HEXFET
®
Power MOSFET
G
D
S
Gate
Drain
Source
Fig 1. Typical On-Resistance vs. Gate Voltage
Fig 2. Maximum Drain Current vs. Case Temperature
Benefits
l
Improved Gate, Avalanche and Dynamic dV/dt
Ruggedness
l
Fully Characterized Capacitance and Avalanche
SOA
l
Enhanced body diode dV/dt and dI/dt Capability
l
Lead-Free
l
RoHS Compliant, Halogen-Free*
Applications
l
Brushed Motor drive applications
l
BLDC Motor drive applications
l
Battery powered circuits
l
Half-bridge and full-bridge topologies
l
Synchronous rectifier applications
l
Resonant mode power supplies
l
OR-ing and redundant power switches
l
DC/DC and AC/DC converters
l
DC/AC Inverters
TO-220AB
IRFB7430PbF
25
50
75
100
125
150
175
TC , Case Temperature (°C)
0
100
200
300
400
500
I D
,
D
ra
in
C
ur
re
nt
(
A
)
Limited By Package
S
D
G
D
V
DSS
40V
R
DS(on)
typ.
1.0m
Ω
max.
1.3m
Ω
I
D (Silicon Limited)
409A
c
I
D (Package Limited)
195A
D
S
G
4
6
8
10
12
14
16
18
20
VGS, Gate -to -Source Voltage (V)
0.0
2.0
4.0
6.0
R
D
S
(o
n)
,
D
ra
in
-t
o
-S
ou
rc
e
O
n
R
es
is
ta
nc
e
(m
Ω
)
ID = 100A
TJ = 25°C
TJ = 125°C
Ordering Information
Form
Quantity
IRFB7430PbF
TO-220 Tube 50
IRFB7430PbF
Base Part Number
Package Type
Standard Pack
Complete Part Number
1
www.irf.com
© 2015 International Rectifier
Submit Datasheet Feedback
February 19, 2015
Strong
IR
FET
TM
IRFB7430PbF
IRFB7430PbF
www.irf.com
© 2015 International Rectifier
Submit Datasheet Feedback
February 2, 2015
2
Notes:
Calculated continuous current based on maximum allowable junction
temperature. Bond wire current limit is 195A. Note that current
limitations arising from heating of the device leads may occur with
some lead mounting arrangements.
(Refer to AN-1140)
Repetitive rating; pulse width limited by max. junction
temperature.
Limited by T
Jmax
, starting T
J
= 25°C, L = 0.15mH
R
G
= 50
Ω, I
AS
= 100A, V
GS
=10V.
I
SD
≤ 100A, di/dt ≤ 990A/μs, V
DD
≤ V
(BR)DSS
, T
J
≤ 175°C.
Pulse width
≤ 400μs; duty cycle ≤ 2%.
C
oss
eff. (TR) is a fixed capacitance that gives the same charging time
as C
oss
while V
DS
is rising from 0 to 80% V
DSS
.
C
oss
eff. (ER) is a fixed capacitance that gives the same energy as
C
oss
while V
DS
is rising from 0 to 80% V
DSS
.
R
θ
is measured at T
J
approximately 90°C..
Limited by T
Jmax
, starting T
J
= 25°C, L = 1mH, R
G
= 50
Ω, I
AS
= 54A,
V
GS
=10V.
* Halogen -Free since April 30, 2014
Absolute Maximum Ratings
Symbol
Parameter
Units
I
D
@ T
C
= 25°C
Continuous Drain Current, V
GS
@ 10V (Silicon Limited)
I
D
@ T
C
= 100°C
Continuous Drain Current, V
GS
@ 10V (Silicon Limited)
I
D
@ T
C
= 25°C
Continuous Drain Current, V
GS
@ 10V (Wire Bond Limited)
I
DM
Pulsed Drain Current
d
P
D
@T
C
= 25°C
Maximum Power Dissipation
W
Linear Derating Factor
W/°C
V
GS
Gate-to-Source Voltage
V
T
J
Operating Junction and
T
STG
Storage Temperature Range
Soldering Temperature, for 10 seconds (1.6mm from case)
Mounting torque, 6-32 or M3 screw
Avalanche Characteristics
E
AS (Thermally limited)
Single Pulse Avalanche Energy
e
mJ
E
AS (Thermally limited)
Single Pulse Avalanche Energy
k
I
AR
Avalanche Current
d
A
E
AR
Repetitive Avalanche Energy
d
mJ
Thermal Resistance
Symbol
Parameter
Typ.
Max.
Units
R
θJC
Junction-to-Case
j
–––
0.40
R
θCS
Case-to-Sink, Flat Greased Surface
0.50
–––
R
θJA
Junction-to-Ambient
–––
62
°C/W
A
°C
300
760
See Fig. 14, 15, 22a, 22b
375
Max.
409
c
289
c
1524
195
1452
-55 to + 175
± 20
2.5
10lbf
x in (1.1Nx m)
Static @ T
J
= 25°C (unless otherwise specified)
Symbol
Parameter
Min.
Typ.
Max.
Units
V
(BR)DSS
Drain-to-Source Breakdown Voltage
40
–––
–––
V
ΔV
(BR)DSS
/ΔT
J
Breakdown Voltage Temp. Coefficient
–––
0.014
–––
V/°C
Static Drain-to-Source On-Resistance
–––
1.0
1.3
mΩ
–––
1.2
–––
V
GS
= 6.0V, I
D
= 50A
g
V
GS(th)
Gate Threshold Voltage
2.2
–––
3.9
V
I
DSS
Drain-to-Source Leakage Current
–––
–––
1.0
μA
–––
–––
150
I
GSS
Gate-to-Source Forward Leakage
–––
–––
100
nA
Gate-to-Source Reverse Leakage
–––
–––
-100
R
G
Internal Gate Resistance
–––
2.1
–––
Ω
R
DS(on)
Conditions
V
GS
= 0V, I
D
= 250μA
Reference to 25°C, I
D
= 1.0mA
d
V
DS
= V
GS
, I
D
= 250μA
V
GS
= 10V, I
D
= 100A
g
V
GS
= 20V
V
GS
= -20V
V
DS
= 40V, V
GS
= 0V
V
DS
= 40V, V
GS
= 0V, T
J
= 125°C
IRFB7430PbF
www.irf.com
© 2015 International Rectifier
Submit Datasheet Feedback
February 2, 2015
3
S
D
G
Dynamic @ T
J
= 25°C (unless otherwise specified)
Symbol
Parameter
Min.
Typ.
Max.
Units
gfs
Forward Transconductance
150
–––
–––
S
Q
g
Total Gate Charge
–––
300
460
nC
Q
gs
Gate-to-Source Charge
–––
77
–––
Q
gd
Gate-to-Drain ("Miller") Charge
–––
98
–––
Q
sync
Total Gate Charge Sync. (Q
g
- Q
gd
)
–––
202
–––
t
d(on)
Turn-On Delay Time
–––
32
–––
ns
t
r
Rise Time
–––
105
–––
t
d(off)
Turn-Off Delay Time
–––
160
–––
t
f
Fall Time
–––
100
–––
C
iss
Input Capacitance
–––
14240
–––
pF
C
oss
Output Capacitance
–––
2130
–––
C
rss
Reverse Transfer Capacitance
–––
1460
–––
C
oss
eff. (ER)
Effective Output Capacitance (Energy Related)
i
–––
2605
–––
C
oss
eff. (TR)
Effective Output Capacitance (Time Related)
h
–––
2920
–––
Diode Characteristics
Symbol
Parameter
Min.
Typ.
Max.
Units
I
S
Continuous Source Current
–––
–––
394
c
A
(Body Diode)
I
SM
Pulsed Source Current
–––
–––
1576
A
(Body Diode)
d
V
SD
Diode Forward Voltage
–––
0.86
1.2
V
dv/dt
Peak Diode Recovery
f
–––
2.7
–––
V/ns
t
rr
Reverse Recovery Time
–––
52
–––
ns
T
J
= 25°C
V
R
= 34V,
–––
52
–––
T
J
= 125°C
I
F
= 100A
Q
rr
Reverse Recovery Charge
–––
97
–––
nC
T
J
= 25°C
di/dt = 100A/μs
g
–––
97
–––
T
J
= 125°C
I
RRM
Reverse Recovery Current
–––
2.3
–––
A
T
J
= 25°C
R
G
= 2.7Ω
V
GS
= 10V
g
Conditions
V
GS
= 10V
g
V
GS
= 0V
V
DS
= 25V
ƒ = 1.0 MHz
V
DS
=20V
I
D
= 100A
showing the
I
D
= 30A
V
DD
= 20V
T
J
= 175°C, I
S
= 100A, V
DS
= 40V
Conditions
V
DS
= 10V, I
D
= 100A
T
J
= 25°C, I
S
= 100A, V
GS
= 0V
g
integral reverse
p-n junction diode.
MOSFET symbol
V
GS
= 0V, V
DS
= 0V to 32V
i
V
GS
= 0V, V
DS
= 0V to 32V
h
IRFB7430PbF
www.irf.com
© 2015 International Rectifier
Submit Datasheet Feedback
February 2, 2015
4
Fig 3. Typical Output Characteristics
Fig 5. Typical Transfer Characteristics
Fig 6. Normalized On-Resistance vs. Temperature
Fig 4. Typical Output Characteristics
Fig 8. Typical Gate Charge vs. Gate-to-Source Voltage
Fig 7. Typical Capacitance vs. Drain-to-Source Voltage
2
3
4
5
6
7
VGS, Gate-to-Source Voltage (V)
1.0
10
100
1000
I D
, D
ra
in
-t
o-
S
ou
rc
e
C
ur
re
nt
(
A
)
TJ = 25°C
TJ = 175°C
VDS = 25V
≤60μs PULSE WIDTH
-60 -40 -20 0 20 40 60 80 100120140160180
TJ , Junction Temperature (°C)
0.6
0.8
1.0
1.2
1.4
1.6
1.8
2.0
R
D
S
(o
n)
,
D
ra
in
-t
o-
S
ou
rc
e
O
n
R
es
is
ta
nc
e
(
N
or
m
al
iz
ed
)
ID = 100A
VGS = 10V
1
10
100
VDS, Drain-to-Source Voltage (V)
1000
10000
100000
C
, C
ap
ac
ita
nc
e
(p
F
)
VGS = 0V, f = 1 MHZ
Ciss = Cgs + Cgd, C ds SHORTED
Crss = Cgd
Coss = Cds + Cgd
Coss
Crss
Ciss
0.1
1
10
100
VDS, Drain-to-Source Voltage (V)
1
10
100
1000
I D
, D
ra
in
-t
o-
S
ou
rc
e
C
ur
re
nt
(
A
)
VGS
TOP
15V
10V
8.0V
7.0V
6.0V
5.5V
4.8V
BOTTOM
4.5V
≤60μs PULSE WIDTH
Tj = 25°C
4.5V
0.1
1
10
100
VDS, Drain-to-Source Voltage (V)
10
100
1000
I D
, D
ra
in
-t
o-
S
ou
rc
e
C
ur
re
nt
(
A
)
4.5V
≤60μs PULSE WIDTH
Tj = 175°C
VGS
TOP
15V
10V
8.0V
7.0V
6.0V
5.5V
4.8V
BOTTOM
4.5V
0
50
100 150 200 250 300 350 400
QG, Total Gate Charge (nC)
0.0
2.0
4.0
6.0
8.0
10.0
12.0
14.0
V
G
S
, G
at
e-
to
-S
ou
rc
e
V
ol
ta
ge
(
V
)
VDS= 32V
VDS= 20V
ID= 100A
IRFB7430PbF
www.irf.com
© 2015 International Rectifier
Submit Datasheet Feedback
February 2, 2015
5
Fig 10. Maximum Safe Operating Area
Fig 11. Drain-to-Source Breakdown Voltage
Fig 9. Typical Source-Drain Diode
Forward Voltage
Fig 12. Typical C
OSS
Stored Energy
0.0
0.5
1.0
1.5
2.0
2.5
VSD, Source-to-Drain Voltage (V)
0.1
1
10
100
1000
I S
D
, R
ev
er
se
D
ra
in
C
ur
re
nt
(
A
)
TJ = 25°C
TJ = 175°C
VGS = 0V
-60 -40 -20 0 20 40 60 80 100120140160180
TJ , Temperature ( °C )
40
41
42
43
44
45
46
47
V
(B
R
)D
S
S
, D
ra
in
-t
o-
S
ou
rc
e
B
re
ak
do
w
n
V
ol
ta
ge
(
V
)
Id = 1.0mA
Fig 13. Typical On-Resistance vs. Drain Current
0.1
1
10
100
VDS, Drain-toSource Voltage (V)
0.1
1
10
100
1000
10000
I D
,
D
ra
in
-t
o-
S
ou
rc
e
C
ur
re
nt
(
A
)
Tc = 25°C
Tj = 175°C
Single Pulse
1msec
10msec
OPERATION IN THIS AREA
LIMITED BY R DS(on)
100μsec
DC
Limited by package
0
5
10
15
20
25
30
35
40
45
VDS, Drain-to-Source Voltage (V)
0.0
0.5
1.0
1.5
2.0
2.5
E
ne
rg
y
(μ
J)
VDS= 0V to 32V
0
200
400
600
800
1000
1200
ID, Drain Current (A)
0.0
2.0
4.0
6.0
R
D
S
(o
n)
,
D
ra
in
-t
o
-S
ou
rc
e
O
n
R
es
is
ta
nc
e
(m
Ω
)
VGS = 5.5V
VGS = 6.0V
VGS = 7.0V
VGS = 8.0V
VGS =10V
IRFB7430PbF
www.irf.com
© 2015 International Rectifier
Submit Datasheet Feedback
February 2, 2015
6
Fig 14. Maximum Effective Transient Thermal Impedance, Junction-to-Case
Fig 15. Typical Avalanche Current vs.Pulsewidth
Fig 16. Maximum Avalanche Energy vs. Temperature
Notes on Repetitive Avalanche Curves , Figures 14, 15:
(For further info, see AN-1005 at www.irf.com)
1. Avalanche failures assumption:
Purely a thermal phenomenon and failure occurs at a temperature far in
excess of T
jmax
. This is validated for every part type.
2. Safe operation in Avalanche is allowed as long asT
jmax
is not exceeded.
3. Equation below based on circuit and waveforms shown in Figures 16a, 16b.
4. P
D (ave)
= Average power dissipation per single avalanche pulse.
5. BV = Rated breakdown voltage (1.3 factor accounts for voltage increase
during avalanche).
6. I
av
= Allowable avalanche current.
7.
ΔT
=
Allowable rise in junction temperature, not to exceed
T
jmax
(assumed as
25°C in Figure 14, 15).
t
av =
Average time in avalanche.
D = Duty cycle in avalanche = t
av
·f
Z
thJC
(D, t
av
) = Transient thermal resistance, see Figures 13)
P
D (ave)
= 1/2 ( 1.3·BV·I
av
) =
DT/ Z
thJC
I
av
=
2
DT/ [1.3·BV·Z
th
]
E
AS (AR)
= P
D (ave)
·t
av
25
50
75
100
125
150
175
Starting TJ , Junction Temperature (°C)
0
100
200
300
400
500
600
700
800
E
A
R
,
A
va
la
nc
he
E
ne
rg
y
(m
J)
TOP Single Pulse
BOTTOM 1.0% Duty Cycle
ID = 100A
1E-006
1E-005
0.0001
0.001
0.01
0.1
t1 , Rectangular Pulse Duration (sec)
0.0001
0.001
0.01
0.1
1
T
he
rm
al
R
es
po
ns
e
(
Z
th
JC
)
°
C
/W
0.20
0.10
D = 0.50
0.02
0.01
0.05
SINGLE PULSE
( THERMAL RESPONSE )
Notes:
1. Duty Factor D = t1/t2
2. Peak Tj = P dm x Zthjc + Tc
1.0E-06
1.0E-05
1.0E-04
1.0E-03
1.0E-02
1.0E-01
tav (sec)
1
10
100
1000
A
va
la
nc
he
C
ur
re
nt
(
A
)
Allowed avalanche Current vs avalanche
pulsewidth, tav, assuming
ΔΤ j = 25°C and
Tstart = 150°C.
Allowed avalanche Current vs avalanche
pulsewidth, tav, assuming
ΔTj = 150°C and
Tstart =25°C (Single Pulse)
IRFB7430PbF
www.irf.com
© 2015 International Rectifier
Submit Datasheet Feedback
February 2, 2015
7
Fig. 18 - Typical Recovery Current vs. di
f
/dt
Fig 17. Threshold Voltage vs. Temperature
Fig. 20 - Typical Stored Charge vs. di
f
/dt
Fig. 19 - Typical Recovery Current vs. di
f
/dt
Fig. 21 - Typical Stored Charge vs. di
f
/dt
-75 -50 -25 0
25 50 75 100 125 150 175
TJ , Temperature ( °C )
1.0
1.5
2.0
2.5
3.0
3.5
4.0
V
G
S
(t
h)
, G
at
e
th
re
sh
ol
d
V
ol
ta
ge
(
V
)
ID = 250μA
ID = 1.0mA
ID = 1.0A
0
200
400
600
800
1000
diF /dt (A/μs)
0
2
4
6
8
10
12
I R
R
M
(
A
)
IF = 100A
VR = 34V
TJ = 25°C
TJ = 125°C
0
200
400
600
800
1000
diF /dt (A/μs)
60
100
140
180
220
260
Q
R
R
(
nC
)
IF = 100A
VR = 34V
TJ = 25°C
TJ = 125°C
0
200
400
600
800
1000
diF /dt (A/μs)
50
100
150
200
250
300
Q
R
R
(
nC
)
IF = 60A
VR = 34V
TJ = 25°C
TJ = 125°C
0
200
400
600
800
1000
diF /dt (A/μs)
0
2
4
6
8
10
12
I R
R
M
(
A
)
IF = 60A
VR = 34V
TJ = 25°C
TJ = 125°C
IRFB7430PbF
www.irf.com
© 2015 International Rectifier
Submit Datasheet Feedback
February 2, 2015
8
Fig 23a. Switching Time Test Circuit
Fig 23b. Switching Time Waveforms
Fig 22b. Unclamped Inductive Waveforms
Fig 22a. Unclamped Inductive Test Circuit
tp
V
(BR)DSS
I
AS
RG
IAS
0.01
Ω
tp
D.U.T
L
VDS
+
- VDD
DRIVER
A
15V
20V
V
GS
Fig 24a. Gate Charge Test Circuit
Fig 24b. Gate Charge Waveform
Vds
Vgs
Id
Vgs(th)
Qgs1 Qgs2
Qgd
Qgodr
Fig 22.
Peak Diode Recovery dv/dt Test Circuit for N-Channel
HEXFET
®
Power MOSFETs
Circuit Layout Considerations
• Low Stray Inductance
• Ground Plane
• Low Leakage Inductance
Current Transformer
P.W.
Period
di/dt
Diode Recovery
dv/dt
Ripple
≤ 5%
Body Diode Forward Drop
Re-Applied
Voltage
Reverse
Recovery
Current
Body Diode Forward
Current
V
GS
=10V
V
DD
I
SD
Driver Gate Drive
D.U.T. I
SD
Waveform
D.U.T. V
DS
Waveform
Inductor Curent
D =
P.W.
Period
*
V
GS
= 5V for Logic Level Devices
*
+
-
+
+
+
-
-
-
R
G
V
DD
• dv/dt controlled by R
G
• Driver same type as D.U.T.
• I
SD
controlled by Duty Factor "D"
• D.U.T. - Device Under Test
D.U.T
Inductor Current
D.U.T.
V
DS
I
D
I
G
3mA
V
GS
.3
μF
50K
Ω
.2
μF
12V
Current Regulator
Same Type as D.U.T.
Current Sampling Resistors
+
-
V
DS
90%
10%
V
GS
t
d(on)
t
r
t
d(off)
t
f
V
DS
Pulse Width ≤ 1 µs
Duty Factor ≤ 0.1 %
R
D
V
GS
R
G
D.U.T.
10V
+
-
V
DD
V
GS
IRFB7430PbF
www.irf.com
© 2015 International Rectifier
Submit Datasheet Feedback
February 2, 2015
9
TO-220AB Part Marking Information
TO-220AB Package Outline
Dimensions are shown in millimeters (inches)
TO-220AB packages are not recommended for Surface Mount Application.
Note: For the most current drawing please refer to IR website at
http://www.irf.com/package/
IRFB7430PbF
www.irf.com
© 2015 International Rectifier
Submit Datasheet Feedback
February 2, 2015
10
Qualification standards can be found at International Rectifiers web site:
http://www.irf.com/product-info/reliability/
Applicable version of JEDEC standard at the time of product release.
IR WORLD HEADQUARTERS: 101 N. Sepulveda Blvd., El Segundo, California 90245, USA
To contact International Rectifier, please visit
http://www.irf.com/whoto-call/
Qualification level
Moisture Sensitivity Level
TO-220
Not applicable
RoHS compliant
(per JEDEC JESD47F
††
guidelines)
Yes
Qualification information†
Industrial
Revision History
Date
Comment
• Updated data sheet with new IR corporate template.
• Updated package outline and part marking on page 9.
• Added bullet point in the Benefits "RoHS Compliant, Halogen -Free" on page 1.
• Updated E
AS (L =1mH)
= 1452mJ on page 2
• Updated note 9 “Limited by T
Jmax
, starting T
J
= 25°C, L = 1mH, R
G
= 50
Ω, I
AS
= 54A, V
GS
=10V”. on page 2
4/22/2014
2/19/2015
HEXFET
®
Power MOSFET
G
D
S
Gate
Drain
Source
Fig 1. Typical On-Resistance vs. Gate Voltage
Fig 2. Maximum Drain Current vs. Case Temperature
Benefits
l
Improved Gate, Avalanche and Dynamic dV/dt
Ruggedness
l
Fully Characterized Capacitance and Avalanche
SOA
l
Enhanced body diode dV/dt and dI/dt Capability
l
Lead-Free
l
RoHS Compliant, Halogen-Free*
Applications
l
Brushed Motor drive applications
l
BLDC Motor drive applications
l
Battery powered circuits
l
Half-bridge and full-bridge topologies
l
Synchronous rectifier applications
l
Resonant mode power supplies
l
OR-ing and redundant power switches
l
DC/DC and AC/DC converters
l
DC/AC Inverters
TO-220AB
IRFB7430PbF
25
50
75
100
125
150
175
TC , Case Temperature (°C)
0
100
200
300
400
500
I D
,
D
ra
in
C
ur
re
nt
(
A
)
Limited By Package
S
D
G
D
V
DSS
40V
R
DS(on)
typ.
1.0m
Ω
max.
1.3m
Ω
I
D (Silicon Limited)
409A
c
I
D (Package Limited)
195A
D
S
G
4
6
8
10
12
14
16
18
20
VGS, Gate -to -Source Voltage (V)
0.0
2.0
4.0
6.0
R
D
S
(o
n)
,
D
ra
in
-t
o
-S
ou
rc
e
O
n
R
es
is
ta
nc
e
(m
Ω
)
ID = 100A
TJ = 25°C
TJ = 125°C
Ordering Information
Form
Quantity
IRFB7430PbF
TO-220 Tube 50
IRFB7430PbF
Base Part Number
Package Type
Standard Pack
Complete Part Number
1
www.irf.com
© 2015 International Rectifier
Submit Datasheet Feedback
February 19, 2015
Strong
IR
FET
TM
IRFB7430PbF
IRFB7430PbF
www.irf.com
© 2015 International Rectifier
Submit Datasheet Feedback
February 2, 2015
2
Notes:
Calculated continuous current based on maximum allowable junction
temperature. Bond wire current limit is 195A. Note that current
limitations arising from heating of the device leads may occur with
some lead mounting arrangements.
(Refer to AN-1140)
Repetitive rating; pulse width limited by max. junction
temperature.
Limited by T
Jmax
, starting T
J
= 25°C, L = 0.15mH
R
G
= 50
Ω, I
AS
= 100A, V
GS
=10V.
I
SD
≤ 100A, di/dt ≤ 990A/μs, V
DD
≤ V
(BR)DSS
, T
J
≤ 175°C.
Pulse width
≤ 400μs; duty cycle ≤ 2%.
C
oss
eff. (TR) is a fixed capacitance that gives the same charging time
as C
oss
while V
DS
is rising from 0 to 80% V
DSS
.
C
oss
eff. (ER) is a fixed capacitance that gives the same energy as
C
oss
while V
DS
is rising from 0 to 80% V
DSS
.
R
θ
is measured at T
J
approximately 90°C..
Limited by T
Jmax
, starting T
J
= 25°C, L = 1mH, R
G
= 50
Ω, I
AS
= 54A,
V
GS
=10V.
* Halogen -Free since April 30, 2014
Absolute Maximum Ratings
Symbol
Parameter
Units
I
D
@ T
C
= 25°C
Continuous Drain Current, V
GS
@ 10V (Silicon Limited)
I
D
@ T
C
= 100°C
Continuous Drain Current, V
GS
@ 10V (Silicon Limited)
I
D
@ T
C
= 25°C
Continuous Drain Current, V
GS
@ 10V (Wire Bond Limited)
I
DM
Pulsed Drain Current
d
P
D
@T
C
= 25°C
Maximum Power Dissipation
W
Linear Derating Factor
W/°C
V
GS
Gate-to-Source Voltage
V
T
J
Operating Junction and
T
STG
Storage Temperature Range
Soldering Temperature, for 10 seconds (1.6mm from case)
Mounting torque, 6-32 or M3 screw
Avalanche Characteristics
E
AS (Thermally limited)
Single Pulse Avalanche Energy
e
mJ
E
AS (Thermally limited)
Single Pulse Avalanche Energy
k
I
AR
Avalanche Current
d
A
E
AR
Repetitive Avalanche Energy
d
mJ
Thermal Resistance
Symbol
Parameter
Typ.
Max.
Units
R
θJC
Junction-to-Case
j
–––
0.40
R
θCS
Case-to-Sink, Flat Greased Surface
0.50
–––
R
θJA
Junction-to-Ambient
–––
62
°C/W
A
°C
300
760
See Fig. 14, 15, 22a, 22b
375
Max.
409
c
289
c
1524
195
1452
-55 to + 175
± 20
2.5
10lbf
x in (1.1Nx m)
Static @ T
J
= 25°C (unless otherwise specified)
Symbol
Parameter
Min.
Typ.
Max.
Units
V
(BR)DSS
Drain-to-Source Breakdown Voltage
40
–––
–––
V
ΔV
(BR)DSS
/ΔT
J
Breakdown Voltage Temp. Coefficient
–––
0.014
–––
V/°C
Static Drain-to-Source On-Resistance
–––
1.0
1.3
mΩ
–––
1.2
–––
V
GS
= 6.0V, I
D
= 50A
g
V
GS(th)
Gate Threshold Voltage
2.2
–––
3.9
V
I
DSS
Drain-to-Source Leakage Current
–––
–––
1.0
μA
–––
–––
150
I
GSS
Gate-to-Source Forward Leakage
–––
–––
100
nA
Gate-to-Source Reverse Leakage
–––
–––
-100
R
G
Internal Gate Resistance
–––
2.1
–––
Ω
R
DS(on)
Conditions
V
GS
= 0V, I
D
= 250μA
Reference to 25°C, I
D
= 1.0mA
d
V
DS
= V
GS
, I
D
= 250μA
V
GS
= 10V, I
D
= 100A
g
V
GS
= 20V
V
GS
= -20V
V
DS
= 40V, V
GS
= 0V
V
DS
= 40V, V
GS
= 0V, T
J
= 125°C
IRFB7430PbF
www.irf.com
© 2015 International Rectifier
Submit Datasheet Feedback
February 2, 2015
3
S
D
G
Dynamic @ T
J
= 25°C (unless otherwise specified)
Symbol
Parameter
Min.
Typ.
Max.
Units
gfs
Forward Transconductance
150
–––
–––
S
Q
g
Total Gate Charge
–––
300
460
nC
Q
gs
Gate-to-Source Charge
–––
77
–––
Q
gd
Gate-to-Drain ("Miller") Charge
–––
98
–––
Q
sync
Total Gate Charge Sync. (Q
g
- Q
gd
)
–––
202
–––
t
d(on)
Turn-On Delay Time
–––
32
–––
ns
t
r
Rise Time
–––
105
–––
t
d(off)
Turn-Off Delay Time
–––
160
–––
t
f
Fall Time
–––
100
–––
C
iss
Input Capacitance
–––
14240
–––
pF
C
oss
Output Capacitance
–––
2130
–––
C
rss
Reverse Transfer Capacitance
–––
1460
–––
C
oss
eff. (ER)
Effective Output Capacitance (Energy Related)
i
–––
2605
–––
C
oss
eff. (TR)
Effective Output Capacitance (Time Related)
h
–––
2920
–––
Diode Characteristics
Symbol
Parameter
Min.
Typ.
Max.
Units
I
S
Continuous Source Current
–––
–––
394
c
A
(Body Diode)
I
SM
Pulsed Source Current
–––
–––
1576
A
(Body Diode)
d
V
SD
Diode Forward Voltage
–––
0.86
1.2
V
dv/dt
Peak Diode Recovery
f
–––
2.7
–––
V/ns
t
rr
Reverse Recovery Time
–––
52
–––
ns
T
J
= 25°C
V
R
= 34V,
–––
52
–––
T
J
= 125°C
I
F
= 100A
Q
rr
Reverse Recovery Charge
–––
97
–––
nC
T
J
= 25°C
di/dt = 100A/μs
g
–––
97
–––
T
J
= 125°C
I
RRM
Reverse Recovery Current
–––
2.3
–––
A
T
J
= 25°C
R
G
= 2.7Ω
V
GS
= 10V
g
Conditions
V
GS
= 10V
g
V
GS
= 0V
V
DS
= 25V
ƒ = 1.0 MHz
V
DS
=20V
I
D
= 100A
showing the
I
D
= 30A
V
DD
= 20V
T
J
= 175°C, I
S
= 100A, V
DS
= 40V
Conditions
V
DS
= 10V, I
D
= 100A
T
J
= 25°C, I
S
= 100A, V
GS
= 0V
g
integral reverse
p-n junction diode.
MOSFET symbol
V
GS
= 0V, V
DS
= 0V to 32V
i
V
GS
= 0V, V
DS
= 0V to 32V
h
IRFB7430PbF
www.irf.com
© 2015 International Rectifier
Submit Datasheet Feedback
February 2, 2015
4
Fig 3. Typical Output Characteristics
Fig 5. Typical Transfer Characteristics
Fig 6. Normalized On-Resistance vs. Temperature
Fig 4. Typical Output Characteristics
Fig 8. Typical Gate Charge vs. Gate-to-Source Voltage
Fig 7. Typical Capacitance vs. Drain-to-Source Voltage
2
3
4
5
6
7
VGS, Gate-to-Source Voltage (V)
1.0
10
100
1000
I D
, D
ra
in
-t
o-
S
ou
rc
e
C
ur
re
nt
(
A
)
TJ = 25°C
TJ = 175°C
VDS = 25V
≤60μs PULSE WIDTH
-60 -40 -20 0 20 40 60 80 100120140160180
TJ , Junction Temperature (°C)
0.6
0.8
1.0
1.2
1.4
1.6
1.8
2.0
R
D
S
(o
n)
,
D
ra
in
-t
o-
S
ou
rc
e
O
n
R
es
is
ta
nc
e
(
N
or
m
al
iz
ed
)
ID = 100A
VGS = 10V
1
10
100
VDS, Drain-to-Source Voltage (V)
1000
10000
100000
C
, C
ap
ac
ita
nc
e
(p
F
)
VGS = 0V, f = 1 MHZ
Ciss = Cgs + Cgd, C ds SHORTED
Crss = Cgd
Coss = Cds + Cgd
Coss
Crss
Ciss
0.1
1
10
100
VDS, Drain-to-Source Voltage (V)
1
10
100
1000
I D
, D
ra
in
-t
o-
S
ou
rc
e
C
ur
re
nt
(
A
)
VGS
TOP
15V
10V
8.0V
7.0V
6.0V
5.5V
4.8V
BOTTOM
4.5V
≤60μs PULSE WIDTH
Tj = 25°C
4.5V
0.1
1
10
100
VDS, Drain-to-Source Voltage (V)
10
100
1000
I D
, D
ra
in
-t
o-
S
ou
rc
e
C
ur
re
nt
(
A
)
4.5V
≤60μs PULSE WIDTH
Tj = 175°C
VGS
TOP
15V
10V
8.0V
7.0V
6.0V
5.5V
4.8V
BOTTOM
4.5V
0
50
100 150 200 250 300 350 400
QG, Total Gate Charge (nC)
0.0
2.0
4.0
6.0
8.0
10.0
12.0
14.0
V
G
S
, G
at
e-
to
-S
ou
rc
e
V
ol
ta
ge
(
V
)
VDS= 32V
VDS= 20V
ID= 100A
IRFB7430PbF
www.irf.com
© 2015 International Rectifier
Submit Datasheet Feedback
February 2, 2015
5
Fig 10. Maximum Safe Operating Area
Fig 11. Drain-to-Source Breakdown Voltage
Fig 9. Typical Source-Drain Diode
Forward Voltage
Fig 12. Typical C
OSS
Stored Energy
0.0
0.5
1.0
1.5
2.0
2.5
VSD, Source-to-Drain Voltage (V)
0.1
1
10
100
1000
I S
D
, R
ev
er
se
D
ra
in
C
ur
re
nt
(
A
)
TJ = 25°C
TJ = 175°C
VGS = 0V
-60 -40 -20 0 20 40 60 80 100120140160180
TJ , Temperature ( °C )
40
41
42
43
44
45
46
47
V
(B
R
)D
S
S
, D
ra
in
-t
o-
S
ou
rc
e
B
re
ak
do
w
n
V
ol
ta
ge
(
V
)
Id = 1.0mA
Fig 13. Typical On-Resistance vs. Drain Current
0.1
1
10
100
VDS, Drain-toSource Voltage (V)
0.1
1
10
100
1000
10000
I D
,
D
ra
in
-t
o-
S
ou
rc
e
C
ur
re
nt
(
A
)
Tc = 25°C
Tj = 175°C
Single Pulse
1msec
10msec
OPERATION IN THIS AREA
LIMITED BY R DS(on)
100μsec
DC
Limited by package
0
5
10
15
20
25
30
35
40
45
VDS, Drain-to-Source Voltage (V)
0.0
0.5
1.0
1.5
2.0
2.5
E
ne
rg
y
(μ
J)
VDS= 0V to 32V
0
200
400
600
800
1000
1200
ID, Drain Current (A)
0.0
2.0
4.0
6.0
R
D
S
(o
n)
,
D
ra
in
-t
o
-S
ou
rc
e
O
n
R
es
is
ta
nc
e
(m
Ω
)
VGS = 5.5V
VGS = 6.0V
VGS = 7.0V
VGS = 8.0V
VGS =10V
IRFB7430PbF
www.irf.com
© 2015 International Rectifier
Submit Datasheet Feedback
February 2, 2015
6
Fig 14. Maximum Effective Transient Thermal Impedance, Junction-to-Case
Fig 15. Typical Avalanche Current vs.Pulsewidth
Fig 16. Maximum Avalanche Energy vs. Temperature
Notes on Repetitive Avalanche Curves , Figures 14, 15:
(For further info, see AN-1005 at www.irf.com)
1. Avalanche failures assumption:
Purely a thermal phenomenon and failure occurs at a temperature far in
excess of T
jmax
. This is validated for every part type.
2. Safe operation in Avalanche is allowed as long asT
jmax
is not exceeded.
3. Equation below based on circuit and waveforms shown in Figures 16a, 16b.
4. P
D (ave)
= Average power dissipation per single avalanche pulse.
5. BV = Rated breakdown voltage (1.3 factor accounts for voltage increase
during avalanche).
6. I
av
= Allowable avalanche current.
7.
ΔT
=
Allowable rise in junction temperature, not to exceed
T
jmax
(assumed as
25°C in Figure 14, 15).
t
av =
Average time in avalanche.
D = Duty cycle in avalanche = t
av
·f
Z
thJC
(D, t
av
) = Transient thermal resistance, see Figures 13)
P
D (ave)
= 1/2 ( 1.3·BV·I
av
) =
DT/ Z
thJC
I
av
=
2
DT/ [1.3·BV·Z
th
]
E
AS (AR)
= P
D (ave)
·t
av
25
50
75
100
125
150
175
Starting TJ , Junction Temperature (°C)
0
100
200
300
400
500
600
700
800
E
A
R
,
A
va
la
nc
he
E
ne
rg
y
(m
J)
TOP Single Pulse
BOTTOM 1.0% Duty Cycle
ID = 100A
1E-006
1E-005
0.0001
0.001
0.01
0.1
t1 , Rectangular Pulse Duration (sec)
0.0001
0.001
0.01
0.1
1
T
he
rm
al
R
es
po
ns
e
(
Z
th
JC
)
°
C
/W
0.20
0.10
D = 0.50
0.02
0.01
0.05
SINGLE PULSE
( THERMAL RESPONSE )
Notes:
1. Duty Factor D = t1/t2
2. Peak Tj = P dm x Zthjc + Tc
1.0E-06
1.0E-05
1.0E-04
1.0E-03
1.0E-02
1.0E-01
tav (sec)
1
10
100
1000
A
va
la
nc
he
C
ur
re
nt
(
A
)
Allowed avalanche Current vs avalanche
pulsewidth, tav, assuming
ΔΤ j = 25°C and
Tstart = 150°C.
Allowed avalanche Current vs avalanche
pulsewidth, tav, assuming
ΔTj = 150°C and
Tstart =25°C (Single Pulse)
IRFB7430PbF
www.irf.com
© 2015 International Rectifier
Submit Datasheet Feedback
February 2, 2015
7
Fig. 18 - Typical Recovery Current vs. di
f
/dt
Fig 17. Threshold Voltage vs. Temperature
Fig. 20 - Typical Stored Charge vs. di
f
/dt
Fig. 19 - Typical Recovery Current vs. di
f
/dt
Fig. 21 - Typical Stored Charge vs. di
f
/dt
-75 -50 -25 0
25 50 75 100 125 150 175
TJ , Temperature ( °C )
1.0
1.5
2.0
2.5
3.0
3.5
4.0
V
G
S
(t
h)
, G
at
e
th
re
sh
ol
d
V
ol
ta
ge
(
V
)
ID = 250μA
ID = 1.0mA
ID = 1.0A
0
200
400
600
800
1000
diF /dt (A/μs)
0
2
4
6
8
10
12
I R
R
M
(
A
)
IF = 100A
VR = 34V
TJ = 25°C
TJ = 125°C
0
200
400
600
800
1000
diF /dt (A/μs)
60
100
140
180
220
260
Q
R
R
(
nC
)
IF = 100A
VR = 34V
TJ = 25°C
TJ = 125°C
0
200
400
600
800
1000
diF /dt (A/μs)
50
100
150
200
250
300
Q
R
R
(
nC
)
IF = 60A
VR = 34V
TJ = 25°C
TJ = 125°C
0
200
400
600
800
1000
diF /dt (A/μs)
0
2
4
6
8
10
12
I R
R
M
(
A
)
IF = 60A
VR = 34V
TJ = 25°C
TJ = 125°C
IRFB7430PbF
www.irf.com
© 2015 International Rectifier
Submit Datasheet Feedback
February 2, 2015
8
Fig 23a. Switching Time Test Circuit
Fig 23b. Switching Time Waveforms
Fig 22b. Unclamped Inductive Waveforms
Fig 22a. Unclamped Inductive Test Circuit
tp
V
(BR)DSS
I
AS
RG
IAS
0.01
Ω
tp
D.U.T
L
VDS
+
- VDD
DRIVER
A
15V
20V
V
GS
Fig 24a. Gate Charge Test Circuit
Fig 24b. Gate Charge Waveform
Vds
Vgs
Id
Vgs(th)
Qgs1 Qgs2
Qgd
Qgodr
Fig 22.
Peak Diode Recovery dv/dt Test Circuit for N-Channel
HEXFET
®
Power MOSFETs
Circuit Layout Considerations
• Low Stray Inductance
• Ground Plane
• Low Leakage Inductance
Current Transformer
P.W.
Period
di/dt
Diode Recovery
dv/dt
Ripple
≤ 5%
Body Diode Forward Drop
Re-Applied
Voltage
Reverse
Recovery
Current
Body Diode Forward
Current
V
GS
=10V
V
DD
I
SD
Driver Gate Drive
D.U.T. I
SD
Waveform
D.U.T. V
DS
Waveform
Inductor Curent
D =
P.W.
Period
*
V
GS
= 5V for Logic Level Devices
*
+
-
+
+
+
-
-
-
R
G
V
DD
• dv/dt controlled by R
G
• Driver same type as D.U.T.
• I
SD
controlled by Duty Factor "D"
• D.U.T. - Device Under Test
D.U.T
Inductor Current
D.U.T.
V
DS
I
D
I
G
3mA
V
GS
.3
μF
50K
Ω
.2
μF
12V
Current Regulator
Same Type as D.U.T.
Current Sampling Resistors
+
-
V
DS
90%
10%
V
GS
t
d(on)
t
r
t
d(off)
t
f
V
DS
Pulse Width ≤ 1 µs
Duty Factor ≤ 0.1 %
R
D
V
GS
R
G
D.U.T.
10V
+
-
V
DD
V
GS
IRFB7430PbF
www.irf.com
© 2015 International Rectifier
Submit Datasheet Feedback
February 2, 2015
9
TO-220AB Part Marking Information
TO-220AB Package Outline
Dimensions are shown in millimeters (inches)
TO-220AB packages are not recommended for Surface Mount Application.
Note: For the most current drawing please refer to IR website at
http://www.irf.com/package/
IRFB7430PbF
www.irf.com
© 2015 International Rectifier
Submit Datasheet Feedback
February 2, 2015
10
Qualification standards can be found at International Rectifiers web site:
http://www.irf.com/product-info/reliability/
Applicable version of JEDEC standard at the time of product release.
IR WORLD HEADQUARTERS: 101 N. Sepulveda Blvd., El Segundo, California 90245, USA
To contact International Rectifier, please visit
http://www.irf.com/whoto-call/
Qualification level
Moisture Sensitivity Level
TO-220
Not applicable
RoHS compliant
(per JEDEC JESD47F
††
guidelines)
Yes
Qualification information†
Industrial
Revision History
Date
Comment
• Updated data sheet with new IR corporate template.
• Updated package outline and part marking on page 9.
• Added bullet point in the Benefits "RoHS Compliant, Halogen -Free" on page 1.
• Updated E
AS (L =1mH)
= 1452mJ on page 2
• Updated note 9 “Limited by T
Jmax
, starting T
J
= 25°C, L = 1mH, R
G
= 50
Ω, I
AS
= 54A, V
GS
=10V”. on page 2
4/22/2014
2/19/2015