A

R

 , 

A

va

la

nc

he

 E

ne

rg

(m

J)

TOP          Single Pulse                
BOTTOM   1.0% Duty Cycle
ID = 100A

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/Infineon-IRFB7434-DS-v01_02-EN-html.html
background image

 

2018-07-10 

 

IRFB7434PbF 

Fig 17.  Threshold Voltage vs. Temperature 

Fig 19.  Typical Recovery Current vs. dif/dt 

Fig 20.  Typical Stored Charge vs. dif/dt 

Fig 21.  Typical Stored Charge vs. dif/dt 

-75

-25

25

75

125

175

225

TJ , Temperature ( °C )

0.5

1.5

2.5

3.5

4.5

V

G

S

(t

h)

,  G

at

th

re

sh

ol

V

ol

ta

ge

 (

V

)

ID = 250µA

ID = 1.0mA

ID = 1.0A

0

200

400

600

800

1000

diF /dt (A/µs)

0

2

4

6

8

10

I R

R

M

 (

A

)

IF = 60A
VR = 34V
TJ = 25°C
TJ = 125°C

0

200

400

600

800

1000

diF /dt (A/µs)

0

2

4

6

8

10

I R

R

M

 (

A

)

IF = 100A
VR = 34V
TJ = 25°C
TJ = 125°C

0

200

400

600

800

1000

diF /dt (A/µs)

40

60

80

100

120

140

160

180

200

220

240

Q

R

R

 (

nC

)

IF = 60A
VR = 34V
TJ = 25°C
TJ = 125°C

Fig 18.  Typical Recovery Current vs. dif/dt 

0

200

400

600

800

1000

diF /dt (A/µs)

0

40

80

120

160

200

Q

R

R

 (

nC

)

IF = 100A
VR = 34V
TJ = 25°C
TJ = 125°C

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/Infineon-IRFB7434-DS-v01_02-EN-html.html
background image

 

2018-07-10 

 

IRFB7434PbF 

Fig 22. Peak Diode Recovery dv/dt Test Circuit for N-Channel HEXFET

® 

Power MOSFETs 

Fig 23a.  Unclamped Inductive Test Circuit 

R G

I

AS

0.01

tp

D.U.T

L

VDS

+

- VDD

DRIVER

A

15V

20V

Fig 24a.  Switching Time Test Circuit 

Fig 25a.  Gate Charge Test Circuit 

tp

V

(BR)DSS

I

AS

Fig 23b.  Unclamped Inductive Waveforms 

Fig 24b.  Switching Time Waveforms 

Vds

Vgs

Id

Vgs(th)

Qgs1 Qgs2

Qgd

Qgodr

Fig 25b.   Gate Charge Waveform 

VDD 

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/Infineon-IRFB7434-DS-v01_02-EN-html.html
background image

 

2018-07-10 

 

IRFB7434PbF 

TO-220AB Package Outline (Dimensions are shown in millimeters (inches)) 

TO-220AB Part Marking Information 

IN T E R N A T IO N A L

P A R T   N U M B E R

R E C T IF IE R

L O T   C O D E

A S S E M B L Y

L O G O

Y E A R   0   =   2 0 0 0

D A T E   C O D E

W E E K   1 9
L IN E   C

L O T   C O D E   1 7 8 9

E X A M P L E : T H IS  IS  A N  IR F 1 0 1 0  

N o t e :  " P "  in  a s s e m b ly  lin e  p o s it io n

in d ic a t e s   " L e a d   -   F r e e "

IN  T H E  A S S E M B L Y  L IN E  " C "

A S S E M B L E D   O N   W W   1 9 ,   2 0 0 0

TO-220AB packages are not recommended for Surface Mount Application

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/Infineon-IRFB7434-DS-v01_02-EN-html.html
background image

10 

 

2018-07-10 

 

IRFB7434PbF 

†   Applicable version of JEDEC standard at the time of product release. 

Qualification Information 

Qualification Level  

Industrial 

 (per JEDEC JESD47F) 

† 

Moisture Sensitivity Level  

TO-220 N/A 

RoHS Compliant 

Yes 

Revision History 

Date Comment 

4/22/2014 



Updated data sheet with new IR corporate template. 



Updated package outline and part marking on page 9. 



Added bullet point in the  Benefits  "RoHS Compliant, Halogen -Free" on page 1. 

11/18/2014 



Updated E

AS

 

(L =1mH)  

= 1098mJ  on page 2 



Updated note 9  “Limited by T

Jmax

, starting T

J

 = 25°C, L = 1mH, R

G

 = 50

, I

AS

 = 47A, V

GS

 =10V”.  on page 2 

07/10/2018 



Updated datasheet with corporate template. 



Corrected typo for Fig 10 (package limit from 10ms curve to DC curve) –on page 5 

Trademarks of Infineon Technologies AG 

µHVIC™, µIPM™, µPFC™, AU-ConvertIR™, AURIX™, C166™, CanPAK™, CIPOS™, CIPURSE™, CoolDP™, CoolGaN™, COOLiR™, CoolMOS™, CoolSET™, CoolSiC™, 

DAVE™, DI-POL™, DirectFET™, DrBlade™, EasyPIM™, EconoBRIDGE™, EconoDUAL™, EconoPACK™, EconoPIM™, EiceDRIVER™, eupec™, FCOS™, GaNpowIR™, 

HEXFET™, HITFET™, HybridPACK™, iMOTION™, IRAM™, ISOFACE™, IsoPACK™, LEDrivIR™, LITIX™, MIPAQ™, ModSTACK™, my-d™, NovalithIC™, OPTIGA™, 

OptiMOS™, ORIGA™, PowIRaudio™, PowIRStage™, PrimePACK™, PrimeSTACK™, PROFET™, PRO-SIL™, RASIC™, REAL3™, SmartLEWIS™, SOLID FLASH™, SPOC™, 

StrongIRFET™, SupIRBuck™, TEMPFET™, TRENCHSTOP™, TriCore™, UHVIC™, XHP™, XMC™ 

 

Trademarks updated November 2015 

 

Other Trademarks 

All referenced product or service names and trademarks are the property of their respective owners. 

 Edition 2016-04-19 
Published by 
Infineon Technologies AG 
81726 Munich, Germany 
  
© 2016 Infineon Technologies AG. 

All Rights Reserved. 

  
Do you have a question about this 

document? 

Email: 

erratum@infineon.com

 

 

Document reference 
ifx1 

IMPORTANT NOTICE 

The information given in this document shall in no event 

be regarded as a guarantee of conditions or 

characteristics  (“Beschaffenheitsgarantie”) . 

  

With respect to any examples, hints or any typical values 

stated herein and/or any information regarding the 

application of the product, Infineon Technologies 

hereby disclaims any and all warranties and liabilities of 

any kind, including without limitation warranties of non-

infringement of intellectual property rights of any third 

party. 

  

In addition, any information given in this document is 

subject to customer’s compliance with its obligations 

stated in this document and any applicable legal 

requirements, norms and standards concerning 

customer’s products and any use of the product of 

Infineon Technologies in customer’s applications. 

  

The data contained in this document is exclusively 

intended for technically trained staff. It is the 

responsibility of customer’s technical departments 

to evaluate the suitability of the product for the 

intended application and the completeness of the 

product information given in this document with respect 

to such application. 

  

For further information on the product, technology, 

delivery terms and conditions and prices please contact 

your nearest Infineon Technologies office 

(

www.infineon.com

). 

 

 Please note that this product is not qualified according to 

the AEC Q100 or AEC Q101 documents of the Automotive 

Electronics Council.  

WARNINGS 

 Due to technical requirements products may contain 

dangerous substances. For information on the types in 

question please contact your nearest Infineon 

Technologies office.  

 

Except as otherwise explicitly approved by Infineon 

Technologies in a written document signed by authorized 

representatives of Infineon Technologies, Infineon 

Technologies’ products may not  be  used  in  any 

applications where a failure of the product or any 

consequences of the use thereof can reasonably be 

expected to result in personal injury.  

  

  

  

Maker
Infineon Technologies