IRFB4110PbF Product Datasheet

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/irfb4110pbf-html.html
background image

Benefits

l

Improved  Gate, Avalanche and Dynamic  dv/dt
Ruggedness

l

Fully Characterized Capacitance and Avalanche

     SOA

l

Enhanced body diode dV/dt and dI/dt Capability

l

Lead Free

l

RoHS Compliant, Halogen-Free

HEXFET

®

 Power MOSFET

Applications

High Efficiency Synchronous Rectification in SMPS

Uninterruptible Power Supply

High Speed Power Switching

Hard Switched and High Frequency Circuits

G

D

S

Gate

Drain

Source

Absolute Maximum Ratings

Symbol

Parameter

Units

I

D

 @ T

C

 = 25°C

Continuous Drain Current, VGS @ 10V (Silicon Limited)

A

I

D

 @ T

C

 = 100°C

Continuous Drain Current, V

GS

 @ 10V (Silicon Limited)

I

D

 @ T

C

 = 25°C

Continuous Drain Current, V

GS

 @ 10V (Wire Bond Limited)

I

DM

Pulsed Drain Current 

d

P

D

 @T

C

 = 25°C

Maximum Power Dissipation  

W

Linear Derating Factor

W/°C

V

GS

Gate-to-Source Voltage

V

dv/dt

Peak Diode Recovery 

f

V/ns

T

Operating Junction and

°C

T

STG

Storage Temperature Range
Soldering Temperature, for 10 seconds
(1.6mm from case)
Mounting torque, 6-32 or M3 screw

Avalanche Characteristics

E

AS (Thermally limited) 

Single Pulse Avalanche Energy 

e

mJ

I

AR

Avalanche Current

d

A

E

AR

Repetitive Avalanche Energy 

g

mJ

Thermal Resistance

Symbol

Parameter

Typ.

Max.

Units

R

θJC 

Junction-to-Case 

k

–––

0.402

R

θCS 

Case-to-Sink, Flat Greased Surface 

0.50

–––

°C/W

R

θJA 

Junction-to-Ambient 

j

–––

62

300

Max.

180

c

130

c

670

120

190

See Fig. 14, 15, 22a, 22b

370

5.3

-55  to + 175

 ± 20

2.5

10lb

xin (1.1Nxm)

IRFB4110PbF

S

D

G

TO-220AB

D

S

D

G

Form

Quantity

IRFB4110PbF

TO-220

Tube

50

IRFB4110PbF

Base Part Number

Package Type

Standard Pack

Orderable Part Number

  

      1

  

     www.irf.com  

© 

2014 International Rectifier       

    Submit Datasheet Feedback

  

     

                        April 28, 2014

V

DSS

100V

R

DS(on)

   typ.

3.7m

              max.

4.5m

I

D  (Silicon Limited)

180A c

I

D (Package Limited)

120A

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/irfb4110pbf-html.html
background image

IRFB4110PbF

  

      2

  

     www.irf.com  

© 

2014 International Rectifier       

    

  

 

Submit Datasheet Feedback

 

                      April 28, 2014

Notes:



 Calculated continuous current based on maximum allowable junction

temperature. Bond wire current limit is 120A. Note that current

limitations arising from heating of the device leads may occur with
some lead mounting arrangements.

‚

 Repetitive rating;  pulse width limited by max. junction

temperature.

ƒ

 Limited by T

Jmax

, starting T

= 25°C, L = 0.033mH

     R

= 25

Ω, I

AS 

= 108A, V

GS

 =10V. Part not recommended for use

    above this value.

S

D

G

„

I

SD 

≤ 75A, di/dt ≤ 630A/µs, V

DD 

≤ V

(BR)DSS

, T

≤ 175°C.

…

 Pulse width 

≤ 400µs; duty cycle ≤ 2%.

†

 C

oss

 eff. (TR) is a fixed capacitance that gives the same charging time

     as C

oss 

while V

DS 

is rising from 0 to 80% V

DSS

.

‡ 

C

oss

 eff. (ER) is a fixed capacitance that gives the same energy as

     C

oss 

while V

DS 

is rising from 0 to 80% V

DSS

.

ˆ

 When mounted on 1" square PCB (FR-4 or G-10 Material).  For recom

   mended footprint and soldering techniques refer to application note #AN-994.

‰

 R

θ 

is measured at T

J

 approximately 90°C.

Static @ T

J

 = 25°C (unless otherwise specified)

Symbol

Parameter

Min. Typ. Max. Units

V

(BR)DSS

Drain-to-Source Breakdown Voltage

100

–––

–––

V

∆V

(BR)DSS

/

∆T

Breakdown Voltage Temp. Coefficient

––– 0.108 –––

V/°C

R

DS(on)

Static Drain-to-Source On-Resistance

–––

3.7

4.5

m

V

GS(th)

Gate Threshold Voltage

2.0

–––

4.0

V

I

DSS

Drain-to-Source Leakage Current

–––

–––

20

µA

–––

–––

250

I

GSS

Gate-to-Source Forward Leakage

–––

–––

100

nA

Gate-to-Source Reverse Leakage

–––

–––

-100

Dynamic @ T

J

 = 25°C (unless otherwise specified)

Symbol

Parameter

Min. Typ. Max. Units

gfs

Forward Transconductance

160

–––

–––

S

Q

g

Total Gate Charge

–––

150

210

nC

Q

gs

Gate-to-Source Charge

–––

35

–––

Q

gd

Gate-to-Drain ("Miller") Charge

–––

43

–––

R

G

Gate Resistance

–––

1.3

–––

t

d(on)

Turn-On Delay Time

–––

25

–––

ns

t

r

Rise Time

–––

67

–––

t

d(off)

Turn-Off Delay Time

–––

78

–––

t

f

Fall Time

–––

88

–––

C

iss

Input Capacitance

–––

9620

–––

pF

C

oss

Output Capacitance

–––

670

–––

C

rss

Reverse Transfer Capacitance

–––

250

–––

C

oss

 eff. (ER) Effective Output Capacitance (Energy Related)i ––– 820 –––

C

oss

 eff. (TR) Effective Output Capacitance (Time Related)h

–––

950

–––

Diode Characteristics

Symbol

        Parameter

Min. Typ. Max. Units

I

S

Continuous Source Current 

–––

––– 170c

A

(Body Diode)

I

SM

Pulsed Source Current

–––

–––

670

(Body Diode)

di

V

SD

Diode Forward Voltage

–––

–––

1.3

V

t

rr

Reverse Recovery Time

–––

50

75

ns

T

J

 = 25°C

V

R

 = 85V,

–––

60

90

T

J

 = 125°C

I

F

 = 75A

Q

rr

Reverse Recovery Charge

–––

94

140

nC T

J

 = 25°C

di/dt = 100A/µs 

g

–––

140

210

T

J

 = 125°C

I

RRM

Reverse Recovery Current

–––

3.5

–––

A

T

J

 = 25°C

t

on

Forward Turn-On Time

Intrinsic turn-on time is negligible (turn-on is dominated by LS+LD)

I

D

 = 75A

R

G

 = 2.6

V

GS

 = 10V 

g

V

DD

 = 65V

T

J

 = 25°C, I

S

 = 75A, V

GS

 = 0V 

g

integral reverse
p-n junction diode.

Conditions

V

GS

 = 0V, I

D

 = 250µA

Reference to 25°C, I

D

 = 5mAd

V

GS

 = 10V, I

D

 = 75A g

V

DS

 = V

GS

, I

D

 = 250µA

V

DS

 = 100V, V

GS

 = 0V

V

DS

 = 100V, V

GS

 = 0V, T

J

 = 125°C

MOSFET symbol
showing  the

V

DS

 = 50V

Conditions

V

GS

 = 10V 

g

V

GS

 = 0V

V

DS

 = 50V

ƒ = 1.0MHz
V

GS

 = 0V, V

DS

 = 0V to 80V 

j

V

GS

 = 0V, V

DS

 = 0V to 80V 

h

Conditions

V

DS

 = 50V, I

D

 = 75A

I

D

 = 75A

V

GS

 = 20V

V

GS

 = -20V

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/irfb4110pbf-html.html
background image

IRFB4110PbF

  

      3

  

     www.irf.com  

© 

2014 International Rectifier       

   Submit Datasheet Feedback

 

   

                        April 28, 2014

Fig 1.  Typical Output Characteristics

Fig 3.  Typical Transfer Characteristics

Fig 4.  Normalized On-Resistance vs. Temperature

Fig 2.  Typical Output Characteristics

Fig 6.  Typical Gate Charge vs. Gate-to-Source Voltage

Fig 5.  Typical Capacitance vs. Drain-to-Source Voltage

0.1

1

10

100

VDS, Drain-to-Source Voltage (V)

10

100

1000

I D

, D

ra

in

-t

o-

S

ou

rc

C

ur

re

nt

 (

A

)

VGS

TOP          

15V
10V

8.0V

6.0V

5.5V

5.0V

4.8V

BOTTOM

4.5V

≤60µs PULSE WIDTH

Tj = 25°C

4.5V

0.1

1

10

100

VDS, Drain-to-Source Voltage (V)

10

100

1000

I D

, D

ra

in

-t

o-

S

ou

rc

C

ur

re

nt

 (

A

)

4.5V

≤60µs PULSE WIDTH

Tj = 175°C

VGS

TOP          

15V

10V

8.0V
6.0V

5.5V

5.0V

4.8V

BOTTOM

4.5V

1

2

3

4

5

6

7

VGS, Gate-to-Source Voltage (V)

0.1

1

10

100

1000

I D

, D

ra

in

-t

o-

S

ou

rc

C

ur

re

nt

 (

A

)

TJ = 25°C

TJ = 175°C

VDS = 25V

≤60µs PULSE WIDTH

1

10

100

VDS, Drain-to-Source Voltage (V)

100

1000

10000

100000

C

, C

ap

ac

ita

nc

(p

F

)

VGS   = 0V,       f = 1 MHZ

Ciss   = Cgs + Cgd,  C ds SHORTED
Crss   = Cgd 

Coss  = Cds + Cgd

Coss

Crss

Ciss

-60 -40 -20 0 20 40 60 80 100120140160180

TJ , Junction Temperature (°C)

0.5

1.0

1.5

2.0

2.5

3.0

R

D

S

(o

n)

 ,

 D

ra

in

-t

o-

S

ou

rc

O

R

es

is

ta

nc

   

   

   

   

   

   

   

 (

N

or

m

al

iz

ed

)

ID = 75A

VGS = 10V

0

50

100

150

200

 QG,  Total Gate Charge (nC)

0.0

2.0

4.0

6.0

8.0

10.0

12.0

V

G

S

, G

at

e-

to

-S

ou

rc

V

ol

ta

ge

 (

V

)

VDS= 80V

VDS= 50V

ID= 75A

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/irfb4110pbf-html.html
background image

IRFB4110PbF

  

      4

  

     www.irf.com  

© 

2014 International Rectifier       

    

  

 

Submit Datasheet Feedback

 

                      April 28, 2014

Fig 8.  Maximum Safe Operating Area

Fig 10.  Drain-to-Source Breakdown Voltage

Fig 7.  Typical Source-Drain Diode Forward Voltage

Fig 11.  Typical C

OSS

 Stored Energy

Fig 9.  Maximum Drain Current vs. Case Temperature

Fig 12.  Maximum Avalanche Energy vs. DrainCurrent

0.0

0.5

1.0

1.5

2.0

VSD, Source-to-Drain Voltage (V)

0.1

1

10

100

1000

I S

D

, R

ev

er

se

 D

ra

in

 C

ur

re

nt

 (

A

)

TJ = 25°C

TJ = 175°C

VGS = 0V

-60 -40 -20 0 20 40 60 80 100120140160180

TJ , Temperature ( °C )

90

95

100

105

110

115

120

125

V

(B

R

)D

S

S

,  D

ra

in

-t

o-

S

ou

rc

B

re

ak

do

w

V

ol

ta

ge

 (

V

)

Id = 5mA

0

20

40

60

80

100

120

VDS, Drain-to-Source Voltage (V)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

E

ne

rg

J)

25

50

75

100

125

150

175

 TC , Case Temperature (°C)

0

20

40

60

80

100

120

140

160

180

I D

,   

D

ra

in

 C

ur

re

nt

 (

A

)

Limited By Package

25

50

75

100

125

150

175

Starting TJ , Junction Temperature (°C)

0

100

200

300

400

500

600

700

800

E A

S

 ,

 S

in

gl

P

ul

se

 A

va

la

nc

he

 E

ne

rg

(m

J)

ID

TOP         17A

27A

BOTTOM 108A

0.1

1

10

100

1000

VDS, Drain-to-Source Voltage (V)

0.01

0.1

1

10

100

1000

10000

I D

,  

D

ra

in

-t

o-

S

ou

rc

C

ur

re

nt

 (

A

)

Tc = 25°C

Tj = 175°C

Single Pulse

1msec

10msec

OPERATION IN THIS AREA 

LIMITED BY R DS(on)

100µsec

DC

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/irfb4110pbf-html.html
background image

IRFB4110PbF

  

      5

  

     www.irf.com  

© 

2014 International Rectifier       

   Submit Datasheet Feedback

 

   

                        April 28, 2014

Fig 13.  Maximum Effective Transient Thermal Impedance, Junction-to-Case

Fig 14.  Typical Avalanche Current vs.Pulsewidth

Fig 15.  Maximum Avalanche Energy vs. Temperature

Notes on Repetitive Avalanche Curves , Figures 14, 15:
(For further info, see AN-1005 at www.irf.com)
1. Avalanche failures assumption:

Purely a thermal phenomenon and failure occurs at a temperature far in
excess of T

jmax

. This is validated for every part type.

2. Safe operation in Avalanche is allowed as long asT

jmax

 is not exceeded.

3. Equation below based on circuit and waveforms shown in Figures 16a, 16b.
4. P

D (ave) 

= Average power dissipation per single avalanche pulse.

5. BV = Rated breakdown voltage (1.3 factor accounts for voltage increase

during avalanche).

6. I

av 

= Allowable avalanche current.

7. 

∆T

 = 

Allowable rise in junction temperature, not to exceed

 

T

jmax 

(assumed as

25°C in Figure 14, 15).
t

av = 

Average time in avalanche.

D = Duty cycle in avalanche =  t

av 

·f

Z

thJC

(D, t

av

) = Transient thermal resistance, see Figures 13)

P

D (ave)

 = 1/2 ( 1.3·BV·I

av

) =

 DT/ Z

thJC

I

av 

=

 

2

DT/ [1.3·BV·Z

th

]

E

AS (AR)

 = P

D (ave)

·t

av

1E-006

1E-005

0.0001

0.001

0.01

0.1

t1 , Rectangular Pulse Duration (sec)

0.0001

0.001

0.01

0.1

1

T

he

rm

al

 R

es

po

ns

Z

 th

JC

 )

0.20

0.10

D = 0.50

0.02

0.01

0.05

SINGLE PULSE

( THERMAL RESPONSE )

Notes:

1. Duty Factor D = t1/t2

2. Peak Tj = P dm x Zthjc + Tc

Ri (°C/W)

τ

i (sec)

0.09876251

0.000111

0.2066697

0.001743

0.09510464

0.012269

τ

J

τ

J

τ

1

τ

1

τ

2

τ

2

τ

3

τ

3

R

1

R

1

R

2

R

2

R

3

R

3

τ

C

τ

C

Ci=  

τi/Ri

Ci= 

τi/R i

25

50

75

100

125

150

175

Starting TJ , Junction Temperature (°C)

0

50

100

150

200

250

E A

R

 , 

A

va

la

nc

he

 E

ne

rg

(m

J)

TOP          Single Pulse                
BOTTOM   1.0% Duty Cycle
ID = 108A

1.0E-06

1.0E-05

1.0E-04

1.0E-03

1.0E-02

1.0E-01

tav (sec)

0.1

1

10

100

1000

A

va

la

nc

he

 C

ur

re

nt

 (

A

)

0.05

Duty Cycle = Single Pulse

0.10

Allowed avalanche Current vs avalanche 
pulsewidth, tav, assuming 

∆Τj = 25°C and 

Tstart = 150°C.

0.01

Allowed avalanche Current vs avalanche 
pulsewidth, tav, assuming 

∆Tj = 150°C and 

Tstart =25°C (Single Pulse)

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/irfb4110pbf-html.html
background image

IRFB4110PbF

  

      6

  

     www.irf.com  

© 

2014 International Rectifier       

    

  

 

Submit Datasheet Feedback

 

                      April 28, 2014

Fig. 17 - Typical Recovery Current vs. di

f

/dt

Fig 16.  Threshold Voltage vs. Temperature

Fig. 19 - Typical Stored Charge vs. di

f

/dt

Fig. 18 - Typical Recovery Current vs. di

f

/dt

Fig. 20 - Typical Stored Charge vs. di

f

/dt

-75 -50 -25 0 25 50 75 100 125 150 175 200

TJ , Temperature ( °C )

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

V

G

S

(t

h)

,  G

at

th

re

sh

ol

V

ol

ta

ge

 (

V

)

ID = 250µA

ID = 1.0mA

ID = 1.0A

0

200

400

600

800

1000

diF /dt (A/µs)

0

5

10

15

20

25

I R

R

 (

A

)

IF = 30A
VR = 85V
TJ = 25°C
TJ = 125°C

0

200

400

600

800

1000

diF /dt (A/µs)

0

5

10

15

20

25

I R

R

 (

A

)

IF = 45A
VR = 85V
TJ = 25°C
TJ = 125°C

0

200

400

600

800

1000

diF /dt (A/µs)

80

160

240

320

400

480

560

Q

R

R

 (

nC

)

IF = 30A
VR = 85V
TJ = 25°C
TJ = 125°C

0

200

400

600

800

1000

diF /dt (A/µs)

80

160

240

320

400

480

560

Q

R

R

 (

nC

)

IF = 45A
VR = 85V
TJ = 25°C
TJ = 125°C

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/irfb4110pbf-html.html
background image

IRFB4110PbF

  

      7

  

     www.irf.com  

© 

2014 International Rectifier       

   Submit Datasheet Feedback

 

   

                        April 28, 2014

Fig 22a.  Switching Time Test Circuit

Fig 22b.  Switching Time Waveforms

V

GS

V

DS

90%

10%

t

d(on)

t

d(off)

t

r

t

f

V

GS

Pulse Width < 1µs

Duty Factor < 0.1%

V

DD

V

DS

L

D

D.U.T

+

-

Fig 21b.  Unclamped Inductive Waveforms

Fig 21a.  Unclamped Inductive Test Circuit

tp

V

(BR)DSS

I

AS

RG

IAS

0.01

tp

D.U.T

L

VDS

+

- VDD

DRIVER

A

15V

20V

V

GS

Fig 23a.  Gate Charge Test Circuit

Fig 23b.   Gate Charge Waveform

Vds

Vgs

Id

Vgs(th)

Qgs1 Qgs2

Qgd

Qgodr

Fig 20. 

Peak Diode Recovery dv/dt Test Circuit for N-Channel

HEXFET

®

 Power MOSFETs

1K

VCC

DUT

0

L

Circuit Layout Considerations

   •  Low Stray Inductance

   •  Ground Plane

   •  Low Leakage Inductance

      Current Transformer

P.W.

Period

di/dt

Diode Recovery

dv/dt

Ripple 

≤ 5%

Body Diode  Forward Drop

Re-Applied

Voltage

Reverse

Recovery

Current

Body Diode Forward

Current

V

GS

=10V

V

DD

I

SD

Driver Gate Drive

D.U.T. I

SD

Waveform

D.U.T. V

DS

Waveform

Inductor Curent

D = 

P.W.

Period

*

 V

GS

 = 5V for Logic Level Devices

*

+

-

+

+

+

-

-

-

ƒ

„

‚

R

G

V

DD

•  dv/dt controlled by R

G

•  Driver same type as D.U.T.

•  I

SD

 controlled by Duty Factor "D"

•  D.U.T. - Device Under Test

D.U.T



Inductor Current

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/irfb4110pbf-html.html
background image

IRFB4110PbF

  

      8

  

     www.irf.com  

© 

2014 International Rectifier       

    

  

 

Submit Datasheet Feedback

 

                      April 28, 2014

TO-220AB Package Outline

Dimensions are shown in millimeters (inches)

TO-220AB Part Marking Information

TO-220AB packages are not recommended for Surface Mount Application.

Note: For the most current drawing please refer to IR website at: 

http://www.irf.com/package/

IRFB4110

IRFB4110

PYWW?

LC       LC

PART NUMBER

DATE CODE
P = LEAD-FREE
Y = LAST DIGIT OF YEAR
WW = WORK WEEK
? = ASSEMBLY SITE CODE

INTERNATIONAL 

RECTIFIER LOGO

ASSEMBLY 

LOT CODE

OR

YWWP

LC       LC

PART NUMBER

DATE CODE
Y = LAST DIGIT OF YEAR
WW = WORK WEEK
P = LEAD-FREE

INTERNATIONAL 

RECTIFIER LOGO

ASSEMBLY 

LOT CODE

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/irfb4110pbf-html.html
background image

IRFB4110PbF

  

      9

  

     www.irf.com  

© 

2014 International Rectifier       

   Submit Datasheet Feedback

 

   

                        April 28, 2014

IR WORLD HEADQUARTERS: 101 N. Sepulveda Blvd., El Segundo, California 90245, USA

To contact International Rectifier, please visit 

http://www.irf.com/whoto-call/

†     Qualification standards can be found at International Rectifier’s web site:  

http://www.irf.com/product-info/reliability/

††  Applicable version of JEDEC standard at the time of product release.

Moisture Sensitivity Level

TO-220

N/A

RoHS compliant

Qualification information

Industrial

(per JEDEC JESD47F

††

 guidelines)

Yes

Qualification level

Revision History

Date

Comment

• Updated data sheet with new IR corporate template.

• Updated package outline & part marking on page 8.
• Added bullet point in the  Benefits  "RoHS Compliant, Halogen -Free" on page 1.

• Updated typo on the Fig.19 and Fig.20, unit of Y-axis from "A" to "nC" on page 6.

4/28/2014

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/irfb4110pbf-html.html
background image

Benefits

l

Improved  Gate, Avalanche and Dynamic  dv/dt
Ruggedness

l

Fully Characterized Capacitance and Avalanche

     SOA

l

Enhanced body diode dV/dt and dI/dt Capability

l

Lead Free

l

RoHS Compliant, Halogen-Free

HEXFET

®

 Power MOSFET

Applications

High Efficiency Synchronous Rectification in SMPS

Uninterruptible Power Supply

High Speed Power Switching

Hard Switched and High Frequency Circuits

G

D

S

Gate

Drain

Source

Absolute Maximum Ratings

Symbol

Parameter

Units

I

D

 @ T

C

 = 25°C

Continuous Drain Current, VGS @ 10V (Silicon Limited)

A

I

D

 @ T

C

 = 100°C

Continuous Drain Current, V

GS

 @ 10V (Silicon Limited)

I

D

 @ T

C

 = 25°C

Continuous Drain Current, V

GS

 @ 10V (Wire Bond Limited)

I

DM

Pulsed Drain Current 

d

P

D

 @T

C

 = 25°C

Maximum Power Dissipation  

W

Linear Derating Factor

W/°C

V

GS

Gate-to-Source Voltage

V

dv/dt

Peak Diode Recovery 

f

V/ns

T

Operating Junction and

°C

T

STG

Storage Temperature Range
Soldering Temperature, for 10 seconds
(1.6mm from case)
Mounting torque, 6-32 or M3 screw

Avalanche Characteristics

E

AS (Thermally limited) 

Single Pulse Avalanche Energy 

e

mJ

I

AR

Avalanche Current

d

A

E

AR

Repetitive Avalanche Energy 

g

mJ

Thermal Resistance

Symbol

Parameter

Typ.

Max.

Units

R

θJC 

Junction-to-Case 

k

–––

0.402

R

θCS 

Case-to-Sink, Flat Greased Surface 

0.50

–––

°C/W

R

θJA 

Junction-to-Ambient 

j

–––

62

300

Max.

180

c

130

c

670

120

190

See Fig. 14, 15, 22a, 22b

370

5.3

-55  to + 175

 ± 20

2.5

10lb

xin (1.1Nxm)

IRFB4110PbF

S

D

G

TO-220AB

D

S

D

G

Form

Quantity

IRFB4110PbF

TO-220

Tube

50

IRFB4110PbF

Base Part Number

Package Type

Standard Pack

Orderable Part Number

  

      1

  

     www.irf.com  

© 

2014 International Rectifier       

    Submit Datasheet Feedback

  

     

                        April 28, 2014

V

DSS

100V

R

DS(on)

   typ.

3.7m

              max.

4.5m

I

D  (Silicon Limited)

180A c

I

D (Package Limited)

120A

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/irfb4110pbf-html.html
background image

IRFB4110PbF

  

      2

  

     www.irf.com  

© 

2014 International Rectifier       

    

  

 

Submit Datasheet Feedback

 

                      April 28, 2014

Notes:



 Calculated continuous current based on maximum allowable junction

temperature. Bond wire current limit is 120A. Note that current

limitations arising from heating of the device leads may occur with
some lead mounting arrangements.

‚

 Repetitive rating;  pulse width limited by max. junction

temperature.

ƒ

 Limited by T

Jmax

, starting T

= 25°C, L = 0.033mH

     R

= 25

Ω, I

AS 

= 108A, V

GS

 =10V. Part not recommended for use

    above this value.

S

D

G

„

I

SD 

≤ 75A, di/dt ≤ 630A/µs, V

DD 

≤ V

(BR)DSS

, T

≤ 175°C.

…

 Pulse width 

≤ 400µs; duty cycle ≤ 2%.

†

 C

oss

 eff. (TR) is a fixed capacitance that gives the same charging time

     as C

oss 

while V

DS 

is rising from 0 to 80% V

DSS

.

‡ 

C

oss

 eff. (ER) is a fixed capacitance that gives the same energy as

     C

oss 

while V

DS 

is rising from 0 to 80% V

DSS

.

ˆ

 When mounted on 1" square PCB (FR-4 or G-10 Material).  For recom

   mended footprint and soldering techniques refer to application note #AN-994.

‰

 R

θ 

is measured at T

J

 approximately 90°C.

Static @ T

J

 = 25°C (unless otherwise specified)

Symbol

Parameter

Min. Typ. Max. Units

V

(BR)DSS

Drain-to-Source Breakdown Voltage

100

–––

–––

V

∆V

(BR)DSS

/

∆T

Breakdown Voltage Temp. Coefficient

––– 0.108 –––

V/°C

R

DS(on)

Static Drain-to-Source On-Resistance

–––

3.7

4.5

m

V

GS(th)

Gate Threshold Voltage

2.0

–––

4.0

V

I

DSS

Drain-to-Source Leakage Current

–––

–––

20

µA

–––

–––

250

I

GSS

Gate-to-Source Forward Leakage

–––

–––

100

nA

Gate-to-Source Reverse Leakage

–––

–––

-100

Dynamic @ T

J

 = 25°C (unless otherwise specified)

Symbol

Parameter

Min. Typ. Max. Units

gfs

Forward Transconductance

160

–––

–––

S

Q

g

Total Gate Charge

–––

150

210

nC

Q

gs

Gate-to-Source Charge

–––

35

–––

Q

gd

Gate-to-Drain ("Miller") Charge

–––

43

–––

R

G

Gate Resistance

–––

1.3

–––

t

d(on)

Turn-On Delay Time

–––

25

–––

ns

t

r

Rise Time

–––

67

–––

t

d(off)

Turn-Off Delay Time

–––

78

–––

t

f

Fall Time

–––

88

–––

C

iss

Input Capacitance

–––

9620

–––

pF

C

oss

Output Capacitance

–––

670

–––

C

rss

Reverse Transfer Capacitance

–––

250

–––

C

oss

 eff. (ER) Effective Output Capacitance (Energy Related)i ––– 820 –––

C

oss

 eff. (TR) Effective Output Capacitance (Time Related)h

–––

950

–––

Diode Characteristics

Symbol

        Parameter

Min. Typ. Max. Units

I

S

Continuous Source Current 

–––

––– 170c

A

(Body Diode)

I

SM

Pulsed Source Current

–––

–––

670

(Body Diode)

di

V

SD

Diode Forward Voltage

–––

–––

1.3

V

t

rr

Reverse Recovery Time

–––

50

75

ns

T

J

 = 25°C

V

R

 = 85V,

–––

60

90

T

J

 = 125°C

I

F

 = 75A

Q

rr

Reverse Recovery Charge

–––

94

140

nC T

J

 = 25°C

di/dt = 100A/µs 

g

–––

140

210

T

J

 = 125°C

I

RRM

Reverse Recovery Current

–––

3.5

–––

A

T

J

 = 25°C

t

on

Forward Turn-On Time

Intrinsic turn-on time is negligible (turn-on is dominated by LS+LD)

I

D

 = 75A

R

G

 = 2.6

V

GS

 = 10V 

g

V

DD

 = 65V

T

J

 = 25°C, I

S

 = 75A, V

GS

 = 0V 

g

integral reverse
p-n junction diode.

Conditions

V

GS

 = 0V, I

D

 = 250µA

Reference to 25°C, I

D

 = 5mAd

V

GS

 = 10V, I

D

 = 75A g

V

DS

 = V

GS

, I

D

 = 250µA

V

DS

 = 100V, V

GS

 = 0V

V

DS

 = 100V, V

GS

 = 0V, T

J

 = 125°C

MOSFET symbol
showing  the

V

DS

 = 50V

Conditions

V

GS

 = 10V 

g

V

GS

 = 0V

V

DS

 = 50V

ƒ = 1.0MHz
V

GS

 = 0V, V

DS

 = 0V to 80V 

j

V

GS

 = 0V, V

DS

 = 0V to 80V 

h

Conditions

V

DS

 = 50V, I

D

 = 75A

I

D

 = 75A

V

GS

 = 20V

V

GS

 = -20V

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/irfb4110pbf-html.html
background image

IRFB4110PbF

  

      3

  

     www.irf.com  

© 

2014 International Rectifier       

   Submit Datasheet Feedback

 

   

                        April 28, 2014

Fig 1.  Typical Output Characteristics

Fig 3.  Typical Transfer Characteristics

Fig 4.  Normalized On-Resistance vs. Temperature

Fig 2.  Typical Output Characteristics

Fig 6.  Typical Gate Charge vs. Gate-to-Source Voltage

Fig 5.  Typical Capacitance vs. Drain-to-Source Voltage

0.1

1

10

100

VDS, Drain-to-Source Voltage (V)

10

100

1000

I D

, D

ra

in

-t

o-

S

ou

rc

C

ur

re

nt

 (

A

)

VGS

TOP          

15V
10V

8.0V

6.0V

5.5V

5.0V

4.8V

BOTTOM

4.5V

≤60µs PULSE WIDTH

Tj = 25°C

4.5V

0.1

1

10

100

VDS, Drain-to-Source Voltage (V)

10

100

1000

I D

, D

ra

in

-t

o-

S

ou

rc

C

ur

re

nt

 (

A

)

4.5V

≤60µs PULSE WIDTH

Tj = 175°C

VGS

TOP          

15V

10V

8.0V
6.0V

5.5V

5.0V

4.8V

BOTTOM

4.5V

1

2

3

4

5

6

7

VGS, Gate-to-Source Voltage (V)

0.1

1

10

100

1000

I D

, D

ra

in

-t

o-

S

ou

rc

C

ur

re

nt

 (

A

)

TJ = 25°C

TJ = 175°C

VDS = 25V

≤60µs PULSE WIDTH

1

10

100

VDS, Drain-to-Source Voltage (V)

100

1000

10000

100000

C

, C

ap

ac

ita

nc

(p

F

)

VGS   = 0V,       f = 1 MHZ

Ciss   = Cgs + Cgd,  C ds SHORTED
Crss   = Cgd 

Coss  = Cds + Cgd

Coss

Crss

Ciss

-60 -40 -20 0 20 40 60 80 100120140160180

TJ , Junction Temperature (°C)

0.5

1.0

1.5

2.0

2.5

3.0

R

D

S

(o

n)

 ,

 D

ra

in

-t

o-

S

ou

rc

O

R

es

is

ta

nc

   

   

   

   

   

   

   

 (

N

or

m

al

iz

ed

)

ID = 75A

VGS = 10V

0

50

100

150

200

 QG,  Total Gate Charge (nC)

0.0

2.0

4.0

6.0

8.0

10.0

12.0

V

G

S

, G

at

e-

to

-S

ou

rc

V

ol

ta

ge

 (

V

)

VDS= 80V

VDS= 50V

ID= 75A

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/irfb4110pbf-html.html
background image

IRFB4110PbF

  

      4

  

     www.irf.com  

© 

2014 International Rectifier       

    

  

 

Submit Datasheet Feedback

 

                      April 28, 2014

Fig 8.  Maximum Safe Operating Area

Fig 10.  Drain-to-Source Breakdown Voltage

Fig 7.  Typical Source-Drain Diode Forward Voltage

Fig 11.  Typical C

OSS

 Stored Energy

Fig 9.  Maximum Drain Current vs. Case Temperature

Fig 12.  Maximum Avalanche Energy vs. DrainCurrent

0.0

0.5

1.0

1.5

2.0

VSD, Source-to-Drain Voltage (V)

0.1

1

10

100

1000

I S

D

, R

ev

er

se

 D

ra

in

 C

ur

re

nt

 (

A

)

TJ = 25°C

TJ = 175°C

VGS = 0V

-60 -40 -20 0 20 40 60 80 100120140160180

TJ , Temperature ( °C )

90

95

100

105

110

115

120

125

V

(B

R

)D

S

S

,  D

ra

in

-t

o-

S

ou

rc

B

re

ak

do

w

V

ol

ta

ge

 (

V

)

Id = 5mA

0

20

40

60

80

100

120

VDS, Drain-to-Source Voltage (V)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

E

ne

rg

J)

25

50

75

100

125

150

175

 TC , Case Temperature (°C)

0

20

40

60

80

100

120

140

160

180

I D

,   

D

ra

in

 C

ur

re

nt

 (

A

)

Limited By Package

25

50

75

100

125

150

175

Starting TJ , Junction Temperature (°C)

0

100

200

300

400

500

600

700

800

E A

S

 ,

 S

in

gl

P

ul

se

 A

va

la

nc

he

 E

ne

rg

(m

J)

ID

TOP         17A

27A

BOTTOM 108A

0.1

1

10

100

1000

VDS, Drain-to-Source Voltage (V)

0.01

0.1

1

10

100

1000

10000

I D

,  

D

ra

in

-t

o-

S

ou

rc

C

ur

re

nt

 (

A

)

Tc = 25°C

Tj = 175°C

Single Pulse

1msec

10msec

OPERATION IN THIS AREA 

LIMITED BY R DS(on)

100µsec

DC

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/irfb4110pbf-html.html
background image

IRFB4110PbF

  

      5

  

     www.irf.com  

© 

2014 International Rectifier       

   Submit Datasheet Feedback

 

   

                        April 28, 2014

Fig 13.  Maximum Effective Transient Thermal Impedance, Junction-to-Case

Fig 14.  Typical Avalanche Current vs.Pulsewidth

Fig 15.  Maximum Avalanche Energy vs. Temperature

Notes on Repetitive Avalanche Curves , Figures 14, 15:
(For further info, see AN-1005 at www.irf.com)
1. Avalanche failures assumption:

Purely a thermal phenomenon and failure occurs at a temperature far in
excess of T

jmax

. This is validated for every part type.

2. Safe operation in Avalanche is allowed as long asT

jmax

 is not exceeded.

3. Equation below based on circuit and waveforms shown in Figures 16a, 16b.
4. P

D (ave) 

= Average power dissipation per single avalanche pulse.

5. BV = Rated breakdown voltage (1.3 factor accounts for voltage increase

during avalanche).

6. I

av 

= Allowable avalanche current.

7. 

∆T

 = 

Allowable rise in junction temperature, not to exceed

 

T

jmax 

(assumed as

25°C in Figure 14, 15).
t

av = 

Average time in avalanche.

D = Duty cycle in avalanche =  t

av 

·f

Z

thJC

(D, t

av

) = Transient thermal resistance, see Figures 13)

P

D (ave)

 = 1/2 ( 1.3·BV·I

av

) =

 DT/ Z

thJC

I

av 

=

 

2

DT/ [1.3·BV·Z

th

]

E

AS (AR)

 = P

D (ave)

·t

av

1E-006

1E-005

0.0001

0.001

0.01

0.1

t1 , Rectangular Pulse Duration (sec)

0.0001

0.001

0.01

0.1

1

T

he

rm

al

 R

es

po

ns

Z

 th

JC

 )

0.20

0.10

D = 0.50

0.02

0.01

0.05

SINGLE PULSE

( THERMAL RESPONSE )

Notes:

1. Duty Factor D = t1/t2

2. Peak Tj = P dm x Zthjc + Tc

Ri (°C/W)

τ

i (sec)

0.09876251

0.000111

0.2066697

0.001743

0.09510464

0.012269

τ

J

τ

J

τ

1

τ

1

τ

2

τ

2

τ

3

τ

3

R

1

R

1

R

2

R

2

R

3

R

3

τ

C

τ

C

Ci=  

τi/Ri

Ci= 

τi/R i

25

50

75

100

125

150

175

Starting TJ , Junction Temperature (°C)

0

50

100

150

200

250

E A

R

 , 

A

va

la

nc

he

 E

ne

rg

(m

J)

TOP          Single Pulse                
BOTTOM   1.0% Duty Cycle
ID = 108A

1.0E-06

1.0E-05

1.0E-04

1.0E-03

1.0E-02

1.0E-01

tav (sec)

0.1

1

10

100

1000

A

va

la

nc

he

 C

ur

re

nt

 (

A

)

0.05

Duty Cycle = Single Pulse

0.10

Allowed avalanche Current vs avalanche 
pulsewidth, tav, assuming 

∆Τj = 25°C and 

Tstart = 150°C.

0.01

Allowed avalanche Current vs avalanche 
pulsewidth, tav, assuming 

∆Tj = 150°C and 

Tstart =25°C (Single Pulse)

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/irfb4110pbf-html.html
background image

IRFB4110PbF

  

      6

  

     www.irf.com  

© 

2014 International Rectifier       

    

  

 

Submit Datasheet Feedback

 

                      April 28, 2014

Fig. 17 - Typical Recovery Current vs. di

f

/dt

Fig 16.  Threshold Voltage vs. Temperature

Fig. 19 - Typical Stored Charge vs. di

f

/dt

Fig. 18 - Typical Recovery Current vs. di

f

/dt

Fig. 20 - Typical Stored Charge vs. di

f

/dt

-75 -50 -25 0 25 50 75 100 125 150 175 200

TJ , Temperature ( °C )

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

V

G

S

(t

h)

,  G

at

th

re

sh

ol

V

ol

ta

ge

 (

V

)

ID = 250µA

ID = 1.0mA

ID = 1.0A

0

200

400

600

800

1000

diF /dt (A/µs)

0

5

10

15

20

25

I R

R

 (

A

)

IF = 30A
VR = 85V
TJ = 25°C
TJ = 125°C

0

200

400

600

800

1000

diF /dt (A/µs)

0

5

10

15

20

25

I R

R

 (

A

)

IF = 45A
VR = 85V
TJ = 25°C
TJ = 125°C

0

200

400

600

800

1000

diF /dt (A/µs)

80

160

240

320

400

480

560

Q

R

R

 (

nC

)

IF = 30A
VR = 85V
TJ = 25°C
TJ = 125°C

0

200

400

600

800

1000

diF /dt (A/µs)

80

160

240

320

400

480

560

Q

R

R

 (

nC

)

IF = 45A
VR = 85V
TJ = 25°C
TJ = 125°C

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/irfb4110pbf-html.html
background image

IRFB4110PbF

  

      7

  

     www.irf.com  

© 

2014 International Rectifier       

   Submit Datasheet Feedback

 

   

                        April 28, 2014

Fig 22a.  Switching Time Test Circuit

Fig 22b.  Switching Time Waveforms

V

GS

V

DS

90%

10%

t

d(on)

t

d(off)

t

r

t

f

V

GS

Pulse Width < 1µs

Duty Factor < 0.1%

V

DD

V

DS

L

D

D.U.T

+

-

Fig 21b.  Unclamped Inductive Waveforms

Fig 21a.  Unclamped Inductive Test Circuit

tp

V

(BR)DSS

I

AS

RG

IAS

0.01

tp

D.U.T

L

VDS

+

- VDD

DRIVER

A

15V

20V

V

GS

Fig 23a.  Gate Charge Test Circuit

Fig 23b.   Gate Charge Waveform

Vds

Vgs

Id

Vgs(th)

Qgs1 Qgs2

Qgd

Qgodr

Fig 20. 

Peak Diode Recovery dv/dt Test Circuit for N-Channel

HEXFET

®

 Power MOSFETs

1K

VCC

DUT

0

L

Circuit Layout Considerations

   •  Low Stray Inductance

   •  Ground Plane

   •  Low Leakage Inductance

      Current Transformer

P.W.

Period

di/dt

Diode Recovery

dv/dt

Ripple 

≤ 5%

Body Diode  Forward Drop

Re-Applied

Voltage

Reverse

Recovery

Current

Body Diode Forward

Current

V

GS

=10V

V

DD

I

SD

Driver Gate Drive

D.U.T. I

SD

Waveform

D.U.T. V

DS

Waveform

Inductor Curent

D = 

P.W.

Period

*

 V

GS

 = 5V for Logic Level Devices

*

+

-

+

+

+

-

-

-

ƒ

„

‚

R

G

V

DD

•  dv/dt controlled by R

G

•  Driver same type as D.U.T.

•  I

SD

 controlled by Duty Factor "D"

•  D.U.T. - Device Under Test

D.U.T



Inductor Current

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/irfb4110pbf-html.html
background image

IRFB4110PbF

  

      8

  

     www.irf.com  

© 

2014 International Rectifier       

    

  

 

Submit Datasheet Feedback

 

                      April 28, 2014

TO-220AB Package Outline

Dimensions are shown in millimeters (inches)

TO-220AB Part Marking Information

TO-220AB packages are not recommended for Surface Mount Application.

Note: For the most current drawing please refer to IR website at: 

http://www.irf.com/package/

IRFB4110

IRFB4110

PYWW?

LC       LC

PART NUMBER

DATE CODE
P = LEAD-FREE
Y = LAST DIGIT OF YEAR
WW = WORK WEEK
? = ASSEMBLY SITE CODE

INTERNATIONAL 

RECTIFIER LOGO

ASSEMBLY 

LOT CODE

OR

YWWP

LC       LC

PART NUMBER

DATE CODE
Y = LAST DIGIT OF YEAR
WW = WORK WEEK
P = LEAD-FREE

INTERNATIONAL 

RECTIFIER LOGO

ASSEMBLY 

LOT CODE

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/irfb4110pbf-html.html
background image

IRFB4110PbF

  

      9

  

     www.irf.com  

© 

2014 International Rectifier       

   Submit Datasheet Feedback

 

   

                        April 28, 2014

IR WORLD HEADQUARTERS: 101 N. Sepulveda Blvd., El Segundo, California 90245, USA

To contact International Rectifier, please visit 

http://www.irf.com/whoto-call/

†     Qualification standards can be found at International Rectifier’s web site:  

http://www.irf.com/product-info/reliability/

††  Applicable version of JEDEC standard at the time of product release.

Moisture Sensitivity Level

TO-220

N/A

RoHS compliant

Qualification information

Industrial

(per JEDEC JESD47F

††

 guidelines)

Yes

Qualification level

Revision History

Date

Comment

• Updated data sheet with new IR corporate template.

• Updated package outline & part marking on page 8.
• Added bullet point in the  Benefits  "RoHS Compliant, Halogen -Free" on page 1.

• Updated typo on the Fig.19 and Fig.20, unit of Y-axis from "A" to "nC" on page 6.

4/28/2014

Maker
Infineon Technologies