IRFB3006PbF Product Datasheet

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/irfb3006pbf-html.html
background image

HEXFET

®

 Power MOSFET

Benefits

l

Improved  Gate, Avalanche and Dynamic
dV/dt Ruggedness

l

Fully Characterized Capacitance and
Avalanche SOA

l

Enhanced body diode dV/dt and dI/dt Capability

l

Lead-Free

l

 RoHS Compliant, Halogen-Free

Applications

l

High Efficiency Synchronous Rectification
 in SMPS

l

Uninterruptible Power Supply

l

High Speed Power Switching

l

Hard Switched and High Frequency Circuits

S

D

G

G

D

S

Gate

Drain

Source

TO-220AB

S

D

G

D

V

DSS

60V

R

DS(on)

   typ.

2.1m

:

              max.

2.5m

:

I

(Silicon Limited)

270A c

I

(Package Limited)

195A 

Absolute Maximum Ratings

Symbol

Parameter

Units

I

D

 @ T

C

 = 25°C

Continuous Drain Current, V

GS

 @ 10V (Silicon Limited)

I

D

 @ T

C

 = 100°C

Continuous Drain Current, V

GS

 @ 10V (Silicon Limited)

I

D

 @ T

C

 = 25°C

Continuous Drain Current, V

GS

 @ 10V (Wire Bond Limited)

I

DM

Pulsed Drain Current 

d

P

D

 @T

C

 = 25°C

Maximum Power Dissipation  

W

Linear Derating Factor

W/°C

V

GS

Gate-to-Source Voltage

V

dv/dt

Peak Diode Recovery 

f

V/ns

T

Operating Junction and

T

STG

Storage Temperature Range
Soldering Temperature, for 10 seconds
(1.6mm from case)
Mounting torque, 6-32 or M3 screw

Avalanche Characteristics

E

AS (Thermally limited) 

Single Pulse Avalanche Energy 

e

mJ

I

AR

Avalanche Current

d

A

E

AR

Repetitive Avalanche Energy 

g

mJ

Thermal Resistance

Symbol

Parameter

Typ.

Max.

Units

R

θJC 

Junction-to-Case k

–––

0.4

R

θCS 

Case-to-Sink, Flat Greased Surface 

0.50

–––

°C/W

R

θJA 

Junction-to-Ambient jk

–––

62

-55  to + 175

 ± 20

2.5

10lb

xin (1.1Nxm)

Max.

270

c

190 

c

1080

195

A

°C

300

320

See Fig. 14, 15, 22a, 22b,

375

10

IRFB3006PbF

  

      1

  

     www.irf.com  

© 

2014 International Rectifier       

    Submit Datasheet Feedback

  

     

                        April 23, 2014

Form

Quantity

IRFB3006PbF

TO-220

Tube

50

IRFB3006PbF

Base Part Number

Package Type

Standard Pack

Orderable Part Number

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/irfb3006pbf-html.html
background image

  

      2

  

     www.irf.com  

© 

2014 International Rectifier       

     Submit Datasheet Feedback

  

     

                        April 23, 2014

IRFB3006PbF

Notes:



Calculated continuous current based on maximum allowable junction
temperature. Bond wire current limit is 195A. Note that current
limitations arising from heating of the device leads may occur with
some lead mounting arrangements. 

(Refer to AN-1140)

‚

Repetitive rating;  pulse width limited by max. junction
temperature.

ƒ

Limited by T

Jmax

, starting T

= 25°C, L = 0.022mH

 R

= 25

Ω, I

AS 

= 170A, V

GS

 =10V. Part not recommended for use

above this value .

S

D

G

„

I

SD 

≤ 170A, di/dt ≤ 1360A/μs, V

DD 

≤ V

(BR)DSS

, T

≤ 175°C.

…

Pulse width 

≤ 400μs; duty cycle ≤ 2%.

†

C

oss

 eff. (TR) is a fixed capacitance that gives the same charging time

as C

oss 

while V

DS 

is rising from 0 to 80% V

DSS

.

‡

C

oss

 eff. (ER) is a fixed capacitance that gives the same energy as

C

oss 

while V

DS 

is rising from 0 to 80% V

DSS

.

ˆ

When mounted on 1" square PCB (FR-4 or G-10 Material). For recommended
footprint and soldering techniques refer to application note #AN-994.

‰

R

θ 

is measured at T

J

 approximately 90°C.

Static @ T

J

 = 25°C (unless otherwise specified)

Symbol

Parameter

Min. Typ. Max. Units

V

(BR)DSS

Drain-to-Source Breakdown Voltage

60

–––

–––

V

ΔV

(BR)DSS

/

ΔT

Breakdown Voltage Temp. Coefficient

–––

0.07

–––

V/°C

R

DS(on)

Static Drain-to-Source On-Resistance

–––

2.1

2.5

m

Ω

V

GS(th)

Gate Threshold Voltage

2.0

–––

4.0

V

I

DSS

Drain-to-Source Leakage Current

–––

–––

20

μA

–––

–––

250

I

GSS

Gate-to-Source Forward Leakage

–––

–––

100

nA

Gate-to-Source Reverse Leakage

–––

–––

-100

R

G

Internal Gate Resistance

–––

2.0

–––

Ω

Dynamic @ T

J

 = 25°C (unless otherwise specified)

Symbol

Parameter

Min. Typ. Max. Units

gfs

Forward Transconductance

280

–––

–––

S

Q

g

Total Gate Charge

–––

200

300

nC

Q

gs

Gate-to-Source Charge

–––

37

–––

Q

gd

Gate-to-Drain ("Miller") Charge

–––

60

Q

sync

Total Gate Charge Sync. (Q

g

 - Q

gd

)

–––

140

–––

t

d(on)

Turn-On Delay Time

–––

16

–––

ns

t

r

Rise Time

–––

182

–––

t

d(off)

Turn-Off Delay Time

–––

118

–––

t

f

Fall Time

–––

189

–––

C

iss

Input Capacitance

–––

8970

–––

pF

C

oss

Output Capacitance

–––

1020

–––

C

rss

Reverse Transfer Capacitance

–––

534

–––

C

oss

 eff. (ER) Effective Output Capacitance (Energy Related)  ––– 1480 –––

C

oss

 eff. (TR) Effective Output Capacitance (Time Related)h ––– 1920 –––

Diode Characteristics

Symbol

        Parameter

Min. Typ. Max. Units

I

S

Continuous Source Current 

–––

––– 270c

A

(Body Diode)

I

SM

Pulsed Source Current

–––

–––

1080

A

(Body Diode)

d

V

SD

Diode Forward Voltage

–––

–––

1.3

V

t

rr

Reverse Recovery Time

–––

44

–––

ns

T

J

 = 25°C

V

R

 = 51V,

–––

48

–––

T

J

 = 125°C

I

F

 = 170A

Q

rr

Reverse Recovery Charge

–––

63

–––

nC T

J

 = 25°C

di/dt = 100A/μs 

g

–––

77

–––

T

J

 = 125°C

I

RRM

Reverse Recovery Current

–––

2.4

–––

A

T

J

 = 25°C

t

on

Forward Turn-On Time

Intrinsic turn-on time is negligible (turn-on is dominated by LS+LD)

Conditions

V

DS

 = 25V, I

D

 = 170A

I

D

 = 170A

V

GS

 = 20V

V

GS

 = -20V

MOSFET symbol
showing  the

V

DS

 =30V

Conditions

V

GS

 = 10V g

V

GS

 = 0V

V

DS

 = 50V

ƒ = 1.0 MHz,  See Fig. 5
V

GS

 = 0V, V

DS

 = 0V to 48V i, See Fig. 11

V

GS

 = 0V, V

DS

 = 0V to 48V h

T

J

 = 25°C, I

S

 = 170A, V

GS

 = 0V 

g

integral reverse
p-n junction diode.

Conditions

V

GS

 = 0V, I

D

 = 250μA

Reference to 25°C, I

D

 = 5mAd

V

GS

 = 10V, I

D

 = 170A g

V

DS

 = V

GS

, I

D

 = 250μA

V

DS

 = 60V, V

GS

 = 0V

V

DS

 = 60V, V

GS

 = 0V, T

J

 = 125°C

I

D

 = 170A

R

G

 = 2.7Ω

V

GS

 = 10V g

V

DD

 = 39V

I

D

 = 170A, V

DS

 =0V, V

GS

 = 10V

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/irfb3006pbf-html.html
background image

  

      3

  

     www.irf.com  

© 

2014 International Rectifier       

     Submit Datasheet Feedback

  

     

                        April 23, 2014

IRFB3006PbF

Fig 1.  Typical Output Characteristics

Fig 3.  Typical Transfer Characteristics

Fig 4.  Normalized On-Resistance vs. Temperature

Fig 2.  Typical Output Characteristics

Fig 6.  Typical Gate Charge vs. Gate-to-Source Voltage

Fig 5.  Typical Capacitance vs. Drain-to-Source Voltage

0.1

1

10

100

VDS, Drain-to-Source Voltage (V)

1

10

100

1000

I D

, D

ra

in

-t

o-

S

ou

rc

C

ur

re

nt

 (

A

)

≤ 60μs PULSE WIDTH

Tj = 25°C

3.5V

VGS

TOP          

15V

10V

8.0V

6.0V

5.0V

4.5V

4.0V

BOTTOM

3.5V

0.1

1

10

100

VDS, Drain-to-Source Voltage (V)

10

100

1000

I D

, D

ra

in

-t

o-

S

ou

rc

C

ur

re

nt

 (

A

)

≤ 60μs PULSE WIDTH

Tj = 175°C

3.5V

VGS

TOP          

15V

10V

8.0V

6.0V

5.0V

4.5V

4.0V

BOTTOM

3.5V

2.0

3.0

4.0

5.0

6.0

7.0

VGS, Gate-to-Source Voltage (V)

1

10

100

1000

I D

, D

ra

in

-t

o-

S

ou

rc

C

ur

re

nt

 (Α

)

VDS = 25V
≤ 60μs PULSE WIDTH

TJ = 25°C

TJ = 175°C

1

10

100

VDS, Drain-to-Source Voltage (V)

0

4000

8000

12000

16000

C

, C

ap

ac

ita

nc

(p

F

)

VGS   = 0V,       f = 1 MHZ

Ciss   = Cgs + Cgd,  Cds SHORTED
Crss   = Cgd 

Coss  = Cds + Cgd

Coss

Crss

Ciss

0

40

80

120

160

200

240

280

 QG  Total Gate Charge (nC)

0

4

8

12

16

V

G

S

, G

at

e-

to

-S

ou

rc

V

ol

ta

ge

 (

V

)

VDS= 48V

VDS= 30V

ID= 170A

-60 -40 -20 0

20 40 60 80 100 120 140 160 180

TJ , Junction Temperature (°C)

0.5

1.0

1.5

2.0

2.5

R

D

S

(o

n)

 , 

D

ra

in

-t

o-

S

ou

rc

O

R

es

is

ta

nc

   

   

   

   

   

   

   

 (

N

or

m

al

iz

ed

)

ID = 170A

VGS = 10V

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/irfb3006pbf-html.html
background image

  

      4

  

     www.irf.com  

© 

2014 International Rectifier       

     Submit Datasheet Feedback

  

     

                        April 23, 2014

IRFB3006PbF

Fig 8.  Maximum Safe Operating Area

Fig 10.  Drain-to-Source Breakdown Voltage

Fig 7.  Typical Source-Drain Diode

Forward Voltage

Fig 11.  Typical C

OSS

 Stored Energy

Fig 9.  Maximum Drain Current vs.

Case Temperature

Fig 12.  Maximum Avalanche Energy Vs. DrainCurrent

0.0

0.4

0.8

1.2

1.6

2.0

VSD, Source-to-Drain Voltage (V)

0.1

1

10

100

1000

I S

D

, R

ev

er

se

 D

ra

in

 C

ur

re

nt

 (

A

)

TJ = 25°C

TJ = 175°C

VGS = 0V

25

50

75

100

125

150

175

 TC , Case Temperature (°C)

0

50

100

150

200

250

300

I D

 ,

 D

ra

in

 C

ur

re

nt

 (

A

)

LIMITED BY PACKAGE

-60 -40 -20 0

20 40 60 80 100 120 140 160 180

TJ , Junction Temperature (°C)

55

60

65

70

75

80

V

(B

R

)D

S

S

 ,

 D

ra

in

-t

o-

S

ou

rc

B

re

ak

do

w

V

ol

ta

ge

ID = 5mA

0

10

20

30

40

50

60

VDS, Drain-to-Source Voltage (V)

0.0

0.5

1.0

1.5

2.0

E

ne

rg

J)

25

50

75

100

125

150

175

Starting TJ, Junction Temperature (°C)

0

200

400

600

800

1000

1200

1400

E

A

S

S

in

gl

P

ul

se

 A

va

la

nc

he

 E

ne

rg

(m

J)

                 I D

TOP  

       20A

               27A

BOTTOM 

  170A

0.1

1

10

100

VDS, Drain-toSource Voltage (V)

0.1

1

10

100

1000

10000

I D

,  

D

ra

in

-t

o-

S

ou

rc

C

ur

re

nt

 (

A

)

Tc = 25°C

Tj = 175°C

Single Pulse

1msec

10msec

OPERATION IN THIS AREA 

LIMITED BY R DS(on)

100μsec

DC

LIMITED BY PACKAGE

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/irfb3006pbf-html.html
background image

  

      5

  

     www.irf.com  

© 

2014 International Rectifier       

     Submit Datasheet Feedback

  

     

                        April 23, 2014

IRFB3006PbF

Fig 13.  Maximum Effective Transient Thermal Impedance, Junction-to-Case

Fig 14.  Typical Avalanche Current vs.Pulsewidth

Fig 15.  Maximum Avalanche Energy vs. Temperature

Notes on Repetitive Avalanche Curves , Figures 14, 15:
(For further info, see AN-1005 at www.irf.com)
1. Avalanche failures assumption:

Purely a thermal phenomenon and failure occurs at a temperature far in
excess of T

jmax

. This is validated for every part type.

2. Safe operation in Avalanche is allowed as long asT

jmax

 is not exceeded.

3. Equation below based on circuit and waveforms shown in Figures 16a, 16b.
4. P

D (ave) 

= Average power dissipation per single avalanche pulse.

5. BV = Rated breakdown voltage (1.3 factor accounts for voltage increase

during avalanche).

6. I

av 

= Allowable avalanche current.

7. 

ΔT

 = 

Allowable rise in junction temperature, not to exceed

 

T

jmax 

(assumed as

25°C in Figure 14, 15).
t

av = 

Average time in avalanche.

D = Duty cycle in avalanche =  t

av 

·f

Z

thJC

(D, t

av

) = Transient thermal resistance, see Figures 13)

P

D (ave)

 = 1/2 ( 1.3·BV·I

av

) =

 DT/ Z

thJC

I

av 

=

 

2

DT/ [1.3·BV·Z

th

]

E

AS (AR)

 = P

D (ave)

·t

av

1E-006

1E-005

0.0001

0.001

0.01

0.1

t1 , Rectangular Pulse Duration (sec)

0.0001

0.001

0.01

0.1

1

T

he

rm

al

 R

es

po

ns

Z  

th

JC

 )

0.20

0.10

D = 0.50

0.02
0.01

0.05

SINGLE PULSE

( THERMAL RESPONSE )

Notes:

1. Duty Factor D = t1/t2

2. Peak Tj = P dm x Zthjc + Tc

Ri (°C/W)

τι (sec)

0.175365 0.000343

0.22547 0.006073

τ

J

τ

J

τ

1

τ

1

τ

2

τ

2

R

1

R

1

R

2

R

2

τ

C

C

Ci= 

τi/Ri

1.0E-06

1.0E-05

1.0E-04

1.0E-03

1.0E-02

1.0E-01

tav (sec)

1

10

100

1000

A

va

la

nc

he

 C

ur

re

nt

 (

A

)

0.05

Duty Cycle = Single Pulse

0.10

Allowed avalanche Current vs avalanche 
pulsewidth, tav, assuming 

ΔΤ j = 25°C and 

Tstart = 150°C.

0.01

Allowed avalanche Current vs avalanche 
pulsewidth, tav, assuming 

ΔTj = 150°C and 

Tstart =25°C (Single Pulse)

25

50

75

100

125

150

175

Starting TJ , Junction Temperature (°C)

0

100

200

300

400

E

A

R

 ,

 A

va

la

nc

he

 E

ne

rg

(m

J)

TOP          Single Pulse                
BOTTOM   1% Duty Cycle
ID = 170A

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/irfb3006pbf-html.html
background image

  

      6

  

     www.irf.com  

© 

2014 International Rectifier       

     Submit Datasheet Feedback

  

     

                        April 23, 2014

IRFB3006PbF

Fig. 17 - Typical Recovery Current vs. di

f

/dt

Fig 16.  Threshold Voltage Vs. Temperature

Fig. 19 - Typical Stored Charge vs. di

f

/dt

Fig. 18 - Typical Recovery Current vs. di

f

/dt

Fig. 20 - Typical Stored Charge vs. di

f

/dt

-75 -50 -25

0

25

50

75 100 125 150 175

TJ , Temperature ( °C )

1.0

1.5

2.0

2.5

3.0

3.5

4.0

V

G

S

(t

h)

 G

at

th

re

sh

ol

V

ol

ta

ge

 (

V

)

ID = 1.0A

ID = 1.0mA

ID = 250μA

100

200

300

400

500

600

700

800

dif / dt - (A / μs)

0

4

8

12

16

20

I R

R

M

 -

 (

A

)

IF = 112A
VR = 51V
TJ = 125°C   
TJ =  25°C  

100

200

300

400

500

600

700

800

dif / dt - (A / μs)

0

4

8

12

16

20

I R

R

M

 -

 (

A

)

IF = 170A
VR = 51V
TJ = 125°C   
TJ =  25°C  

100

200

300

400

500

600

700

800

dif / dt - (A / μs)

0

100

200

300

400

500

600

700

Q

R

R

 -

 (

nC

)

IF = 112A
VR = 51V
TJ = 125°C   
TJ =  25°C  

100

200

300

400

500

600

700

800

dif / dt - (A / μs)

0

100

200

300

400

500

600

700

Q

R

R

 -

 (

nC

)

IF = 170A
VR = 51V
TJ = 125°C   
TJ =  25°C  

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/irfb3006pbf-html.html
background image

  

      7

  

     www.irf.com  

© 

2014 International Rectifier       

     Submit Datasheet Feedback

  

     

                        April 23, 2014

IRFB3006PbF

Fig 23a.  Switching Time Test Circuit

Fig 23b.  Switching Time Waveforms

Fig 22b.  Unclamped Inductive Waveforms

Fig 22a.  Unclamped Inductive Test Circuit

tp

V

(BR)DSS

I

AS

RG

IAS

0.01

Ω

tp

D.U.T

L

VDS

+

- VDD

DRIVER

A

15V

20V

V

GS

Fig 24a.  Gate Charge Test Circuit

Fig 24b.   Gate Charge Waveform

Vds

Vgs

Id

Vgs(th)

Qgs1 Qgs2

Qgd

Qgodr

Fig 21. 

Peak Diode Recovery dv/dt Test Circuit for N-Channel

HEXFET

®

 Power MOSFETs

Circuit Layout Considerations

   •  Low Stray Inductance

   •  Ground Plane

   •  Low Leakage Inductance

      Current Transformer

P.W.

Period

di/dt

Diode Recovery

dv/dt

Ripple 

≤ 5%

Body Diode  Forward Drop

Re-Applied

Voltage

Reverse

Recovery

Current

Body Diode Forward

Current

V

GS

=10V

V

DD

I

SD

Driver Gate Drive

D.U.T. I

SD

Waveform

D.U.T. V

DS

Waveform

Inductor Curent

D = 

P.W.

Period

*

 V

GS

 = 5V for Logic Level Devices

*

+

-

+

+

+

-

-

-

ƒ

„

‚

R

G

V

DD

•  dv/dt controlled by R

G

•  Driver same type as D.U.T.

•  I

SD

 controlled by Duty Factor "D"

•  D.U.T. - Device Under Test

D.U.T



Inductor Current

D.U.T.

V

DS

I

D

I

G

3mA

V

GS

.3

μF

50K

Ω

.2

μF

12V

Current Regulator

Same Type as D.U.T.

Current Sampling Resistors

+

-

V

DS

90%

10%
V

GS

t

d(on)

t

r

t

d(off)

t

f

V

DS

Pulse Width ≤ 1 µs
Duty Factor ≤ 0.1 %

R

D

V

GS

R

G

D.U.T.

10V

+

-

V

DD

V

GS

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/irfb3006pbf-html.html
background image

  

      8

  

     www.irf.com  

© 

2014 International Rectifier       

     Submit Datasheet Feedback

  

     

                        April 23, 2014

IRFB3006PbF

TO-220AB packages are not recommended for Surface Mount Application.

TO-220AB Part Marking Information

TO-220AB Package Outline

Dimensions are shown in millimeters (inches)

Note: For the most current drawing please refer to IR website at: 

http://www.irf.com/package/

IRFB3006

IRFB3006

PYWW?

LC       LC

PART NUMBER

DATE CODE
P = LEAD-FREE
Y = LAST DIGIT OF YEAR
WW = WORK WEEK
? = ASSEMBLY SITE CODE

INTERNATIONAL 

RECTIFIER LOGO

ASSEMBLY 

LOT CODE

OR

YWWP

LC       LC

PART NUMBER

DATE CODE
Y = LAST DIGIT OF YEAR
WW = WORK WEEK
P = LEAD-FREE

INTERNATIONAL 

RECTIFIER LOGO

ASSEMBLY 

LOT CODE

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/irfb3006pbf-html.html
background image

  

      9

  

     www.irf.com  

© 

2014 International Rectifier       

     Submit Datasheet Feedback

  

     

                        April 23, 2014

IRFB3006PbF

IR WORLD HEADQUARTERS: 101 N. Sepulveda Blvd., El Segundo, California 90245, USA

To contact International Rectifier, please visit 

http://www.irf.com/whoto-call/

†     Qualification standards can be found at International Rectifier’s web site:  

http://www.irf.com/product-info/reliability/

††  Applicable version of JEDEC standard at the time of product release.

Qualification level

Moisture Sensitivity Level

TO-220

Not applicable

RoHS compliant

(per JEDEC JESD47F

††

guidelines)

Yes

Qualification information

Industrial

Revision History

Date

Comment

• Updated data sheet with new IR corporate template.
• Updated package outline & part marking on page 8.
• Added bullet point in the  Benefits  "RoHS Compliant, Halogen -Free" on page 1.

4/23/2014

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/irfb3006pbf-html.html
background image

HEXFET

®

 Power MOSFET

Benefits

l

Improved  Gate, Avalanche and Dynamic
dV/dt Ruggedness

l

Fully Characterized Capacitance and
Avalanche SOA

l

Enhanced body diode dV/dt and dI/dt Capability

l

Lead-Free

l

 RoHS Compliant, Halogen-Free

Applications

l

High Efficiency Synchronous Rectification
 in SMPS

l

Uninterruptible Power Supply

l

High Speed Power Switching

l

Hard Switched and High Frequency Circuits

S

D

G

G

D

S

Gate

Drain

Source

TO-220AB

S

D

G

D

V

DSS

60V

R

DS(on)

   typ.

2.1m

:

              max.

2.5m

:

I

(Silicon Limited)

270A c

I

(Package Limited)

195A 

Absolute Maximum Ratings

Symbol

Parameter

Units

I

D

 @ T

C

 = 25°C

Continuous Drain Current, V

GS

 @ 10V (Silicon Limited)

I

D

 @ T

C

 = 100°C

Continuous Drain Current, V

GS

 @ 10V (Silicon Limited)

I

D

 @ T

C

 = 25°C

Continuous Drain Current, V

GS

 @ 10V (Wire Bond Limited)

I

DM

Pulsed Drain Current 

d

P

D

 @T

C

 = 25°C

Maximum Power Dissipation  

W

Linear Derating Factor

W/°C

V

GS

Gate-to-Source Voltage

V

dv/dt

Peak Diode Recovery 

f

V/ns

T

Operating Junction and

T

STG

Storage Temperature Range
Soldering Temperature, for 10 seconds
(1.6mm from case)
Mounting torque, 6-32 or M3 screw

Avalanche Characteristics

E

AS (Thermally limited) 

Single Pulse Avalanche Energy 

e

mJ

I

AR

Avalanche Current

d

A

E

AR

Repetitive Avalanche Energy 

g

mJ

Thermal Resistance

Symbol

Parameter

Typ.

Max.

Units

R

θJC 

Junction-to-Case k

–––

0.4

R

θCS 

Case-to-Sink, Flat Greased Surface 

0.50

–––

°C/W

R

θJA 

Junction-to-Ambient jk

–––

62

-55  to + 175

 ± 20

2.5

10lb

xin (1.1Nxm)

Max.

270

c

190 

c

1080

195

A

°C

300

320

See Fig. 14, 15, 22a, 22b,

375

10

IRFB3006PbF

  

      1

  

     www.irf.com  

© 

2014 International Rectifier       

    Submit Datasheet Feedback

  

     

                        April 23, 2014

Form

Quantity

IRFB3006PbF

TO-220

Tube

50

IRFB3006PbF

Base Part Number

Package Type

Standard Pack

Orderable Part Number

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/irfb3006pbf-html.html
background image

  

      2

  

     www.irf.com  

© 

2014 International Rectifier       

     Submit Datasheet Feedback

  

     

                        April 23, 2014

IRFB3006PbF

Notes:



Calculated continuous current based on maximum allowable junction
temperature. Bond wire current limit is 195A. Note that current
limitations arising from heating of the device leads may occur with
some lead mounting arrangements. 

(Refer to AN-1140)

‚

Repetitive rating;  pulse width limited by max. junction
temperature.

ƒ

Limited by T

Jmax

, starting T

= 25°C, L = 0.022mH

 R

= 25

Ω, I

AS 

= 170A, V

GS

 =10V. Part not recommended for use

above this value .

S

D

G

„

I

SD 

≤ 170A, di/dt ≤ 1360A/μs, V

DD 

≤ V

(BR)DSS

, T

≤ 175°C.

…

Pulse width 

≤ 400μs; duty cycle ≤ 2%.

†

C

oss

 eff. (TR) is a fixed capacitance that gives the same charging time

as C

oss 

while V

DS 

is rising from 0 to 80% V

DSS

.

‡

C

oss

 eff. (ER) is a fixed capacitance that gives the same energy as

C

oss 

while V

DS 

is rising from 0 to 80% V

DSS

.

ˆ

When mounted on 1" square PCB (FR-4 or G-10 Material). For recommended
footprint and soldering techniques refer to application note #AN-994.

‰

R

θ 

is measured at T

J

 approximately 90°C.

Static @ T

J

 = 25°C (unless otherwise specified)

Symbol

Parameter

Min. Typ. Max. Units

V

(BR)DSS

Drain-to-Source Breakdown Voltage

60

–––

–––

V

ΔV

(BR)DSS

/

ΔT

Breakdown Voltage Temp. Coefficient

–––

0.07

–––

V/°C

R

DS(on)

Static Drain-to-Source On-Resistance

–––

2.1

2.5

m

Ω

V

GS(th)

Gate Threshold Voltage

2.0

–––

4.0

V

I

DSS

Drain-to-Source Leakage Current

–––

–––

20

μA

–––

–––

250

I

GSS

Gate-to-Source Forward Leakage

–––

–––

100

nA

Gate-to-Source Reverse Leakage

–––

–––

-100

R

G

Internal Gate Resistance

–––

2.0

–––

Ω

Dynamic @ T

J

 = 25°C (unless otherwise specified)

Symbol

Parameter

Min. Typ. Max. Units

gfs

Forward Transconductance

280

–––

–––

S

Q

g

Total Gate Charge

–––

200

300

nC

Q

gs

Gate-to-Source Charge

–––

37

–––

Q

gd

Gate-to-Drain ("Miller") Charge

–––

60

Q

sync

Total Gate Charge Sync. (Q

g

 - Q

gd

)

–––

140

–––

t

d(on)

Turn-On Delay Time

–––

16

–––

ns

t

r

Rise Time

–––

182

–––

t

d(off)

Turn-Off Delay Time

–––

118

–––

t

f

Fall Time

–––

189

–––

C

iss

Input Capacitance

–––

8970

–––

pF

C

oss

Output Capacitance

–––

1020

–––

C

rss

Reverse Transfer Capacitance

–––

534

–––

C

oss

 eff. (ER) Effective Output Capacitance (Energy Related)  ––– 1480 –––

C

oss

 eff. (TR) Effective Output Capacitance (Time Related)h ––– 1920 –––

Diode Characteristics

Symbol

        Parameter

Min. Typ. Max. Units

I

S

Continuous Source Current 

–––

––– 270c

A

(Body Diode)

I

SM

Pulsed Source Current

–––

–––

1080

A

(Body Diode)

d

V

SD

Diode Forward Voltage

–––

–––

1.3

V

t

rr

Reverse Recovery Time

–––

44

–––

ns

T

J

 = 25°C

V

R

 = 51V,

–––

48

–––

T

J

 = 125°C

I

F

 = 170A

Q

rr

Reverse Recovery Charge

–––

63

–––

nC T

J

 = 25°C

di/dt = 100A/μs 

g

–––

77

–––

T

J

 = 125°C

I

RRM

Reverse Recovery Current

–––

2.4

–––

A

T

J

 = 25°C

t

on

Forward Turn-On Time

Intrinsic turn-on time is negligible (turn-on is dominated by LS+LD)

Conditions

V

DS

 = 25V, I

D

 = 170A

I

D

 = 170A

V

GS

 = 20V

V

GS

 = -20V

MOSFET symbol
showing  the

V

DS

 =30V

Conditions

V

GS

 = 10V g

V

GS

 = 0V

V

DS

 = 50V

ƒ = 1.0 MHz,  See Fig. 5
V

GS

 = 0V, V

DS

 = 0V to 48V i, See Fig. 11

V

GS

 = 0V, V

DS

 = 0V to 48V h

T

J

 = 25°C, I

S

 = 170A, V

GS

 = 0V 

g

integral reverse
p-n junction diode.

Conditions

V

GS

 = 0V, I

D

 = 250μA

Reference to 25°C, I

D

 = 5mAd

V

GS

 = 10V, I

D

 = 170A g

V

DS

 = V

GS

, I

D

 = 250μA

V

DS

 = 60V, V

GS

 = 0V

V

DS

 = 60V, V

GS

 = 0V, T

J

 = 125°C

I

D

 = 170A

R

G

 = 2.7Ω

V

GS

 = 10V g

V

DD

 = 39V

I

D

 = 170A, V

DS

 =0V, V

GS

 = 10V

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/irfb3006pbf-html.html
background image

  

      3

  

     www.irf.com  

© 

2014 International Rectifier       

     Submit Datasheet Feedback

  

     

                        April 23, 2014

IRFB3006PbF

Fig 1.  Typical Output Characteristics

Fig 3.  Typical Transfer Characteristics

Fig 4.  Normalized On-Resistance vs. Temperature

Fig 2.  Typical Output Characteristics

Fig 6.  Typical Gate Charge vs. Gate-to-Source Voltage

Fig 5.  Typical Capacitance vs. Drain-to-Source Voltage

0.1

1

10

100

VDS, Drain-to-Source Voltage (V)

1

10

100

1000

I D

, D

ra

in

-t

o-

S

ou

rc

C

ur

re

nt

 (

A

)

≤ 60μs PULSE WIDTH

Tj = 25°C

3.5V

VGS

TOP          

15V

10V

8.0V

6.0V

5.0V

4.5V

4.0V

BOTTOM

3.5V

0.1

1

10

100

VDS, Drain-to-Source Voltage (V)

10

100

1000

I D

, D

ra

in

-t

o-

S

ou

rc

C

ur

re

nt

 (

A

)

≤ 60μs PULSE WIDTH

Tj = 175°C

3.5V

VGS

TOP          

15V

10V

8.0V

6.0V

5.0V

4.5V

4.0V

BOTTOM

3.5V

2.0

3.0

4.0

5.0

6.0

7.0

VGS, Gate-to-Source Voltage (V)

1

10

100

1000

I D

, D

ra

in

-t

o-

S

ou

rc

C

ur

re

nt

 (Α

)

VDS = 25V
≤ 60μs PULSE WIDTH

TJ = 25°C

TJ = 175°C

1

10

100

VDS, Drain-to-Source Voltage (V)

0

4000

8000

12000

16000

C

, C

ap

ac

ita

nc

(p

F

)

VGS   = 0V,       f = 1 MHZ

Ciss   = Cgs + Cgd,  Cds SHORTED
Crss   = Cgd 

Coss  = Cds + Cgd

Coss

Crss

Ciss

0

40

80

120

160

200

240

280

 QG  Total Gate Charge (nC)

0

4

8

12

16

V

G

S

, G

at

e-

to

-S

ou

rc

V

ol

ta

ge

 (

V

)

VDS= 48V

VDS= 30V

ID= 170A

-60 -40 -20 0

20 40 60 80 100 120 140 160 180

TJ , Junction Temperature (°C)

0.5

1.0

1.5

2.0

2.5

R

D

S

(o

n)

 , 

D

ra

in

-t

o-

S

ou

rc

O

R

es

is

ta

nc

   

   

   

   

   

   

   

 (

N

or

m

al

iz

ed

)

ID = 170A

VGS = 10V

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/irfb3006pbf-html.html
background image

  

      4

  

     www.irf.com  

© 

2014 International Rectifier       

     Submit Datasheet Feedback

  

     

                        April 23, 2014

IRFB3006PbF

Fig 8.  Maximum Safe Operating Area

Fig 10.  Drain-to-Source Breakdown Voltage

Fig 7.  Typical Source-Drain Diode

Forward Voltage

Fig 11.  Typical C

OSS

 Stored Energy

Fig 9.  Maximum Drain Current vs.

Case Temperature

Fig 12.  Maximum Avalanche Energy Vs. DrainCurrent

0.0

0.4

0.8

1.2

1.6

2.0

VSD, Source-to-Drain Voltage (V)

0.1

1

10

100

1000

I S

D

, R

ev

er

se

 D

ra

in

 C

ur

re

nt

 (

A

)

TJ = 25°C

TJ = 175°C

VGS = 0V

25

50

75

100

125

150

175

 TC , Case Temperature (°C)

0

50

100

150

200

250

300

I D

 ,

 D

ra

in

 C

ur

re

nt

 (

A

)

LIMITED BY PACKAGE

-60 -40 -20 0

20 40 60 80 100 120 140 160 180

TJ , Junction Temperature (°C)

55

60

65

70

75

80

V

(B

R

)D

S

S

 ,

 D

ra

in

-t

o-

S

ou

rc

B

re

ak

do

w

V

ol

ta

ge

ID = 5mA

0

10

20

30

40

50

60

VDS, Drain-to-Source Voltage (V)

0.0

0.5

1.0

1.5

2.0

E

ne

rg

J)

25

50

75

100

125

150

175

Starting TJ, Junction Temperature (°C)

0

200

400

600

800

1000

1200

1400

E

A

S

S

in

gl

P

ul

se

 A

va

la

nc

he

 E

ne

rg

(m

J)

                 I D

TOP  

       20A

               27A

BOTTOM 

  170A

0.1

1

10

100

VDS, Drain-toSource Voltage (V)

0.1

1

10

100

1000

10000

I D

,  

D

ra

in

-t

o-

S

ou

rc

C

ur

re

nt

 (

A

)

Tc = 25°C

Tj = 175°C

Single Pulse

1msec

10msec

OPERATION IN THIS AREA 

LIMITED BY R DS(on)

100μsec

DC

LIMITED BY PACKAGE

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/irfb3006pbf-html.html
background image

  

      5

  

     www.irf.com  

© 

2014 International Rectifier       

     Submit Datasheet Feedback

  

     

                        April 23, 2014

IRFB3006PbF

Fig 13.  Maximum Effective Transient Thermal Impedance, Junction-to-Case

Fig 14.  Typical Avalanche Current vs.Pulsewidth

Fig 15.  Maximum Avalanche Energy vs. Temperature

Notes on Repetitive Avalanche Curves , Figures 14, 15:
(For further info, see AN-1005 at www.irf.com)
1. Avalanche failures assumption:

Purely a thermal phenomenon and failure occurs at a temperature far in
excess of T

jmax

. This is validated for every part type.

2. Safe operation in Avalanche is allowed as long asT

jmax

 is not exceeded.

3. Equation below based on circuit and waveforms shown in Figures 16a, 16b.
4. P

D (ave) 

= Average power dissipation per single avalanche pulse.

5. BV = Rated breakdown voltage (1.3 factor accounts for voltage increase

during avalanche).

6. I

av 

= Allowable avalanche current.

7. 

ΔT

 = 

Allowable rise in junction temperature, not to exceed

 

T

jmax 

(assumed as

25°C in Figure 14, 15).
t

av = 

Average time in avalanche.

D = Duty cycle in avalanche =  t

av 

·f

Z

thJC

(D, t

av

) = Transient thermal resistance, see Figures 13)

P

D (ave)

 = 1/2 ( 1.3·BV·I

av

) =

 DT/ Z

thJC

I

av 

=

 

2

DT/ [1.3·BV·Z

th

]

E

AS (AR)

 = P

D (ave)

·t

av

1E-006

1E-005

0.0001

0.001

0.01

0.1

t1 , Rectangular Pulse Duration (sec)

0.0001

0.001

0.01

0.1

1

T

he

rm

al

 R

es

po

ns

Z  

th

JC

 )

0.20

0.10

D = 0.50

0.02
0.01

0.05

SINGLE PULSE

( THERMAL RESPONSE )

Notes:

1. Duty Factor D = t1/t2

2. Peak Tj = P dm x Zthjc + Tc

Ri (°C/W)

τι (sec)

0.175365 0.000343

0.22547 0.006073

τ

J

τ

J

τ

1

τ

1

τ

2

τ

2

R

1

R

1

R

2

R

2

τ

C

C

Ci= 

τi/Ri

1.0E-06

1.0E-05

1.0E-04

1.0E-03

1.0E-02

1.0E-01

tav (sec)

1

10

100

1000

A

va

la

nc

he

 C

ur

re

nt

 (

A

)

0.05

Duty Cycle = Single Pulse

0.10

Allowed avalanche Current vs avalanche 
pulsewidth, tav, assuming 

ΔΤ j = 25°C and 

Tstart = 150°C.

0.01

Allowed avalanche Current vs avalanche 
pulsewidth, tav, assuming 

ΔTj = 150°C and 

Tstart =25°C (Single Pulse)

25

50

75

100

125

150

175

Starting TJ , Junction Temperature (°C)

0

100

200

300

400

E

A

R

 ,

 A

va

la

nc

he

 E

ne

rg

(m

J)

TOP          Single Pulse                
BOTTOM   1% Duty Cycle
ID = 170A

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/irfb3006pbf-html.html
background image

  

      6

  

     www.irf.com  

© 

2014 International Rectifier       

     Submit Datasheet Feedback

  

     

                        April 23, 2014

IRFB3006PbF

Fig. 17 - Typical Recovery Current vs. di

f

/dt

Fig 16.  Threshold Voltage Vs. Temperature

Fig. 19 - Typical Stored Charge vs. di

f

/dt

Fig. 18 - Typical Recovery Current vs. di

f

/dt

Fig. 20 - Typical Stored Charge vs. di

f

/dt

-75 -50 -25

0

25

50

75 100 125 150 175

TJ , Temperature ( °C )

1.0

1.5

2.0

2.5

3.0

3.5

4.0

V

G

S

(t

h)

 G

at

th

re

sh

ol

V

ol

ta

ge

 (

V

)

ID = 1.0A

ID = 1.0mA

ID = 250μA

100

200

300

400

500

600

700

800

dif / dt - (A / μs)

0

4

8

12

16

20

I R

R

M

 -

 (

A

)

IF = 112A
VR = 51V
TJ = 125°C   
TJ =  25°C  

100

200

300

400

500

600

700

800

dif / dt - (A / μs)

0

4

8

12

16

20

I R

R

M

 -

 (

A

)

IF = 170A
VR = 51V
TJ = 125°C   
TJ =  25°C  

100

200

300

400

500

600

700

800

dif / dt - (A / μs)

0

100

200

300

400

500

600

700

Q

R

R

 -

 (

nC

)

IF = 112A
VR = 51V
TJ = 125°C   
TJ =  25°C  

100

200

300

400

500

600

700

800

dif / dt - (A / μs)

0

100

200

300

400

500

600

700

Q

R

R

 -

 (

nC

)

IF = 170A
VR = 51V
TJ = 125°C   
TJ =  25°C  

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/irfb3006pbf-html.html
background image

  

      7

  

     www.irf.com  

© 

2014 International Rectifier       

     Submit Datasheet Feedback

  

     

                        April 23, 2014

IRFB3006PbF

Fig 23a.  Switching Time Test Circuit

Fig 23b.  Switching Time Waveforms

Fig 22b.  Unclamped Inductive Waveforms

Fig 22a.  Unclamped Inductive Test Circuit

tp

V

(BR)DSS

I

AS

RG

IAS

0.01

Ω

tp

D.U.T

L

VDS

+

- VDD

DRIVER

A

15V

20V

V

GS

Fig 24a.  Gate Charge Test Circuit

Fig 24b.   Gate Charge Waveform

Vds

Vgs

Id

Vgs(th)

Qgs1 Qgs2

Qgd

Qgodr

Fig 21. 

Peak Diode Recovery dv/dt Test Circuit for N-Channel

HEXFET

®

 Power MOSFETs

Circuit Layout Considerations

   •  Low Stray Inductance

   •  Ground Plane

   •  Low Leakage Inductance

      Current Transformer

P.W.

Period

di/dt

Diode Recovery

dv/dt

Ripple 

≤ 5%

Body Diode  Forward Drop

Re-Applied

Voltage

Reverse

Recovery

Current

Body Diode Forward

Current

V

GS

=10V

V

DD

I

SD

Driver Gate Drive

D.U.T. I

SD

Waveform

D.U.T. V

DS

Waveform

Inductor Curent

D = 

P.W.

Period

*

 V

GS

 = 5V for Logic Level Devices

*

+

-

+

+

+

-

-

-

ƒ

„

‚

R

G

V

DD

•  dv/dt controlled by R

G

•  Driver same type as D.U.T.

•  I

SD

 controlled by Duty Factor "D"

•  D.U.T. - Device Under Test

D.U.T



Inductor Current

D.U.T.

V

DS

I

D

I

G

3mA

V

GS

.3

μF

50K

Ω

.2

μF

12V

Current Regulator

Same Type as D.U.T.

Current Sampling Resistors

+

-

V

DS

90%

10%
V

GS

t

d(on)

t

r

t

d(off)

t

f

V

DS

Pulse Width ≤ 1 µs
Duty Factor ≤ 0.1 %

R

D

V

GS

R

G

D.U.T.

10V

+

-

V

DD

V

GS

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/irfb3006pbf-html.html
background image

  

      8

  

     www.irf.com  

© 

2014 International Rectifier       

     Submit Datasheet Feedback

  

     

                        April 23, 2014

IRFB3006PbF

TO-220AB packages are not recommended for Surface Mount Application.

TO-220AB Part Marking Information

TO-220AB Package Outline

Dimensions are shown in millimeters (inches)

Note: For the most current drawing please refer to IR website at: 

http://www.irf.com/package/

IRFB3006

IRFB3006

PYWW?

LC       LC

PART NUMBER

DATE CODE
P = LEAD-FREE
Y = LAST DIGIT OF YEAR
WW = WORK WEEK
? = ASSEMBLY SITE CODE

INTERNATIONAL 

RECTIFIER LOGO

ASSEMBLY 

LOT CODE

OR

YWWP

LC       LC

PART NUMBER

DATE CODE
Y = LAST DIGIT OF YEAR
WW = WORK WEEK
P = LEAD-FREE

INTERNATIONAL 

RECTIFIER LOGO

ASSEMBLY 

LOT CODE

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/irfb3006pbf-html.html
background image

  

      9

  

     www.irf.com  

© 

2014 International Rectifier       

     Submit Datasheet Feedback

  

     

                        April 23, 2014

IRFB3006PbF

IR WORLD HEADQUARTERS: 101 N. Sepulveda Blvd., El Segundo, California 90245, USA

To contact International Rectifier, please visit 

http://www.irf.com/whoto-call/

†     Qualification standards can be found at International Rectifier’s web site:  

http://www.irf.com/product-info/reliability/

††  Applicable version of JEDEC standard at the time of product release.

Qualification level

Moisture Sensitivity Level

TO-220

Not applicable

RoHS compliant

(per JEDEC JESD47F

††

guidelines)

Yes

Qualification information

Industrial

Revision History

Date

Comment

• Updated data sheet with new IR corporate template.
• Updated package outline & part marking on page 8.
• Added bullet point in the  Benefits  "RoHS Compliant, Halogen -Free" on page 1.

4/23/2014

Maker
Infineon Technologies