DirectFET
Power MOSFET
Typical values (unless otherwise specified)
DirectFET
ISOMETRIC
L8
Applicable DirectFET Outline and Substrate Outline
l
RoHS Compliant, Halogen Free
l
Lead-Free (Qualified up to 260°C Reflow)
l
Ideal for High Performance Isolated Converter
Primary Switch Socket
l
Optimized for Synchronous Rectification
l
Low Conduction Losses
l
High Cdv/dt Immunity
l
Low Profile (<0.7mm)
l
Dual Sided Cooling Compatible
l
Compatible with existing Surface Mount Techniques
l
Industrial Qualified
Description
The IRF7759L2TR/TR1PbF combines the latest HEXFET® Power MOSFET Silicon technology with the advanced DirectFET
TM
packaging to achieve the
lowest on-state resistance in a package that has a footprint smaller than a D
2
PAK and only 0.7 mm profile. The DirectFET package is compatible with existing
layout geometries used in power applications, PCB assembly equipment and vapor phase, infra-red or convection soldering techniques, when application
note AN-1035 is followed regarding the manufacturing methods and processes. The DirectFET package allows dual sided cooling to maximize thermal transfer
in power systems.
The IRF7759L2TR/TR1PbF is optimized for high frequency switching and synchronous rectification applications. The reduced total losses in the device
coupled with the high level of thermal performance enables high efficiency and low temperatures, which are key for system reliability improvements, and
makes this device ideal for high performance power converters.
Fig 1. Typical On-Resistance vs. Gate Voltage
Click on this section to link to the appropriate technical paper.
Click on this section to link to the DirectFET Website.
Surface mounted on 1 in. square Cu board, steady state.
T
C
measured with thermocouple mounted to top (Drain) of part.
Repetitive rating; pulse width limited by max. junction temperature.
Starting T
J
= 25°C, L = 0.056mH, R
G
= 25
Ω, I
AS
= 96A.
Notes:
Fig 2. Typical On-Resistance vs. Drain Current
SB
SC
M2 M4
L4
L6
L8
D
S
G
D
S
S
S
S
S
S
S
Absolute Maximum Ratings
Parameter
Units
V
DS
Drain-to-Source Voltage
V
GS
Gate-to-Source Voltage
I
D
@ T
C
= 25°C
Continuous Drain Current, V
GS
@ 10V
(Silicon Limited)
f
I
D
@ T
C
= 100°C
Continuous Drain Current, V
GS
@ 10V
(Silicon Limited)
f
I
D
@ T
A
= 25°C
Continuous Drain Current, V
GS
@ 10V
(Silicon Limited)
e
I
D
@ T
C
= 25°C
Continuous Drain Current, V
GS
@ 10V
(Package Limited)
f
I
DM
Pulsed Drain Current
g
E
AS
Single Pulse Avalanche Energy
h
mJ
I
AR
Avalanche Current
g
A
A
V
96
375
257
Max.
113
26
640
±20
75
160
2
4
6
8
10
12
14
16
18
20
V GS, Gate -to -Source Voltage (V)
0
2
4
6
8
R
D
S
(o
n)
,
D
ra
in
-t
o
-S
ou
rc
e
O
n
R
es
is
ta
nc
e
(m
Ω
)
I D = 96A
T J = 25°C
T J = 125°C
15
30
45
60
75
90
105
ID, Drain Current (A)
1.65
1.75
1.85
1.95
T
yp
ic
al
R
D
S
(o
n)
( m
Ω
)
TA= 25°C
VGS = 8.0V
VGS = 7.0V
VGS = 10V
VGS = 15V
V
DSS
V
GS
R
DS(on)
75V min ±20V max 1.8mΩ@ 10V
Q
g tot
Q
gd
V
gs(th)
200nC
62nC
3.0V
IRF7759L2PbF
1
www.irf.com
©
2014 International Rectifier
Submit Datasheet Feedback
February 24, 2014
Form
Quantity
IRF7759L2TRPbF
DirectFET2 Large Can
Tape and Reel
4000
"TR" suffix
IRF7759L2TR1PbF
DirectFET2 Large Can
Tape and Reel
1000
"TR1" suffix EOL notice # 264
Note
Orderable part number
Package Type
Standard Pack
2
www.irf.com
©
2014 International Rectifier
Submit Datasheet Feedback
February 24, 2014
IRF7759L2PbF
Notes:
Repetitive rating; pulse width limited by max. junction temperature.
Pulse width ≤ 400μs; duty cycle ≤ 2%.
Static @ T
J
= 25°C (unless otherwise specified)
Parameter
Min. Typ. Max. Units
BV
DSS
Drain-to-Source Breakdown Voltage
75
–––
–––
V
ΔΒV
DSS
/ΔT
J
Breakdown Voltage Temp. Coefficient
–––
0.02
–––
V/°C
R
DS(on)
Static Drain-to-Source On-Resistance
–––
1.8
2.3
m
Ω
V
GS(th)
Gate Threshold Voltage
2.0
3.0
4.0
V
ΔV
GS(th)
/
ΔT
J
Gate Threshold Voltage Coefficient
–––
-11
––– mV/°C
I
DSS
Drain-to-Source Leakage Current
–––
–––
20
–––
–––
250
I
GSS
Gate-to-Source Forward Leakage
–––
–––
100
Gate-to-Source Reverse Leakage
–––
–––
-100
gfs
Forward Transconductance
74
–––
–––
S
Q
g
Total Gate Charge
–––
200
300
Q
gs1
Pre-Vth Gate-to-Source Charge
–––
37
–––
Q
gs2
Post-Vth Gate-to-Source Charge
–––
11
–––
Q
gd
Gate-to-Drain Charge
–––
62
93
Q
godr
Gate Charge Overdrive
–––
91
–––
See Fig. 9
Q
sw
Switch Charge (Q
gs2
+ Q
gd
)
–––
73
–––
Q
oss
Output Charge
–––
60
–––
nC
R
G
Gate Resistance
–––
1.1
–––
Ω
t
d(on)
Turn-On Delay Time
–––
18
–––
t
r
Rise Time
–––
37
–––
t
d(off)
Turn-Off Delay Time
–––
80
–––
t
f
Fall Time
–––
33
–––
C
iss
Input Capacitance
–––
12222 –––
C
oss
Output Capacitance
–––
1465
–––
C
rss
Reverse Transfer Capacitance
–––
609
–––
C
oss
Output Capacitance
–––
7457
–––
C
oss
Output Capacitance
–––
955
–––
Diode Characteristics
Parameter
Min. Typ. Max. Units
I
S
Continuous Source Current
(Body Diode)
I
SM
Pulsed Source Current
(Body Diode)
g
V
SD
Diode Forward Voltage
–––
–––
1.3
V
t
rr
Reverse Recovery Time
–––
64
96
ns
Q
rr
Reverse Recovery Charge
–––
150
225
nC
pF
A
–––
–––
160
–––
–––
640
μA
nA
nC
ns
MOSFET symbol
R
G
=1.8
Ω
V
DS
= 25V
Conditions
V
GS
= 0V, V
DS
= 60V, f=1.0MHz
V
GS
= 0V, V
DS
= 1.0V, f=1.0MHz
V
DS
= 16V, V
GS
= 0V
V
DD
= 38V, V
GS
= 10Vi
V
GS
= 0V
ƒ = 1.0MHz
I
D
= 96A
V
DS
= 75V, V
GS
= 0V
Conditions
V
GS
= 0V, I
D
= 250μA
Reference to 25°C, I
D
= 2mA
V
GS
= 10V, I
D
= 96A i
V
DS
= V
GS
, I
D
= 250μA
T
J
= 25°C, I
F
= 96A, V
DD
= 38V
di/dt = 100A/μs i
T
J
= 25°C, I
S
= 96A, V
GS
= 0V
i
showing the
integral reverse
p-n junction diode.
I
D
= 96A
V
DS
= 60V, V
GS
= 0V, T
J
= 125°C
V
GS
= 20V
V
GS
= -20V
V
GS
= 10V
V
DS
= 25V, I
D
= 96A
V
DS
= 38V
3
www.irf.com
©
2014 International Rectifier
Submit Datasheet Feedback
February 24, 2014
IRF7759L2PbF
Fig 3. Maximum Effective Transient Thermal Impedance, Junction-to-Case
Surface mounted on 1 in. square Cu board, steady state.
T
C
measured with thermocouple incontact with top (Drain) of part.
Used double sided cooling, mounting pad with large heatsink.
Notes:
Mounted on minimum footprint full size board with metalized
back and with small clip heatsink.
R
θ
is measured at
T
J
of approximately 90°C.
Surface mounted on 1 in. square Cu
board (still air).
Mounted on minimum footprint full size board with metalized
back and with small clip heatsink. (still air)
1E-006
1E-005
0.0001
0.001
0.01
0.1
1
t1 , Rectangular Pulse Duration (sec)
0.0001
0.001
0.01
0.1
1
10
T
he
rm
al
R
es
po
ns
e
(
Z
th
JC
)
°
C
/W
0.20
0.10
D = 0.50
0.02
0.01
0.05
SINGLE PULSE
( THERMAL RESPONSE )
Notes:
1. Duty Factor D = t1/t2
2. Peak Tj = P dm x Zthjc + Tc
τ
J
τ
J
τ
1
τ
1
τ
2
τ
2
τ
3
τ
3
R
1
R
1
R
2
R
2
R
3
R
3
Ci i
/Ri
Ci=
τi/Ri
τ
τ
C
τ
4
τ
4
R
4
R
4
Ri (°C/W)
τi (sec)
0.10804 0.000171
0.61403 0.053914
0.45202 0.006099
0.00001 0.036168
Absolute Maximum Ratings
Parameter
Units
P
D
@T
C
= 25°C
Power Dissipation
f
P
D
@T
C
= 100°C
Power Dissipation
f
P
D
@T
A
= 25°C
Power Dissipation
c
T
P
Peak Soldering Temperature
T
J
Operating Junction and
T
STG
Storage Temperature Range
Thermal Resistance
Parameter
Typ.
Max.
Units
R
θJA
Junction-to-Ambient
e
–––
45
R
θJA
Junction-to-Ambient
j
12.5
–––
R
θJA
Junction-to-Ambient
k
20
–––
°C/W
R
θJ-Can
Junction-to-Can
fl
–––
1.2
R
θJ-PCB
Junction-to-PCB Mounted
–––
0.5
W
°C
270
-55 to + 175
Max.
3.3
125
63
4
www.irf.com
©
2014 International Rectifier
Submit Datasheet Feedback
February 24, 2014
IRF7759L2PbF
Fig 5. Typical Output Characteristics
Fig 4. Typical Output Characteristics
Fig 6. Typical Transfer Characteristics
Fig 7. Normalized On-Resistance vs. Temperature
Fig 8. Typical Capacitance vs.Drain-to-Source Voltage
Fig 9. Typical Total Gate Charge vs
Gate-to-Source Voltage
0.1
1
10
100
VDS, Drain-to-Source Voltage (V)
1
10
100
1000
I D
, D
ra
in
-t
o-
S
ou
rc
e
C
ur
re
nt
(
A
)
3.75V
≤60μs
PULSE WIDTH
Tj = 175°C
VGS
TOP
15V
10V
7.00V
5.50V
5.00V
4.50V
4.00V
BOTTOM
3.75V
2
2.5
3
3.5
4
4.5
5
5.5
6
VGS, Gate-to-Source Voltage (V)
0.1
1
10
100
1000
I D
, D
ra
in
-t
o-
S
ou
rc
e
C
ur
re
nt
(
A
)
TJ = 175°C
TJ = 25°C
TJ = -40°C
VDS = 25V
≤60μs PULSE WIDTH
-60
-20
20
60
100
140
180
TJ , Junction Temperature (°C)
0.5
1.0
1.5
2.0
2.5
R
D
S
(o
n)
,
D
ra
in
-t
o-
S
ou
rc
e
O
n
R
es
is
ta
nc
e
(
N
or
m
al
iz
ed
)
ID = 96A
VGS = 10V
1
10
100
VDS, Drain-to-Source Voltage (V)
100
1000
10000
100000
C
, C
ap
ac
ita
nc
e
(p
F
)
VGS = 0V, f = 1 MHZ
Ciss = Cgs + Cgd, C ds SHORTED
Crss = Cgd
Coss = Cds + Cgd
Coss
Crss
Ciss
0
50
100
150
200
250
300
QG, Total Gate Charge (nC)
0
2
4
6
8
10
12
14
V
G
S
, G
at
e-
to
-S
ou
rc
e
V
ol
ta
ge
(
V
)
VDS= 60V
VDS= 38V
VDS= 15V
ID= 96A
0.1
1
10
100
VDS, Drain-to-Source Voltage (V)
0.01
0.1
1
10
100
1000
I D
, D
ra
in
-t
o-
S
ou
rc
e
C
ur
re
nt
(
A
)
VGS
TOP
15V
10V
7.00V
5.50V
5.00V
4.50V
4.00V
BOTTOM
3.75V
≤60μs
PULSE WIDTH
Tj = 25°C
3.75V
5
www.irf.com
©
2014 International Rectifier
Submit Datasheet Feedback
February 24, 2014
IRF7759L2PbF
Fig 13. Typical Threshold Voltage vs.
Junction Temperature
Fig 12. Maximum Drain Current vs. Case Temperature
Fig 10. Typical Source-Drain Diode Forward Voltage
Fig11. Maximum Safe Operating Area
Fig 14. Maximum Avalanche Energy Vs. Drain Current
0.2
0.4
0.6
0.8
1.0
1.2
VSD, Source-to-Drain Voltage (V)
0.1
1
10
100
1000
I S
D
, R
ev
er
se
D
ra
in
C
ur
re
nt
(
A
)
TJ = 175°C
TJ = 25°C
TJ = -40°C
VGS = 0V
25
50
75
100
125
150
175
TC , Case Temperature (°C)
0
40
80
120
160
200
I D
,
D
ra
in
C
ur
re
nt
(
A
)
-75 -50 -25 0
25 50 75 100 125 150 175
TJ , Temperature ( °C )
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0
4.5
V
G
S
(t
h)
, G
at
e
th
re
sh
ol
d
V
ol
ta
ge
(
V
)
ID = 1.0A
ID = 1.0mA
ID = 250μA
25
50
75
100
125
150
175
Starting TJ , Junction Temperature (°C)
0
200
400
600
800
1000
1200
E
A
S
,
S
in
gl
e
P
ul
se
A
va
la
nc
he
E
ne
rg
y
(m
J)
ID
TOP 15.39A
23.97A
BOTTOM 96A
0
1
10
100
VDS, Drain-to-Source Voltage (V)
0.1
1
10
100
1000
10000
I D
,
D
ra
in
-t
o-
S
ou
rc
e
C
ur
re
nt
(
A
)
OPERATION IN THIS AREA LIMITED
BY RDS(on)
Tc = 25°C
Tj = 175°C
Single Pulse
100μsec
1msec
10msec
DC
6
www.irf.com
©
2014 International Rectifier
Submit Datasheet Feedback
February 24, 2014
IRF7759L2PbF
Fig 17.
Diode Reverse Recovery Test Circuit for N-Channel HEXFET
®
Power MOSFETs
Fig 15. Typical Avalanche Current Vs.Pulsewidth
Fig 16. Maximum Avalanche Energy Vs. Temperature
Notes on Repetitive Avalanche Curves , Figures 15, 16:
(For further info, see AN-1005 at www.irf.com)
1. Avalanche failures assumption:
Purely a thermal phenomenon and failure occurs at a
temperature far in excess of T
jmax
. This is validated for
every part type.
2. Safe operation in Avalanche is allowed as long asT
jmax
is
not exceeded.
3. Equation below based on circuit and waveforms shown in
Figures 19a, 19b.
4. P
D (ave)
= Average power dissipation per single
avalanche pulse.
5. BV = Rated breakdown voltage (1.3 factor accounts for
voltage increase during avalanche).
6. I
av
= Allowable avalanche current.
7.
ΔT
=
Allowable rise in junction temperature, not to exceed
T
jmax
(assumed as 25°C in Figure 15, 16).
t
av =
Average time in avalanche.
D = Duty cycle in avalanche = t
av
·f
Z
thJC
(D, t
av
) = Transient thermal resistance, see figure 11)
P
D (ave)
= 1/2 ( 1.3·BV·I
av
) =
DT/ Z
thJC
I
av
=
2
DT/ [1.3·BV·Z
th
]
E
AS (AR)
= P
D (ave)
·t
a
P.W.
Period
di/dt
Diode Recovery
dv/dt
Ripple
≤ 5%
Body Diode Forward Drop
Re-Applied
Voltage
Reverse
Recovery
Current
Body Diode Forward
Current
V
GS
=10V
V
DD
I
SD
Driver Gate Drive
D.U.T. I
SD
Waveform
D.U.T. V
DS
Waveform
Inductor Curent
D =
P.W.
Period
*
V
GS
= 5V for Logic Level Devices
*
Inductor Current
Circuit Layout Considerations
• Low Stray Inductance
• Ground Plane
• Low Leakage Inductance
Current Transformer
• di/dt controlled by R
G
• Driver same type as D.U.T.
• I
SD
controlled by Duty Factor "D"
• D.U.T. - Device Under Test
+
-
+
+
+
-
-
-
R
G
V
DD
D.U.T
1.0E-06
1.0E-05
1.0E-04
1.0E-03
1.0E-02
1.0E-01
tav (sec)
0.1
1
10
100
1000
A
va
la
nc
he
C
ur
re
nt
(
A
)
0.05
Duty Cycle = Single Pulse
0.10
Allowed avalanche Current vs avalanche
pulsewidth, tav, assuming
ΔΤj = 25°C and
Tstart = 150°C.
0.01
Allowed avalanche Current vs avalanche
pulsewidth, tav, assuming
ΔTj = 150°C and
Tstart =25°C (Single Pulse)
25
50
75
100
125
150
175
Starting TJ , Junction Temperature (°C)
0
50
100
150
200
250
300
E
A
R
,
A
va
la
nc
he
E
ne
rg
y
(m
J)
TOP Single Pulse
BOTTOM 1.0% Duty Cycle
ID = 96A
7
www.irf.com
©
2014 International Rectifier
Submit Datasheet Feedback
February 24, 2014
IRF7759L2PbF
Fig 18a. Gate Charge Test Circuit
Fig 18b. Gate Charge Waveform
Fig 19b. Unclamped Inductive Waveforms
tp
V
(BR)DSS
I
AS
Fig 19a. Unclamped Inductive Test Circuit
Fig 20b. Switching Time Waveforms
Fig 20a. Switching Time Test Circuit
R G
IAS
0.01
Ω
tp
D.U.T
L
VDS
+
- VDD
DRIVER
A
15V
20V
V
GS
Vds
Vgs
Id
Vgs(th)
Qgs1
Qgs2
Qgd
Qgodr
1K
VCC
DUT
0
L
S
20K
V
DS
90%
10%
V
GS
t
d(on)
t
r
t
d(off)
t
f
V
DS
Pulse Width ≤ 1 µs
Duty Factor ≤ 0.1 %
R
D
V
GS
R
G
D.U.T.
10V
+
-
V
DD
V
GS
8
www.irf.com
©
2014 International Rectifier
Submit Datasheet Feedback
February 24, 2014
IRF7759L2PbF
G = GATE
D = DRAIN
S = SOURCE
D
D
D
D
D
D
S
S
S
S
G
S
S
S
S
DirectFET
Board Footprint, L8 (Large Size Can).
Please see AN-1035 for DirectFET assembly details and stencil and substrate design recommendations
Note: For the most current drawing please refer to IR website at:
http://www.irf.com/package/
9
www.irf.com
©
2014 International Rectifier
Submit Datasheet Feedback
February 24, 2014
IRF7759L2PbF
DirectFET
Part Marking
DirectFET
Outline Dimension, L8 Outline (LargeSize Can).
Please see AN-1035 for DirectFET assembly details and stencil and substrate design recommendations
MAX
0.360
0.280
0.236
0.026
0.024
0.048
0.017
0.030
0.017
0.058
0.106
0.028
0.003
0.007
IMPERIAL
METRIC
DIMENSIONS
MIN
0.356
0.270
0.232
0.022
0.023
0.046
0.015
0.029
0.015
0.053
0.099
0.023
0.001
0.003
CODE
A
B
C
D
E
F
G
H
J
K
L
M
N
P
MIN
9.05
6.85
5.90
0.55
0.58
1.18
0.98
0.73
0.38
1.34
2.52
0.59
0.03
0.09
MAX
9.15
7.10
6.00
0.65
0.62
1.22
1.02
0.77
0.42
1.47
2.69
0.70
0.08
0.18
LOGO
GATE MARKING
BATCH NUMBER
PART NUMBER
DATE CODE
Line above the last character of
the date code indicates "Lead-Free"
Note: For the most current drawing please refer to IR website at:
http://www.irf.com/package/
10
www.irf.com
©
2014 International Rectifier
Submit Datasheet Feedback
February 24, 2014
IRF7759L2PbF
DirectFET
Tape & Reel Dimension (Showing component orientation).
LOADED TAPE FEED DIRECTION
MIN
11.90
3.90
15.90
7.40
7.20
9.90
1.50
1.50
NOTE: CONTROLLING
DIMENSIONS IN MM
CODE
A
B
C
D
E
F
G
H
MAX
12.10
4.10
16.30
7.60
7.40
10.10
NC
1.60
MIN
0.469
0.154
0.626
0.291
0.284
0.390
0.059
0.059
MAX
0.476
0.161
0.642
0.299
0.291
0.398
NC
0.063
DIMENSIONS
METRIC
IMPERIAL
Note: For the most current drawing please refer to IR website at:
http://www.irf.com/package/
R EEL DIMENSIONS
NOTE: Controlling dim ensions in m m
Std reel quantity is 4000 parts (ordered as IRF7759L2TR).
MAX
N.C
N.C
0.520
N.C
3.940
0.880
0.720
0.760
IM PERIAL
M IN
330.00
20.20
12.80
1.50
99.00
N .C
16.40
15.90
STANDARD OPTION (QTY 4000)
CODE
A
B
C
D
E
F
G
H
M AX
N .C
N .C
13.20
N .C
100.00
22.40
18.40
19.40
MIN
12.992
0.795
0.504
0.059
3.900
N.C
0.650
0.630
M ET RIC
DirectFET
Power MOSFET
Typical values (unless otherwise specified)
DirectFET
ISOMETRIC
L8
Applicable DirectFET Outline and Substrate Outline
l
RoHS Compliant, Halogen Free
l
Lead-Free (Qualified up to 260°C Reflow)
l
Ideal for High Performance Isolated Converter
Primary Switch Socket
l
Optimized for Synchronous Rectification
l
Low Conduction Losses
l
High Cdv/dt Immunity
l
Low Profile (<0.7mm)
l
Dual Sided Cooling Compatible
l
Compatible with existing Surface Mount Techniques
l
Industrial Qualified
Description
The IRF7759L2TR/TR1PbF combines the latest HEXFET® Power MOSFET Silicon technology with the advanced DirectFET
TM
packaging to achieve the
lowest on-state resistance in a package that has a footprint smaller than a D
2
PAK and only 0.7 mm profile. The DirectFET package is compatible with existing
layout geometries used in power applications, PCB assembly equipment and vapor phase, infra-red or convection soldering techniques, when application
note AN-1035 is followed regarding the manufacturing methods and processes. The DirectFET package allows dual sided cooling to maximize thermal transfer
in power systems.
The IRF7759L2TR/TR1PbF is optimized for high frequency switching and synchronous rectification applications. The reduced total losses in the device
coupled with the high level of thermal performance enables high efficiency and low temperatures, which are key for system reliability improvements, and
makes this device ideal for high performance power converters.
Fig 1. Typical On-Resistance vs. Gate Voltage
Click on this section to link to the appropriate technical paper.
Click on this section to link to the DirectFET Website.
Surface mounted on 1 in. square Cu board, steady state.
T
C
measured with thermocouple mounted to top (Drain) of part.
Repetitive rating; pulse width limited by max. junction temperature.
Starting T
J
= 25°C, L = 0.056mH, R
G
= 25
Ω, I
AS
= 96A.
Notes:
Fig 2. Typical On-Resistance vs. Drain Current
SB
SC
M2 M4
L4
L6
L8
D
S
G
D
S
S
S
S
S
S
S
Absolute Maximum Ratings
Parameter
Units
V
DS
Drain-to-Source Voltage
V
GS
Gate-to-Source Voltage
I
D
@ T
C
= 25°C
Continuous Drain Current, V
GS
@ 10V
(Silicon Limited)
f
I
D
@ T
C
= 100°C
Continuous Drain Current, V
GS
@ 10V
(Silicon Limited)
f
I
D
@ T
A
= 25°C
Continuous Drain Current, V
GS
@ 10V
(Silicon Limited)
e
I
D
@ T
C
= 25°C
Continuous Drain Current, V
GS
@ 10V
(Package Limited)
f
I
DM
Pulsed Drain Current
g
E
AS
Single Pulse Avalanche Energy
h
mJ
I
AR
Avalanche Current
g
A
A
V
96
375
257
Max.
113
26
640
±20
75
160
2
4
6
8
10
12
14
16
18
20
V GS, Gate -to -Source Voltage (V)
0
2
4
6
8
R
D
S
(o
n)
,
D
ra
in
-t
o
-S
ou
rc
e
O
n
R
es
is
ta
nc
e
(m
Ω
)
I D = 96A
T J = 25°C
T J = 125°C
15
30
45
60
75
90
105
ID, Drain Current (A)
1.65
1.75
1.85
1.95
T
yp
ic
al
R
D
S
(o
n)
( m
Ω
)
TA= 25°C
VGS = 8.0V
VGS = 7.0V
VGS = 10V
VGS = 15V
V
DSS
V
GS
R
DS(on)
75V min ±20V max 1.8mΩ@ 10V
Q
g tot
Q
gd
V
gs(th)
200nC
62nC
3.0V
IRF7759L2PbF
1
www.irf.com
©
2014 International Rectifier
Submit Datasheet Feedback
February 24, 2014
Form
Quantity
IRF7759L2TRPbF
DirectFET2 Large Can
Tape and Reel
4000
"TR" suffix
IRF7759L2TR1PbF
DirectFET2 Large Can
Tape and Reel
1000
"TR1" suffix EOL notice # 264
Note
Orderable part number
Package Type
Standard Pack
2
www.irf.com
©
2014 International Rectifier
Submit Datasheet Feedback
February 24, 2014
IRF7759L2PbF
Notes:
Repetitive rating; pulse width limited by max. junction temperature.
Pulse width ≤ 400μs; duty cycle ≤ 2%.
Static @ T
J
= 25°C (unless otherwise specified)
Parameter
Min. Typ. Max. Units
BV
DSS
Drain-to-Source Breakdown Voltage
75
–––
–––
V
ΔΒV
DSS
/ΔT
J
Breakdown Voltage Temp. Coefficient
–––
0.02
–––
V/°C
R
DS(on)
Static Drain-to-Source On-Resistance
–––
1.8
2.3
m
Ω
V
GS(th)
Gate Threshold Voltage
2.0
3.0
4.0
V
ΔV
GS(th)
/
ΔT
J
Gate Threshold Voltage Coefficient
–––
-11
––– mV/°C
I
DSS
Drain-to-Source Leakage Current
–––
–––
20
–––
–––
250
I
GSS
Gate-to-Source Forward Leakage
–––
–––
100
Gate-to-Source Reverse Leakage
–––
–––
-100
gfs
Forward Transconductance
74
–––
–––
S
Q
g
Total Gate Charge
–––
200
300
Q
gs1
Pre-Vth Gate-to-Source Charge
–––
37
–––
Q
gs2
Post-Vth Gate-to-Source Charge
–––
11
–––
Q
gd
Gate-to-Drain Charge
–––
62
93
Q
godr
Gate Charge Overdrive
–––
91
–––
See Fig. 9
Q
sw
Switch Charge (Q
gs2
+ Q
gd
)
–––
73
–––
Q
oss
Output Charge
–––
60
–––
nC
R
G
Gate Resistance
–––
1.1
–––
Ω
t
d(on)
Turn-On Delay Time
–––
18
–––
t
r
Rise Time
–––
37
–––
t
d(off)
Turn-Off Delay Time
–––
80
–––
t
f
Fall Time
–––
33
–––
C
iss
Input Capacitance
–––
12222 –––
C
oss
Output Capacitance
–––
1465
–––
C
rss
Reverse Transfer Capacitance
–––
609
–––
C
oss
Output Capacitance
–––
7457
–––
C
oss
Output Capacitance
–––
955
–––
Diode Characteristics
Parameter
Min. Typ. Max. Units
I
S
Continuous Source Current
(Body Diode)
I
SM
Pulsed Source Current
(Body Diode)
g
V
SD
Diode Forward Voltage
–––
–––
1.3
V
t
rr
Reverse Recovery Time
–––
64
96
ns
Q
rr
Reverse Recovery Charge
–––
150
225
nC
pF
A
–––
–––
160
–––
–––
640
μA
nA
nC
ns
MOSFET symbol
R
G
=1.8
Ω
V
DS
= 25V
Conditions
V
GS
= 0V, V
DS
= 60V, f=1.0MHz
V
GS
= 0V, V
DS
= 1.0V, f=1.0MHz
V
DS
= 16V, V
GS
= 0V
V
DD
= 38V, V
GS
= 10Vi
V
GS
= 0V
ƒ = 1.0MHz
I
D
= 96A
V
DS
= 75V, V
GS
= 0V
Conditions
V
GS
= 0V, I
D
= 250μA
Reference to 25°C, I
D
= 2mA
V
GS
= 10V, I
D
= 96A i
V
DS
= V
GS
, I
D
= 250μA
T
J
= 25°C, I
F
= 96A, V
DD
= 38V
di/dt = 100A/μs i
T
J
= 25°C, I
S
= 96A, V
GS
= 0V
i
showing the
integral reverse
p-n junction diode.
I
D
= 96A
V
DS
= 60V, V
GS
= 0V, T
J
= 125°C
V
GS
= 20V
V
GS
= -20V
V
GS
= 10V
V
DS
= 25V, I
D
= 96A
V
DS
= 38V
3
www.irf.com
©
2014 International Rectifier
Submit Datasheet Feedback
February 24, 2014
IRF7759L2PbF
Fig 3. Maximum Effective Transient Thermal Impedance, Junction-to-Case
Surface mounted on 1 in. square Cu board, steady state.
T
C
measured with thermocouple incontact with top (Drain) of part.
Used double sided cooling, mounting pad with large heatsink.
Notes:
Mounted on minimum footprint full size board with metalized
back and with small clip heatsink.
R
θ
is measured at
T
J
of approximately 90°C.
Surface mounted on 1 in. square Cu
board (still air).
Mounted on minimum footprint full size board with metalized
back and with small clip heatsink. (still air)
1E-006
1E-005
0.0001
0.001
0.01
0.1
1
t1 , Rectangular Pulse Duration (sec)
0.0001
0.001
0.01
0.1
1
10
T
he
rm
al
R
es
po
ns
e
(
Z
th
JC
)
°
C
/W
0.20
0.10
D = 0.50
0.02
0.01
0.05
SINGLE PULSE
( THERMAL RESPONSE )
Notes:
1. Duty Factor D = t1/t2
2. Peak Tj = P dm x Zthjc + Tc
τ
J
τ
J
τ
1
τ
1
τ
2
τ
2
τ
3
τ
3
R
1
R
1
R
2
R
2
R
3
R
3
Ci i
/Ri
Ci=
τi/Ri
τ
τ
C
τ
4
τ
4
R
4
R
4
Ri (°C/W)
τi (sec)
0.10804 0.000171
0.61403 0.053914
0.45202 0.006099
0.00001 0.036168
Absolute Maximum Ratings
Parameter
Units
P
D
@T
C
= 25°C
Power Dissipation
f
P
D
@T
C
= 100°C
Power Dissipation
f
P
D
@T
A
= 25°C
Power Dissipation
c
T
P
Peak Soldering Temperature
T
J
Operating Junction and
T
STG
Storage Temperature Range
Thermal Resistance
Parameter
Typ.
Max.
Units
R
θJA
Junction-to-Ambient
e
–––
45
R
θJA
Junction-to-Ambient
j
12.5
–––
R
θJA
Junction-to-Ambient
k
20
–––
°C/W
R
θJ-Can
Junction-to-Can
fl
–––
1.2
R
θJ-PCB
Junction-to-PCB Mounted
–––
0.5
W
°C
270
-55 to + 175
Max.
3.3
125
63
4
www.irf.com
©
2014 International Rectifier
Submit Datasheet Feedback
February 24, 2014
IRF7759L2PbF
Fig 5. Typical Output Characteristics
Fig 4. Typical Output Characteristics
Fig 6. Typical Transfer Characteristics
Fig 7. Normalized On-Resistance vs. Temperature
Fig 8. Typical Capacitance vs.Drain-to-Source Voltage
Fig 9. Typical Total Gate Charge vs
Gate-to-Source Voltage
0.1
1
10
100
VDS, Drain-to-Source Voltage (V)
1
10
100
1000
I D
, D
ra
in
-t
o-
S
ou
rc
e
C
ur
re
nt
(
A
)
3.75V
≤60μs
PULSE WIDTH
Tj = 175°C
VGS
TOP
15V
10V
7.00V
5.50V
5.00V
4.50V
4.00V
BOTTOM
3.75V
2
2.5
3
3.5
4
4.5
5
5.5
6
VGS, Gate-to-Source Voltage (V)
0.1
1
10
100
1000
I D
, D
ra
in
-t
o-
S
ou
rc
e
C
ur
re
nt
(
A
)
TJ = 175°C
TJ = 25°C
TJ = -40°C
VDS = 25V
≤60μs PULSE WIDTH
-60
-20
20
60
100
140
180
TJ , Junction Temperature (°C)
0.5
1.0
1.5
2.0
2.5
R
D
S
(o
n)
,
D
ra
in
-t
o-
S
ou
rc
e
O
n
R
es
is
ta
nc
e
(
N
or
m
al
iz
ed
)
ID = 96A
VGS = 10V
1
10
100
VDS, Drain-to-Source Voltage (V)
100
1000
10000
100000
C
, C
ap
ac
ita
nc
e
(p
F
)
VGS = 0V, f = 1 MHZ
Ciss = Cgs + Cgd, C ds SHORTED
Crss = Cgd
Coss = Cds + Cgd
Coss
Crss
Ciss
0
50
100
150
200
250
300
QG, Total Gate Charge (nC)
0
2
4
6
8
10
12
14
V
G
S
, G
at
e-
to
-S
ou
rc
e
V
ol
ta
ge
(
V
)
VDS= 60V
VDS= 38V
VDS= 15V
ID= 96A
0.1
1
10
100
VDS, Drain-to-Source Voltage (V)
0.01
0.1
1
10
100
1000
I D
, D
ra
in
-t
o-
S
ou
rc
e
C
ur
re
nt
(
A
)
VGS
TOP
15V
10V
7.00V
5.50V
5.00V
4.50V
4.00V
BOTTOM
3.75V
≤60μs
PULSE WIDTH
Tj = 25°C
3.75V
5
www.irf.com
©
2014 International Rectifier
Submit Datasheet Feedback
February 24, 2014
IRF7759L2PbF
Fig 13. Typical Threshold Voltage vs.
Junction Temperature
Fig 12. Maximum Drain Current vs. Case Temperature
Fig 10. Typical Source-Drain Diode Forward Voltage
Fig11. Maximum Safe Operating Area
Fig 14. Maximum Avalanche Energy Vs. Drain Current
0.2
0.4
0.6
0.8
1.0
1.2
VSD, Source-to-Drain Voltage (V)
0.1
1
10
100
1000
I S
D
, R
ev
er
se
D
ra
in
C
ur
re
nt
(
A
)
TJ = 175°C
TJ = 25°C
TJ = -40°C
VGS = 0V
25
50
75
100
125
150
175
TC , Case Temperature (°C)
0
40
80
120
160
200
I D
,
D
ra
in
C
ur
re
nt
(
A
)
-75 -50 -25 0
25 50 75 100 125 150 175
TJ , Temperature ( °C )
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0
4.5
V
G
S
(t
h)
, G
at
e
th
re
sh
ol
d
V
ol
ta
ge
(
V
)
ID = 1.0A
ID = 1.0mA
ID = 250μA
25
50
75
100
125
150
175
Starting TJ , Junction Temperature (°C)
0
200
400
600
800
1000
1200
E
A
S
,
S
in
gl
e
P
ul
se
A
va
la
nc
he
E
ne
rg
y
(m
J)
ID
TOP 15.39A
23.97A
BOTTOM 96A
0
1
10
100
VDS, Drain-to-Source Voltage (V)
0.1
1
10
100
1000
10000
I D
,
D
ra
in
-t
o-
S
ou
rc
e
C
ur
re
nt
(
A
)
OPERATION IN THIS AREA LIMITED
BY RDS(on)
Tc = 25°C
Tj = 175°C
Single Pulse
100μsec
1msec
10msec
DC
6
www.irf.com
©
2014 International Rectifier
Submit Datasheet Feedback
February 24, 2014
IRF7759L2PbF
Fig 17.
Diode Reverse Recovery Test Circuit for N-Channel HEXFET
®
Power MOSFETs
Fig 15. Typical Avalanche Current Vs.Pulsewidth
Fig 16. Maximum Avalanche Energy Vs. Temperature
Notes on Repetitive Avalanche Curves , Figures 15, 16:
(For further info, see AN-1005 at www.irf.com)
1. Avalanche failures assumption:
Purely a thermal phenomenon and failure occurs at a
temperature far in excess of T
jmax
. This is validated for
every part type.
2. Safe operation in Avalanche is allowed as long asT
jmax
is
not exceeded.
3. Equation below based on circuit and waveforms shown in
Figures 19a, 19b.
4. P
D (ave)
= Average power dissipation per single
avalanche pulse.
5. BV = Rated breakdown voltage (1.3 factor accounts for
voltage increase during avalanche).
6. I
av
= Allowable avalanche current.
7.
ΔT
=
Allowable rise in junction temperature, not to exceed
T
jmax
(assumed as 25°C in Figure 15, 16).
t
av =
Average time in avalanche.
D = Duty cycle in avalanche = t
av
·f
Z
thJC
(D, t
av
) = Transient thermal resistance, see figure 11)
P
D (ave)
= 1/2 ( 1.3·BV·I
av
) =
DT/ Z
thJC
I
av
=
2
DT/ [1.3·BV·Z
th
]
E
AS (AR)
= P
D (ave)
·t
a
P.W.
Period
di/dt
Diode Recovery
dv/dt
Ripple
≤ 5%
Body Diode Forward Drop
Re-Applied
Voltage
Reverse
Recovery
Current
Body Diode Forward
Current
V
GS
=10V
V
DD
I
SD
Driver Gate Drive
D.U.T. I
SD
Waveform
D.U.T. V
DS
Waveform
Inductor Curent
D =
P.W.
Period
*
V
GS
= 5V for Logic Level Devices
*
Inductor Current
Circuit Layout Considerations
• Low Stray Inductance
• Ground Plane
• Low Leakage Inductance
Current Transformer
• di/dt controlled by R
G
• Driver same type as D.U.T.
• I
SD
controlled by Duty Factor "D"
• D.U.T. - Device Under Test
+
-
+
+
+
-
-
-
R
G
V
DD
D.U.T
1.0E-06
1.0E-05
1.0E-04
1.0E-03
1.0E-02
1.0E-01
tav (sec)
0.1
1
10
100
1000
A
va
la
nc
he
C
ur
re
nt
(
A
)
0.05
Duty Cycle = Single Pulse
0.10
Allowed avalanche Current vs avalanche
pulsewidth, tav, assuming
ΔΤj = 25°C and
Tstart = 150°C.
0.01
Allowed avalanche Current vs avalanche
pulsewidth, tav, assuming
ΔTj = 150°C and
Tstart =25°C (Single Pulse)
25
50
75
100
125
150
175
Starting TJ , Junction Temperature (°C)
0
50
100
150
200
250
300
E
A
R
,
A
va
la
nc
he
E
ne
rg
y
(m
J)
TOP Single Pulse
BOTTOM 1.0% Duty Cycle
ID = 96A
7
www.irf.com
©
2014 International Rectifier
Submit Datasheet Feedback
February 24, 2014
IRF7759L2PbF
Fig 18a. Gate Charge Test Circuit
Fig 18b. Gate Charge Waveform
Fig 19b. Unclamped Inductive Waveforms
tp
V
(BR)DSS
I
AS
Fig 19a. Unclamped Inductive Test Circuit
Fig 20b. Switching Time Waveforms
Fig 20a. Switching Time Test Circuit
R G
IAS
0.01
Ω
tp
D.U.T
L
VDS
+
- VDD
DRIVER
A
15V
20V
V
GS
Vds
Vgs
Id
Vgs(th)
Qgs1
Qgs2
Qgd
Qgodr
1K
VCC
DUT
0
L
S
20K
V
DS
90%
10%
V
GS
t
d(on)
t
r
t
d(off)
t
f
V
DS
Pulse Width ≤ 1 µs
Duty Factor ≤ 0.1 %
R
D
V
GS
R
G
D.U.T.
10V
+
-
V
DD
V
GS
8
www.irf.com
©
2014 International Rectifier
Submit Datasheet Feedback
February 24, 2014
IRF7759L2PbF
G = GATE
D = DRAIN
S = SOURCE
D
D
D
D
D
D
S
S
S
S
G
S
S
S
S
DirectFET
Board Footprint, L8 (Large Size Can).
Please see AN-1035 for DirectFET assembly details and stencil and substrate design recommendations
Note: For the most current drawing please refer to IR website at:
http://www.irf.com/package/
9
www.irf.com
©
2014 International Rectifier
Submit Datasheet Feedback
February 24, 2014
IRF7759L2PbF
DirectFET
Part Marking
DirectFET
Outline Dimension, L8 Outline (LargeSize Can).
Please see AN-1035 for DirectFET assembly details and stencil and substrate design recommendations
MAX
0.360
0.280
0.236
0.026
0.024
0.048
0.017
0.030
0.017
0.058
0.106
0.028
0.003
0.007
IMPERIAL
METRIC
DIMENSIONS
MIN
0.356
0.270
0.232
0.022
0.023
0.046
0.015
0.029
0.015
0.053
0.099
0.023
0.001
0.003
CODE
A
B
C
D
E
F
G
H
J
K
L
M
N
P
MIN
9.05
6.85
5.90
0.55
0.58
1.18
0.98
0.73
0.38
1.34
2.52
0.59
0.03
0.09
MAX
9.15
7.10
6.00
0.65
0.62
1.22
1.02
0.77
0.42
1.47
2.69
0.70
0.08
0.18
LOGO
GATE MARKING
BATCH NUMBER
PART NUMBER
DATE CODE
Line above the last character of
the date code indicates "Lead-Free"
Note: For the most current drawing please refer to IR website at:
http://www.irf.com/package/
10
www.irf.com
©
2014 International Rectifier
Submit Datasheet Feedback
February 24, 2014
IRF7759L2PbF
DirectFET
Tape & Reel Dimension (Showing component orientation).
LOADED TAPE FEED DIRECTION
MIN
11.90
3.90
15.90
7.40
7.20
9.90
1.50
1.50
NOTE: CONTROLLING
DIMENSIONS IN MM
CODE
A
B
C
D
E
F
G
H
MAX
12.10
4.10
16.30
7.60
7.40
10.10
NC
1.60
MIN
0.469
0.154
0.626
0.291
0.284
0.390
0.059
0.059
MAX
0.476
0.161
0.642
0.299
0.291
0.398
NC
0.063
DIMENSIONS
METRIC
IMPERIAL
Note: For the most current drawing please refer to IR website at:
http://www.irf.com/package/
R EEL DIMENSIONS
NOTE: Controlling dim ensions in m m
Std reel quantity is 4000 parts (ordered as IRF7759L2TR).
MAX
N.C
N.C
0.520
N.C
3.940
0.880
0.720
0.760
IM PERIAL
M IN
330.00
20.20
12.80
1.50
99.00
N .C
16.40
15.90
STANDARD OPTION (QTY 4000)
CODE
A
B
C
D
E
F
G
H
M AX
N .C
N .C
13.20
N .C
100.00
22.40
18.40
19.40
MIN
12.992
0.795
0.504
0.059
3.900
N.C
0.650
0.630
M ET RIC