IRF6775MTRPbF Product Datasheet

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/irf6775mpbf-html.html
background image

Notes

  through 

‰

 are on page 2

Applicable DirectFET Outline and  Substrate Outline (see p. 6, 7 for details)

Description

This Digital Audio MOSFET is specifically designed for Class-D audio amplifier applications. This MOSFET utilizes the
latest  processing techniques to achieve low on-resistance per silicon area. Furthermore, gate charge, body-diode reverse
recovery and internal gate resistance are optimized to improve key Class-D audio amplifier performance factors such as
efficiency, THD, and EMI.

The IRF6775MPbF device utilizes DirectFET

TM

 packaging technology.  DirectFET

TM

 packaging technology offers lower parasitic

inductance and resistance when compared to conventional wirebonded SOIC packaging.  Lower inductance improves EMI
performance by reducing the voltage ringing that accompanies fast current transients.  The DirectFET

TM

 package is compatible

with existing layout geometries used in power applications, PCB assembly equipment and vapor phase, infra-red or convection
soldering techniques, when application note AN-1035 is followed regarding the manufacturing method and processes.  The
DirectFET

TM

 package also allows dual sided cooling to maximize thermal transfer in power systems, improving thermal resis-

tance and power dissipation. These features combine to make this MOSFET a highly efficient, robust and reliable device for
Class-D audio amplifier applications.

Features

• Latest MOSFET Silicon technology

• Key parameters optimized for Class-D audio amplifier

   applications
• Low R

DS(on) 

for improved efficiency

• Low Q

g

 for better THD and improved efficiency

• Low Q

rr

 for better THD and lower EMI

• Low package stray inductance for reduced ringing and lower EMI

• Can deliver up to 250W per channel into 4Ω Load in

  Half-Bridge Configuration Amplifier

• Dual sided cooling compatible

· Compatible with existing surface mount technologies

· RoHS compliant containing no lead or bromide

·Lead-Free (Qualified up to 260°C Reflow)

DirectFET

™ ISOMETRIC

MZ

SQ

SX

ST

SH

MQ

MX

MT

MN

MZ

&

)

5

5

&

V

DS

150

V

R

DS(on)

 typ. @ V

GS

 = 10V

47

m

:

Q

g

 typ.

25.0

nC

 R

G(int)

 max.

3.0

Key Parameters

Absolute Maximum Ratings

Parameter

Units

V

DS

Drain-to-Source Voltage

V

V

GS

Gate-to-Source Voltage

I

D

 @ T

C

 = 25°C

Continuous Drain Current, V

GS

 @ 10V

I

D

 @ T

A

 = 25°C

Continuous Drain Current, V

GS

 @ 10V

A

I

D

 @ T

A

 = 70°C

Continuous Drain Current, V

GS

 @ 10V

I

DM

Pulsed Drain Current 

c

P

D

 @T

C

 = 25°C

Maximum Power Dissipation  

W

P

D

 @T

A

 = 25°C

Power Dissipation 

e

P

D

 @T

A

 = 70°C

Power Dissipation 

e

E

AS

Single Pulse Avalanche Energy

d

mJ

I

AR

Avalanche Current

c

A

Linear Derating Factor  

e

W/°C

T

Operating Junction and

°C

T

STG

Storage Temperature Range

Thermal Resistance

Parameter

Typ.

Max.

Units

R

θJA 

Junction-to-Ambient  

ek

–––

45

°C/W

R

θJA 

Junction-to-Ambient  

hk

12.5

–––

R

θJA 

Junction-to-Ambient  

ik

20

–––

R

θJC 

Junction-to-Case 

jk

–––

1.4

R

θJ-PCB 

Junction-to-PCB Mounted

1.4

–––

89

Max.

4.9
3.9

39

150

± 20

28

-40  to + 150

0.022

2.8
1.8

33

5.6

IRF6775MTRPbF

DIGITAL AUDIO MOSFET

  

     

 1

            www.irf.com  

© 

2014 International Rectifier   

        

Submit  Datasheet Feedback            

  February 26, 2014

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/irf6775mpbf-html.html
background image

IRF6775MTRPbF

  

     

 2

            www.irf.com  

© 

2014 International Rectifier   

        

Submit  Datasheet Feedback            

  February 26, 2014

S

D

G

Notes:



 Repetitive rating;  pulse width limited by

     max. junction temperature.

‚

 Starting T

= 25°C, L = 0.53mH, R

= 25

Ω, I

AS 

= 11.2A.

ƒ

Surface mounted on 1 in. square Cu board.

„

 Pulse width ≤ 400μs; duty cycle ≤ 2%.

…

 C

oss

 eff. is a fixed capacitance that gives the same

charging time as C

oss 

while V

DS 

is rising from 0 to 80% V

DSS

.

†

Used double sided cooling , mounting pad with large heatsink.

‡

Mounted on minimum footprint full size board with
metalized back and with small clip heatsink.

ˆ

T

C

 measured with thermal couple mounted to top

(Drain) of part.

‰

R

θ 

is measured at T

J

 of approximately 90°C.

Static @ T

J

 = 25°C (unless otherwise specified)

Parameter

Min.

Typ.

Max.

Units

V

(BR)DSS

Drain-to-Source Breakdown Voltage

150

–––

–––

V

ΔV

(BR)DSS

/

ΔT

Breakdown Voltage Temp. Coefficient

–––

0.17

–––

V/°C

R

DS(on)

Static Drain-to-Source On-Resistance

–––

47

56

m

Ω

V

GS(th)

Gate Threshold Voltage

3.0

–––

5.0

V

I

DSS

Drain-to-Source Leakage Current

–––

–––

20

μA

–––

–––

250

I

GSS

Gate-to-Source Forward Leakage

–––

–––

100

nA

Gate-to-Source Reverse Leakage

–––

–––

-100

R

G(int)

Internal Gate Resistance

–––

–––

3.0

Ω

Dynamic @ T

J

 = 25°C (unless otherwise specified)

Parameter

Min.

Typ.

Max.

Units

gfs

Forward Transconductance

11

–––

–––

S

Q

g

Total Gate Charge

–––

25

36

V

DS

 = 75V

Q

gs1

Pre-Vth Gate-to-Source Charge

–––

5.8

–––

V

GS

 = 10V 

Q

gs2

Post-Vth Gate-to-Source Charge

–––

1.4

–––

I

D

 = 5.6A

Q

gd

Gate-to-Drain Charge

–––

6.6

–––

nC

See Fig. 6 and 17

Q

godr

Gate Charge Overdrive

–––

11

–––

Q

sw

Switch Charge (Q

gs2

 + Q

gd

)

–––

8.0

–––

t

d(on)

Turn-On Delay Time

–––

5.9

–––

t

r

Rise Time

–––

7.8

–––

t

d(off)

Turn-Off Delay Time

–––

5.8

–––

ns

t

f

Fall  Time

–––

15

–––

C

iss

Input Capacitance

–––

1411

–––

C

oss

Output Capacitance

–––

193

–––

C

rss

Reverse Transfer Capacitance

–––

40

–––

pF

C

oss

Output Capacitance

–––

1557

–––

C

oss

Output Capacitance

–––

93

–––

C

oss

 eff.

Effective Output Capacitance

–––

175

–––

Diode Characteristics

        Parameter

Min.

Typ.

Max.

Units

I

S

Continuous Source Current 

–––

–––

28

(Body Diode)

A

I

SM

Pulsed Source Current

–––

–––

39

(Body Diode)

c

V

SD

Diode Forward Voltage

–––

–––

1.3

V

t

rr

Reverse Recovery Time

–––

62

–––

ns

Q

rr

Reverse Recovery Charge

–––

164

–––

nC

V

DD

 = 75V

I

D

 = 5.6A

R

G

 = 6.0

Ω

V

GS

 = 20V

V

GS

 = -20V

Conditions

V

DS

 = 50V, I

D

 = 5.6A

T

J

 = 25°C, I

S

 = 5.6A, V

GS

 = 0V 

f

T

J

 = 25°C, I

F

 = 5.6A, V

DD

 = 25V

di/dt = 100A/μs 

f

Conditions

V

GS

 = 0V, I

D

 = 250μA

Reference to 25°C, I

D

 = 1mA 

V

GS

 = 10V, I

D

 = 5.6A 

f

V

DS

 = V

GS

, I

D

 = 100μA

V

DS

 = 150V, V

GS

 = 0V

V

DS

 = 120V, V

GS

 = 0V, T

J

 = 125°C

MOSFET symbol
showing  the
integral reverse
p-n junction diode.

Conditions

V

GS

 = 10V 

f

V

GS

 = 0V

V

DS

 = 25V

ƒ = 1.0MHz

V

GS

 = 0V, V

DS

 = 0V to 120V 

g

V

GS

 = 0V,  V

DS

 = 1.0V,  ƒ = 1.0MHz

V

GS

 = 0V,  V

DS

 = 120V,  ƒ = 1.0MHz

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/irf6775mpbf-html.html
background image

IRF6775MTRPbF

  

     

 3

            www.irf.com  

© 

2014 International Rectifier   

        

Submit  Datasheet Feedback            

  February 26, 2014

Fig 2.  Typical Output Characteristics

Fig 1.  Typical Output Characteristics

Fig 3.  Typical Transfer Characteristics

Fig 4.  Normalized On-Resistance vs. Temperature

Fig 6.  Typical Gate Charge vs.Gate-to-Source Voltage

Fig 5.  Typical Capacitance vs.Drain-to-Source Voltage

0

10

20

30

40

 QG  Total Gate Charge (nC)

0

4

8

12

16

20

V

G

S

, G

at

e-

to

-S

ou

rc

V

ol

ta

ge

 (

V

)

VDS= 120V

VDS= 75V

VDS= 30V

ID= 5.6A

0.1

1

10

100

VDS, Drain-to-Source Voltage (V)

1

10

100

I D

, D

ra

in

-t

o-

S

ou

rc

C

ur

re

nt

 (

A

)

≤ 60μs PULSE WIDTH

Tj = 25°C

5.5V

VGS

TOP          

15V

10V

9.0V

8.0V

7.0V

6.5V

6.0V

BOTTOM

5.5V

0.1

1

10

100

VDS, Drain-to-Source Voltage (V)

1

10

100

I D

, D

ra

in

-t

o-

S

ou

rc

C

ur

re

nt

 (

A

)

≤ 60μs PULSE WIDTH

Tj = 150°C

5.5V

VGS

TOP          

15V

10V

9.0V

8.0V

7.0V

6.5V

6.0V

BOTTOM

5.5V

3.0

4.0

5.0

6.0

7.0

8.0

VGS, Gate-to-Source Voltage (V)

0.01

0.1

1

10

100

I D

, D

ra

in

-t

o-

S

ou

rc

C

ur

re

nt

 (Α

)

VDS = 25V
≤ 60μs PULSE WIDTH

TJ = 150°C

TJ = 25°C

TJ = -40°C

-60 -40 -20

0

20 40 60 80 100 120 140 160

TJ , Junction Temperature (°C)

0.5

1.0

1.5

2.0

2.5

R

D

S

(o

n)

 , 

D

ra

in

-t

o-

S

ou

rc

O

R

es

is

ta

nc

   

   

   

   

   

   

   

 (

N

or

m

al

iz

ed

)

ID = 5.6A

VGS = 10V

1

10

100

1000

VDS, Drain-to-Source Voltage (V)

10

100

1000

10000

100000

C

, C

ap

ac

ita

nc

(p

F

)

Coss

Crss

Ciss

VGS   = 0V,       f = 1 MHZ

Ciss   = Cgs + Cgd,  Cds SHORTED

Crss   = Cgd 

Coss  = Cds + Cgd

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/irf6775mpbf-html.html
background image

IRF6775MTRPbF

  

     

 4

            www.irf.com  

© 

2014 International Rectifier   

        

Submit  Datasheet Feedback            

  February 26, 2014

Fig 11.  Maximum Effective Transient Thermal Impedance, Junction-to-Ambient 

ƒ

Fig 10.  Threshold Voltage vs. Temperature

Fig 9.  Maximum Drain Current vs. Case Temperature

Fig 7.  Typical Source-Drain Diode Forward Voltage

Fig 8.  Maximum Safe Operating Area

0.0

0.5

1.0

1.5

VSD, Source-to-Drain Voltage (V)

0.1

1

10

100

I S

D

, R

ev

er

se

 D

ra

in

 C

ur

re

nt

 (

A

)

VGS = 0V

TJ = 150°C

TJ = 25°C

TJ = -40°C

-75

-50

-25

0

25

50

75

100 125 150

TJ , Temperature ( °C )

2.0

2.5

3.0

3.5

4.0

4.5

5.0

V

G

S

(t

h)

 G

at

th

re

sh

ol

V

ol

ta

ge

 (

V

)

ID = 100μA

ID = 250μA

1E-006

1E-005

0.0001

0.001

0.01

0.1

1

10

100

t1 , Rectangular Pulse Duration (sec)

0.001

0.01

0.1

1

10

100

T

he

rm

al

 R

es

po

ns

Z

 th

JA

 )

0.20

0.10

D = 0.50

0.02

0.01

0.05

SINGLE PULSE

( THERMAL RESPONSE )

Notes:

1. Duty Factor D = t1/t2

2. Peak Tj = P dm x Zthja + Tc

Ri (°C/W)   

 τi (sec)

1.2801      0.000322
8.7256      0.164798
21.750       2.25760
13.251      69

τ

J

τ

J

τ

1

τ

1

τ

2

τ

2

τ

3

τ

3

R

1

R

1

R

2

R

2

R

3

R

3

Ci= 

τi/Ri

Ci= 

τi/Ri

τ

A

τ

A

τ

4

τ

4

R

4

R

4

25

50

75

100

125

150

TC , CaseTemperature (°C)

0

5

10

15

20

25

30

I D

  ,

 D

ra

in

 C

ur

re

nt

 (

A

)

0.1

1

10

100

1000

VDS, Drain-to-Source Voltage (V)

0.1

1

10

100

I D

,  

D

ra

in

-t

o-

S

ou

rc

C

ur

re

nt

 (

A

)

Tc = 25°C

Tj = 150°C

Single Pulse

1msec

10msec

OPERATION IN THIS AREA 

LIMITED BY R DS(on)

100μsec

DC

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/irf6775mpbf-html.html
background image

IRF6775MTRPbF

  

     

 5

            www.irf.com  

© 

2014 International Rectifier   

        

Submit  Datasheet Feedback            

  February 26, 2014

Fig 14.  Maximum Avalanche Energy vs. Drain Current

Fig 16a.  Switching Time Test Circuit

Fig 16b.  Switching Time Waveforms

V

GS

V

DS

90%

10%

t

d(on)

t

d(off)

t

r

t

f

Fig 15b.  Unclamped Inductive Waveforms

Fig 15a.  Unclamped Inductive Test Circuit

tp

V

(BR)DSS

I

AS

RG

IAS

0.01

Ω

tp

D.U.T

L

VDS

+

- VDD

DRIVER

A

15V

20V

V

GS

Fig 12.   On-Resistance vs. Gate Voltage

Fig 13.   On-Resistance vs. Drain Current

V

DS

Pulse Width ≤ 1 µs
Duty Factor ≤ 0.1 %

R

D

V

GS

R

G

D.U.T.

10V

+

-V

DD

4

6

8

10

12

14

16

VGS, Gate-to-Source Voltage (V)

40

60

80

100

120

140

R

D

S

(o

n)

,  

D

ra

in

-t

-S

ou

rc

O

R

es

is

ta

nc

(m

Ω

)

TJ = 25°C

TJ = 125°C

ID = 5.6A

0

5

10

15

20

ID , Drain Current (A)

40

50

60

70

80

90

100

R

D

S

 (

on

) ,

 D

ra

in

-t

o-

S

ou

rc

O

R

es

is

ta

nc

(m

Ω

)

VGS = 10V

TJ = 125°C

TJ = 25°C

25

50

75

100

125

150

Starting TJ, Junction Temperature (°C)

0

20

40

60

80

100

120

140

E

A

S

S

in

gl

P

ul

se

 A

va

la

nc

he

 E

ne

rg

(m

J)

                 I D

TOP  

       1.1A

               1.4A

BOTTOM 

  11A

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/irf6775mpbf-html.html
background image

IRF6775MTRPbF

  

     

 6

            www.irf.com  

© 

2014 International Rectifier   

        

Submit  Datasheet Feedback            

  February 26, 2014

Fig 17a.  Gate Charge Test Circuit

Fig 17b.   Gate Charge Waveform

Vds

Vgs

Id

Vgs(th)

Qgs1

Qgs2

Qgd

Qgodr

1K

VCC

DUT

0

L

S

20K

Fig 18. 

 Diode Reverse Recovery Test Circuit for HEXFET

®

 Power MOSFETs

Circuit Layout Considerations

   •  Low Stray Inductance

   •  Ground Plane

   •  Low Leakage Inductance

      Current Transformer

P.W.

Period

di/dt

Diode Recovery

dv/dt

Ripple 

≤ 5%

Body Diode  Forward Drop

Re-Applied

Voltage

Reverse

Recovery

Current

Body Diode Forward

Current

V

GS

=10V

V

DD

I

SD

Driver Gate Drive

D.U.T. I

SD

Waveform

D.U.T. V

DS

Waveform

Inductor Curent

D = 

P.W.

Period

***

 V

GS

 = 5V for Logic Level Devices

***

+

-

+

+

+

-

-

-

ƒ

„

‚

R

G

V

DD

•  dv/dt controlled by R

G

•  Driver same type as D.U.T.

•  I

SD

 controlled by Duty Factor "D"

•  D.U.T. - Device Under Test

D.U.T



**

*

*

 Use P-Channel Driver for P-Channel Measurements

**

 Reverse Polarity for P-Channel

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/irf6775mpbf-html.html
background image

IRF6775MTRPbF

  

     

 7

            www.irf.com  

© 

2014 International Rectifier   

        

Submit  Datasheet Feedback            

  February 26, 2014

DirectFET

 

 Substrate and PCB Layout, MZ Outline

(

Medium Size Can, Z-Designation).

Please see DirectFET application note AN-1035 for all details regarding PCB assembly using DirectFET. This
includes all recommendations for stencil and substrate designs.

Note: For the most current drawing please refer to IR website at: 

http://www.irf.com/package/

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/irf6775mpbf-html.html
background image

IRF6775MTRPbF

  

     

 8

            www.irf.com  

© 

2014 International Rectifier   

        

Submit  Datasheet Feedback            

  February 26, 2014

DirectFET™

 

 Outline Dimension, MZ Outline

(Medium Size Can, Z-Designation).

Please see DirectFET application note AN-1035 for all details regarding PCB assembly using DirectFET. This
includes all recommendations for stencil and substrate designs.

DirectFET™

 

 Part Marking

 MAX

0.250
0.201
0.156
0.018
0.028
0.028
0.038
0.026
0.013
0.050
0.105
0.0274
0.0031
0.007

 MAX

0.246
0.189
0.152
0.014
0.027
0.027
0.037
0.025
0.011
0.044
0.100
0.0235
0.0008
0.003

IMPERIAL

CODE

 A
 B
 C
 D
 E
 F
 G
 H
 J
 K
 L
 M
 R
 P

MAX

6.35
5.05
3.95
0.45
0.72
0.72
0.97
0.67
0.32

1.26

2.66
0.676
0.080
0.17

MIN

6.25

4.80

3.85
0.35
0.68
0.68
0.93
0.63
0.28

1.13

2.53
0.616
0.020
0.08

METRIC

DIMENSIONS

LOGO

GATE MARKING

BATCH NUMBER

PART NUMBER

DATE CODE

Line above the last character of

the date code indicates "Lead-Free"

Note: For the most current drawing please refer to IR website at: 

http://www.irf.com/package/

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/irf6775mpbf-html.html
background image

IRF6775MTRPbF

  

     

 9

            www.irf.com  

© 

2014 International Rectifier   

        

Submit  Datasheet Feedback            

  February 26, 2014

DirectFET

™

 

 Tape & Reel Dimension (Showing component orientation).

LOADED TAPE FEED DIRECTION

 MIN
 7.90
 3.90

11.90

 5.45
 5.10
 6.50
 1.50
 1.50

NOTE: CONTROLLING 
DIMENSIONS IN MM

CODE

 A
 B
 C
 D
 E
 F
 G
 H

 MAX
 8.10
 4.10

12.30

 5.55
 5.30
 6.70
 N.C
 1.60

 MIN

0.311
0.154
0.469
0.215
0.201
0.256
0.059
0.059

 MAX

0.319
0.161
0.484
0.219
0.209
0.264

 N.C

0.063

DIMENSIONS

METRIC

IMPERIAL

REEL DIMENSIONS

NOTE: Controlling dimensions in mm

Std reel quantity is 4800 parts. (ordered as IRF6775TRPBF). For 1000 parts on 7" 
reel, order   IRF6775TR1PBF

STANDARD OPTION (QTY 4800)

 MIN

330.0

 20.2
 12.8
  1.5

100.0

  N.C
 12.4
 11.9

CODE

  A
  B
  C
  D
  E
  F
  G
  H

 MAX
 N.C
 N.C
 13.2
 N.C
 N.C
 18.4
 14.4
 15.4

 MIN

12.992

0.795
0.504
0.059
3.937

 N.C

0.488
0.469

 MAX
 N.C
 N.C

0.520

 N.C
 N.C

0.724
0.567
0.606

METRIC

IMPERIAL

TR1 OPTION (QTY 1000)

IMPERIAL

 MIN
6.9

0.75
0.53
0.059

2.31

N.C
0.47
0.47

 MAX

N.C
N.C

12.8

N.C
N.C

13.50
12.01
12.01

 MIN

177.77
19.06
13.5
1.5

58.72

N.C

11.9
11.9

METRIC

 MAX

N.C
N.C

0.50

N.C
N.C

0.53

N.C
N.C

Note: For the most current drawing please refer to IR website at: 

http://www.irf.com/package/

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/irf6775mpbf-html.html
background image

IRF6775MTRPbF

  

     

 10

            www.irf.com  

© 

2014 International Rectifier   

        

Submit  Datasheet Feedback            

  February 26, 2014

Data and specifications subject to change without notice.

 This product has been designed and qualified for the Consumer market.

Qualification Standards can be found on IR’s Web site.

IR WORLD HEADQUARTERS: 101 N. Sepulveda Blvd., El Segundo, California 90245, USA

To contact International Rectifier, please visit 

http://www.irf.com/whoto-call/

Date

Comments

• Updated SOA curve figure 8 to extend x axis to 150V because this device is 150V, on page 4.
• Updated datasheet with new IR corporate template.

Revision History 

2/26/2014

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/irf6775mpbf-html.html
background image

Notes

  through 

‰

 are on page 2

Applicable DirectFET Outline and  Substrate Outline (see p. 6, 7 for details)

Description

This Digital Audio MOSFET is specifically designed for Class-D audio amplifier applications. This MOSFET utilizes the
latest  processing techniques to achieve low on-resistance per silicon area. Furthermore, gate charge, body-diode reverse
recovery and internal gate resistance are optimized to improve key Class-D audio amplifier performance factors such as
efficiency, THD, and EMI.

The IRF6775MPbF device utilizes DirectFET

TM

 packaging technology.  DirectFET

TM

 packaging technology offers lower parasitic

inductance and resistance when compared to conventional wirebonded SOIC packaging.  Lower inductance improves EMI
performance by reducing the voltage ringing that accompanies fast current transients.  The DirectFET

TM

 package is compatible

with existing layout geometries used in power applications, PCB assembly equipment and vapor phase, infra-red or convection
soldering techniques, when application note AN-1035 is followed regarding the manufacturing method and processes.  The
DirectFET

TM

 package also allows dual sided cooling to maximize thermal transfer in power systems, improving thermal resis-

tance and power dissipation. These features combine to make this MOSFET a highly efficient, robust and reliable device for
Class-D audio amplifier applications.

Features

• Latest MOSFET Silicon technology

• Key parameters optimized for Class-D audio amplifier

   applications
• Low R

DS(on) 

for improved efficiency

• Low Q

g

 for better THD and improved efficiency

• Low Q

rr

 for better THD and lower EMI

• Low package stray inductance for reduced ringing and lower EMI

• Can deliver up to 250W per channel into 4Ω Load in

  Half-Bridge Configuration Amplifier

• Dual sided cooling compatible

· Compatible with existing surface mount technologies

· RoHS compliant containing no lead or bromide

·Lead-Free (Qualified up to 260°C Reflow)

DirectFET

™ ISOMETRIC

MZ

SQ

SX

ST

SH

MQ

MX

MT

MN

MZ

&

)

5

5

&

V

DS

150

V

R

DS(on)

 typ. @ V

GS

 = 10V

47

m

:

Q

g

 typ.

25.0

nC

 R

G(int)

 max.

3.0

Key Parameters

Absolute Maximum Ratings

Parameter

Units

V

DS

Drain-to-Source Voltage

V

V

GS

Gate-to-Source Voltage

I

D

 @ T

C

 = 25°C

Continuous Drain Current, V

GS

 @ 10V

I

D

 @ T

A

 = 25°C

Continuous Drain Current, V

GS

 @ 10V

A

I

D

 @ T

A

 = 70°C

Continuous Drain Current, V

GS

 @ 10V

I

DM

Pulsed Drain Current 

c

P

D

 @T

C

 = 25°C

Maximum Power Dissipation  

W

P

D

 @T

A

 = 25°C

Power Dissipation 

e

P

D

 @T

A

 = 70°C

Power Dissipation 

e

E

AS

Single Pulse Avalanche Energy

d

mJ

I

AR

Avalanche Current

c

A

Linear Derating Factor  

e

W/°C

T

Operating Junction and

°C

T

STG

Storage Temperature Range

Thermal Resistance

Parameter

Typ.

Max.

Units

R

θJA 

Junction-to-Ambient  

ek

–––

45

°C/W

R

θJA 

Junction-to-Ambient  

hk

12.5

–––

R

θJA 

Junction-to-Ambient  

ik

20

–––

R

θJC 

Junction-to-Case 

jk

–––

1.4

R

θJ-PCB 

Junction-to-PCB Mounted

1.4

–––

89

Max.

4.9
3.9

39

150

± 20

28

-40  to + 150

0.022

2.8
1.8

33

5.6

IRF6775MTRPbF

DIGITAL AUDIO MOSFET

  

     

 1

            www.irf.com  

© 

2014 International Rectifier   

        

Submit  Datasheet Feedback            

  February 26, 2014

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/irf6775mpbf-html.html
background image

IRF6775MTRPbF

  

     

 2

            www.irf.com  

© 

2014 International Rectifier   

        

Submit  Datasheet Feedback            

  February 26, 2014

S

D

G

Notes:



 Repetitive rating;  pulse width limited by

     max. junction temperature.

‚

 Starting T

= 25°C, L = 0.53mH, R

= 25

Ω, I

AS 

= 11.2A.

ƒ

Surface mounted on 1 in. square Cu board.

„

 Pulse width ≤ 400μs; duty cycle ≤ 2%.

…

 C

oss

 eff. is a fixed capacitance that gives the same

charging time as C

oss 

while V

DS 

is rising from 0 to 80% V

DSS

.

†

Used double sided cooling , mounting pad with large heatsink.

‡

Mounted on minimum footprint full size board with
metalized back and with small clip heatsink.

ˆ

T

C

 measured with thermal couple mounted to top

(Drain) of part.

‰

R

θ 

is measured at T

J

 of approximately 90°C.

Static @ T

J

 = 25°C (unless otherwise specified)

Parameter

Min.

Typ.

Max.

Units

V

(BR)DSS

Drain-to-Source Breakdown Voltage

150

–––

–––

V

ΔV

(BR)DSS

/

ΔT

Breakdown Voltage Temp. Coefficient

–––

0.17

–––

V/°C

R

DS(on)

Static Drain-to-Source On-Resistance

–––

47

56

m

Ω

V

GS(th)

Gate Threshold Voltage

3.0

–––

5.0

V

I

DSS

Drain-to-Source Leakage Current

–––

–––

20

μA

–––

–––

250

I

GSS

Gate-to-Source Forward Leakage

–––

–––

100

nA

Gate-to-Source Reverse Leakage

–––

–––

-100

R

G(int)

Internal Gate Resistance

–––

–––

3.0

Ω

Dynamic @ T

J

 = 25°C (unless otherwise specified)

Parameter

Min.

Typ.

Max.

Units

gfs

Forward Transconductance

11

–––

–––

S

Q

g

Total Gate Charge

–––

25

36

V

DS

 = 75V

Q

gs1

Pre-Vth Gate-to-Source Charge

–––

5.8

–––

V

GS

 = 10V 

Q

gs2

Post-Vth Gate-to-Source Charge

–––

1.4

–––

I

D

 = 5.6A

Q

gd

Gate-to-Drain Charge

–––

6.6

–––

nC

See Fig. 6 and 17

Q

godr

Gate Charge Overdrive

–––

11

–––

Q

sw

Switch Charge (Q

gs2

 + Q

gd

)

–––

8.0

–––

t

d(on)

Turn-On Delay Time

–––

5.9

–––

t

r

Rise Time

–––

7.8

–––

t

d(off)

Turn-Off Delay Time

–––

5.8

–––

ns

t

f

Fall  Time

–––

15

–––

C

iss

Input Capacitance

–––

1411

–––

C

oss

Output Capacitance

–––

193

–––

C

rss

Reverse Transfer Capacitance

–––

40

–––

pF

C

oss

Output Capacitance

–––

1557

–––

C

oss

Output Capacitance

–––

93

–––

C

oss

 eff.

Effective Output Capacitance

–––

175

–––

Diode Characteristics

        Parameter

Min.

Typ.

Max.

Units

I

S

Continuous Source Current 

–––

–––

28

(Body Diode)

A

I

SM

Pulsed Source Current

–––

–––

39

(Body Diode)

c

V

SD

Diode Forward Voltage

–––

–––

1.3

V

t

rr

Reverse Recovery Time

–––

62

–––

ns

Q

rr

Reverse Recovery Charge

–––

164

–––

nC

V

DD

 = 75V

I

D

 = 5.6A

R

G

 = 6.0

Ω

V

GS

 = 20V

V

GS

 = -20V

Conditions

V

DS

 = 50V, I

D

 = 5.6A

T

J

 = 25°C, I

S

 = 5.6A, V

GS

 = 0V 

f

T

J

 = 25°C, I

F

 = 5.6A, V

DD

 = 25V

di/dt = 100A/μs 

f

Conditions

V

GS

 = 0V, I

D

 = 250μA

Reference to 25°C, I

D

 = 1mA 

V

GS

 = 10V, I

D

 = 5.6A 

f

V

DS

 = V

GS

, I

D

 = 100μA

V

DS

 = 150V, V

GS

 = 0V

V

DS

 = 120V, V

GS

 = 0V, T

J

 = 125°C

MOSFET symbol
showing  the
integral reverse
p-n junction diode.

Conditions

V

GS

 = 10V 

f

V

GS

 = 0V

V

DS

 = 25V

ƒ = 1.0MHz

V

GS

 = 0V, V

DS

 = 0V to 120V 

g

V

GS

 = 0V,  V

DS

 = 1.0V,  ƒ = 1.0MHz

V

GS

 = 0V,  V

DS

 = 120V,  ƒ = 1.0MHz

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/irf6775mpbf-html.html
background image

IRF6775MTRPbF

  

     

 3

            www.irf.com  

© 

2014 International Rectifier   

        

Submit  Datasheet Feedback            

  February 26, 2014

Fig 2.  Typical Output Characteristics

Fig 1.  Typical Output Characteristics

Fig 3.  Typical Transfer Characteristics

Fig 4.  Normalized On-Resistance vs. Temperature

Fig 6.  Typical Gate Charge vs.Gate-to-Source Voltage

Fig 5.  Typical Capacitance vs.Drain-to-Source Voltage

0

10

20

30

40

 QG  Total Gate Charge (nC)

0

4

8

12

16

20

V

G

S

, G

at

e-

to

-S

ou

rc

V

ol

ta

ge

 (

V

)

VDS= 120V

VDS= 75V

VDS= 30V

ID= 5.6A

0.1

1

10

100

VDS, Drain-to-Source Voltage (V)

1

10

100

I D

, D

ra

in

-t

o-

S

ou

rc

C

ur

re

nt

 (

A

)

≤ 60μs PULSE WIDTH

Tj = 25°C

5.5V

VGS

TOP          

15V

10V

9.0V

8.0V

7.0V

6.5V

6.0V

BOTTOM

5.5V

0.1

1

10

100

VDS, Drain-to-Source Voltage (V)

1

10

100

I D

, D

ra

in

-t

o-

S

ou

rc

C

ur

re

nt

 (

A

)

≤ 60μs PULSE WIDTH

Tj = 150°C

5.5V

VGS

TOP          

15V

10V

9.0V

8.0V

7.0V

6.5V

6.0V

BOTTOM

5.5V

3.0

4.0

5.0

6.0

7.0

8.0

VGS, Gate-to-Source Voltage (V)

0.01

0.1

1

10

100

I D

, D

ra

in

-t

o-

S

ou

rc

C

ur

re

nt

 (Α

)

VDS = 25V
≤ 60μs PULSE WIDTH

TJ = 150°C

TJ = 25°C

TJ = -40°C

-60 -40 -20

0

20 40 60 80 100 120 140 160

TJ , Junction Temperature (°C)

0.5

1.0

1.5

2.0

2.5

R

D

S

(o

n)

 , 

D

ra

in

-t

o-

S

ou

rc

O

R

es

is

ta

nc

   

   

   

   

   

   

   

 (

N

or

m

al

iz

ed

)

ID = 5.6A

VGS = 10V

1

10

100

1000

VDS, Drain-to-Source Voltage (V)

10

100

1000

10000

100000

C

, C

ap

ac

ita

nc

(p

F

)

Coss

Crss

Ciss

VGS   = 0V,       f = 1 MHZ

Ciss   = Cgs + Cgd,  Cds SHORTED

Crss   = Cgd 

Coss  = Cds + Cgd

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/irf6775mpbf-html.html
background image

IRF6775MTRPbF

  

     

 4

            www.irf.com  

© 

2014 International Rectifier   

        

Submit  Datasheet Feedback            

  February 26, 2014

Fig 11.  Maximum Effective Transient Thermal Impedance, Junction-to-Ambient 

ƒ

Fig 10.  Threshold Voltage vs. Temperature

Fig 9.  Maximum Drain Current vs. Case Temperature

Fig 7.  Typical Source-Drain Diode Forward Voltage

Fig 8.  Maximum Safe Operating Area

0.0

0.5

1.0

1.5

VSD, Source-to-Drain Voltage (V)

0.1

1

10

100

I S

D

, R

ev

er

se

 D

ra

in

 C

ur

re

nt

 (

A

)

VGS = 0V

TJ = 150°C

TJ = 25°C

TJ = -40°C

-75

-50

-25

0

25

50

75

100 125 150

TJ , Temperature ( °C )

2.0

2.5

3.0

3.5

4.0

4.5

5.0

V

G

S

(t

h)

 G

at

th

re

sh

ol

V

ol

ta

ge

 (

V

)

ID = 100μA

ID = 250μA

1E-006

1E-005

0.0001

0.001

0.01

0.1

1

10

100

t1 , Rectangular Pulse Duration (sec)

0.001

0.01

0.1

1

10

100

T

he

rm

al

 R

es

po

ns

Z

 th

JA

 )

0.20

0.10

D = 0.50

0.02

0.01

0.05

SINGLE PULSE

( THERMAL RESPONSE )

Notes:

1. Duty Factor D = t1/t2

2. Peak Tj = P dm x Zthja + Tc

Ri (°C/W)   

 τi (sec)

1.2801      0.000322
8.7256      0.164798
21.750       2.25760
13.251      69

τ

J

τ

J

τ

1

τ

1

τ

2

τ

2

τ

3

τ

3

R

1

R

1

R

2

R

2

R

3

R

3

Ci= 

τi/Ri

Ci= 

τi/Ri

τ

A

τ

A

τ

4

τ

4

R

4

R

4

25

50

75

100

125

150

TC , CaseTemperature (°C)

0

5

10

15

20

25

30

I D

  ,

 D

ra

in

 C

ur

re

nt

 (

A

)

0.1

1

10

100

1000

VDS, Drain-to-Source Voltage (V)

0.1

1

10

100

I D

,  

D

ra

in

-t

o-

S

ou

rc

C

ur

re

nt

 (

A

)

Tc = 25°C

Tj = 150°C

Single Pulse

1msec

10msec

OPERATION IN THIS AREA 

LIMITED BY R DS(on)

100μsec

DC

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/irf6775mpbf-html.html
background image

IRF6775MTRPbF

  

     

 5

            www.irf.com  

© 

2014 International Rectifier   

        

Submit  Datasheet Feedback            

  February 26, 2014

Fig 14.  Maximum Avalanche Energy vs. Drain Current

Fig 16a.  Switching Time Test Circuit

Fig 16b.  Switching Time Waveforms

V

GS

V

DS

90%

10%

t

d(on)

t

d(off)

t

r

t

f

Fig 15b.  Unclamped Inductive Waveforms

Fig 15a.  Unclamped Inductive Test Circuit

tp

V

(BR)DSS

I

AS

RG

IAS

0.01

Ω

tp

D.U.T

L

VDS

+

- VDD

DRIVER

A

15V

20V

V

GS

Fig 12.   On-Resistance vs. Gate Voltage

Fig 13.   On-Resistance vs. Drain Current

V

DS

Pulse Width ≤ 1 µs
Duty Factor ≤ 0.1 %

R

D

V

GS

R

G

D.U.T.

10V

+

-V

DD

4

6

8

10

12

14

16

VGS, Gate-to-Source Voltage (V)

40

60

80

100

120

140

R

D

S

(o

n)

,  

D

ra

in

-t

-S

ou

rc

O

R

es

is

ta

nc

(m

Ω

)

TJ = 25°C

TJ = 125°C

ID = 5.6A

0

5

10

15

20

ID , Drain Current (A)

40

50

60

70

80

90

100

R

D

S

 (

on

) ,

 D

ra

in

-t

o-

S

ou

rc

O

R

es

is

ta

nc

(m

Ω

)

VGS = 10V

TJ = 125°C

TJ = 25°C

25

50

75

100

125

150

Starting TJ, Junction Temperature (°C)

0

20

40

60

80

100

120

140

E

A

S

S

in

gl

P

ul

se

 A

va

la

nc

he

 E

ne

rg

(m

J)

                 I D

TOP  

       1.1A

               1.4A

BOTTOM 

  11A

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/irf6775mpbf-html.html
background image

IRF6775MTRPbF

  

     

 6

            www.irf.com  

© 

2014 International Rectifier   

        

Submit  Datasheet Feedback            

  February 26, 2014

Fig 17a.  Gate Charge Test Circuit

Fig 17b.   Gate Charge Waveform

Vds

Vgs

Id

Vgs(th)

Qgs1

Qgs2

Qgd

Qgodr

1K

VCC

DUT

0

L

S

20K

Fig 18. 

 Diode Reverse Recovery Test Circuit for HEXFET

®

 Power MOSFETs

Circuit Layout Considerations

   •  Low Stray Inductance

   •  Ground Plane

   •  Low Leakage Inductance

      Current Transformer

P.W.

Period

di/dt

Diode Recovery

dv/dt

Ripple 

≤ 5%

Body Diode  Forward Drop

Re-Applied

Voltage

Reverse

Recovery

Current

Body Diode Forward

Current

V

GS

=10V

V

DD

I

SD

Driver Gate Drive

D.U.T. I

SD

Waveform

D.U.T. V

DS

Waveform

Inductor Curent

D = 

P.W.

Period

***

 V

GS

 = 5V for Logic Level Devices

***

+

-

+

+

+

-

-

-

ƒ

„

‚

R

G

V

DD

•  dv/dt controlled by R

G

•  Driver same type as D.U.T.

•  I

SD

 controlled by Duty Factor "D"

•  D.U.T. - Device Under Test

D.U.T



**

*

*

 Use P-Channel Driver for P-Channel Measurements

**

 Reverse Polarity for P-Channel

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/irf6775mpbf-html.html
background image

IRF6775MTRPbF

  

     

 7

            www.irf.com  

© 

2014 International Rectifier   

        

Submit  Datasheet Feedback            

  February 26, 2014

DirectFET

 

 Substrate and PCB Layout, MZ Outline

(

Medium Size Can, Z-Designation).

Please see DirectFET application note AN-1035 for all details regarding PCB assembly using DirectFET. This
includes all recommendations for stencil and substrate designs.

Note: For the most current drawing please refer to IR website at: 

http://www.irf.com/package/

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/irf6775mpbf-html.html
background image

IRF6775MTRPbF

  

     

 8

            www.irf.com  

© 

2014 International Rectifier   

        

Submit  Datasheet Feedback            

  February 26, 2014

DirectFET™

 

 Outline Dimension, MZ Outline

(Medium Size Can, Z-Designation).

Please see DirectFET application note AN-1035 for all details regarding PCB assembly using DirectFET. This
includes all recommendations for stencil and substrate designs.

DirectFET™

 

 Part Marking

 MAX

0.250
0.201
0.156
0.018
0.028
0.028
0.038
0.026
0.013
0.050
0.105
0.0274
0.0031
0.007

 MAX

0.246
0.189
0.152
0.014
0.027
0.027
0.037
0.025
0.011
0.044
0.100
0.0235
0.0008
0.003

IMPERIAL

CODE

 A
 B
 C
 D
 E
 F
 G
 H
 J
 K
 L
 M
 R
 P

MAX

6.35
5.05
3.95
0.45
0.72
0.72
0.97
0.67
0.32

1.26

2.66
0.676
0.080
0.17

MIN

6.25

4.80

3.85
0.35
0.68
0.68
0.93
0.63
0.28

1.13

2.53
0.616
0.020
0.08

METRIC

DIMENSIONS

LOGO

GATE MARKING

BATCH NUMBER

PART NUMBER

DATE CODE

Line above the last character of

the date code indicates "Lead-Free"

Note: For the most current drawing please refer to IR website at: 

http://www.irf.com/package/

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/irf6775mpbf-html.html
background image

IRF6775MTRPbF

  

     

 9

            www.irf.com  

© 

2014 International Rectifier   

        

Submit  Datasheet Feedback            

  February 26, 2014

DirectFET

™

 

 Tape & Reel Dimension (Showing component orientation).

LOADED TAPE FEED DIRECTION

 MIN
 7.90
 3.90

11.90

 5.45
 5.10
 6.50
 1.50
 1.50

NOTE: CONTROLLING 
DIMENSIONS IN MM

CODE

 A
 B
 C
 D
 E
 F
 G
 H

 MAX
 8.10
 4.10

12.30

 5.55
 5.30
 6.70
 N.C
 1.60

 MIN

0.311
0.154
0.469
0.215
0.201
0.256
0.059
0.059

 MAX

0.319
0.161
0.484
0.219
0.209
0.264

 N.C

0.063

DIMENSIONS

METRIC

IMPERIAL

REEL DIMENSIONS

NOTE: Controlling dimensions in mm

Std reel quantity is 4800 parts. (ordered as IRF6775TRPBF). For 1000 parts on 7" 
reel, order   IRF6775TR1PBF

STANDARD OPTION (QTY 4800)

 MIN

330.0

 20.2
 12.8
  1.5

100.0

  N.C
 12.4
 11.9

CODE

  A
  B
  C
  D
  E
  F
  G
  H

 MAX
 N.C
 N.C
 13.2
 N.C
 N.C
 18.4
 14.4
 15.4

 MIN

12.992

0.795
0.504
0.059
3.937

 N.C

0.488
0.469

 MAX
 N.C
 N.C

0.520

 N.C
 N.C

0.724
0.567
0.606

METRIC

IMPERIAL

TR1 OPTION (QTY 1000)

IMPERIAL

 MIN
6.9

0.75
0.53
0.059

2.31

N.C
0.47
0.47

 MAX

N.C
N.C

12.8

N.C
N.C

13.50
12.01
12.01

 MIN

177.77
19.06
13.5
1.5

58.72

N.C

11.9
11.9

METRIC

 MAX

N.C
N.C

0.50

N.C
N.C

0.53

N.C
N.C

Note: For the most current drawing please refer to IR website at: 

http://www.irf.com/package/

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/irf6775mpbf-html.html
background image

IRF6775MTRPbF

  

     

 10

            www.irf.com  

© 

2014 International Rectifier   

        

Submit  Datasheet Feedback            

  February 26, 2014

Data and specifications subject to change without notice.

 This product has been designed and qualified for the Consumer market.

Qualification Standards can be found on IR’s Web site.

IR WORLD HEADQUARTERS: 101 N. Sepulveda Blvd., El Segundo, California 90245, USA

To contact International Rectifier, please visit 

http://www.irf.com/whoto-call/

Date

Comments

• Updated SOA curve figure 8 to extend x axis to 150V because this device is 150V, on page 4.
• Updated datasheet with new IR corporate template.

Revision History 

2/26/2014

Maker
Infineon Technologies