IRF1405ZS/L-7PPbF Product Datasheet

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/irf1405zs-7ppbf-html.html
background image

HEXFET

®

 Power MOSFET

V

DSS

 = 55V

R

DS(on)

 = 4.9m

Ω

‰

I

D

 = 120A

HEXFET

®

 is a registered trademark of International Rectifier.

Description

This HEXFET

®

 Power MOSFET utilizes the latest

processing techniques to achieve extremely low
on-resistance per silicon area.  Additional features
of this design  are a 175°C junction operating
temperature, fast switching speed and improved
repetitive avalanche rating.These features
combine to make this design an extremely efficient
and reliable device for use in a wide variety of
applications.

S

D

G

Features

l

Advanced Process Technology

l

Ultra Low On-Resistance

l

175°C Operating Temperature

l

Fast Switching

l

Repetitive Avalanche Allowed up to Tjmax

l

Lead-Free

S (Pin 2, 3, 5, 6, 7)

G (Pin 1)

D

2

Pak 7 Pin

IRF1405ZS-7PPbF

IRF1405ZL-7PPbF

  

  

 

1

          www.irf.com  

© 

2014 International Rectifier   

       Submit Datasheet Feedback

                   October 29, 2014

TO-263CA 7 Pin

Form

Quantity

IRF1405ZS-7PPbF 

Tube

50

IRF1405ZS-7PPbF

EOL notice # 289

IRF1405ZS-7PPbF 

Tape and Reel Left

800

IRF1405ZSTRL7PP

IRF1405ZL-7PPbF 

TO-263CA

Tube

50

IRF1405ZL-7PPbF 

EOL notice # 288

Note

Base part number

Package Type

Standard Pack

D

2

Pak-7Pin 

Orderable Part Number

Absolute Maximum Ratings

Parameter

Units

I

D

 @ T

C

 = 25°C

Continuous Drain Current, V

GS

 @ 10V (Silicon Limited)

I

D

 @ T

C

 = 100°C

Continuous Drain Current, V

GS

 @ 10V (See Fig. 9)

I

D

 @ T

C

 = 25°C

Continuous Drain Current, V

GS

 @ 10V 

(Package L imited)

I

DM

Pulsed Drain Current 

c

P

D

 @T

C

 = 25°C

Maximum Power Dissipation

W

Linear Derating Factor  

W/°C

V

GS

Gate-to-Source Voltage

V

E

AS

Single Pulse Avalanche Energy (Thermally Limited) 

d

mJ

E

AS 

(tested)

Single Pulse Avalanche Energy Tested Value 

h

I

AR

Avalanche Current 

c

A

E

AR

Repetitive Avalanche Energy 

g

mJ

T

Operating Junction and

T

STG

Storage Temperature Range
Soldering Temperature, for 10 seconds 

Thermal Resistance

Parameter

Typ.

Max.

Units

R

θJC 

Junction-to-Case 

j

–––

0.65

R

θJA 

Junction-to-Ambient (PCB Mount, steady state) 

i

–––

40

300(1.6mm from case)

°C

A

°C/W

230

1.5

 ± 20

250
810

See Fig.12a,12b,15,16

-55  to + 175

Max.

150
100

590

120

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/irf1405zs-7ppbf-html.html
background image

  

 

  2

          www.irf.com  

© 

2014 International Rectifier 

             Submit Datasheet Feedback

            October  29,  2014

IRF1405ZS/L-7PPbF

S

D

G

S

D

G

Static @ T

J

 = 25°C (unless otherwise specified)

Parameter

Min.

Typ.

Max.

Units

V

(BR)DSS

Drain-to-Source Breakdown Voltage

55

–––

–––

V

ΔΒV

DSS

/

ΔT

Breakdown Voltage Temp. Coefficient

–––

0.054

–––

V/°C

R

DS(on) 

SMD

Static Drain-to-Source On-Resistance

–––

3.7

4.9

m

Ω

V

GS(th)

Gate Threshold Voltage

2.0

–––

4.0

V

gfs

Forward Transconductance

150

–––

–––

S

I

DSS

Drain-to-Source Leakage Current

–––

–––

20

–––

–––

250

I

GSS

Gate-to-Source Forward Leakage

–––

–––

200

Gate-to-Source Reverse Leakage

–––

–––

-200

Q

g

Total Gate Charge 

–––

150

230

Q

gs

Gate-to-Source Charge

–––

37

–––

Q

gd

Gate-to-Drain ("Miller") Charge

–––

64

–––

t

d(on)

Turn-On Delay Time

–––

16

–––

t

r

Rise Time

–––

140

–––

t

d(off)

Turn-Off Delay Time

–––

170

–––

t

f

Fall Time

–––

130

–––

L

D

Internal Drain Inductance

–––

4.5

–––

nH

Between lead,

6mm (0.25in.)

L

S

Internal Source Inductance

–––

7.5

–––

from package

and center of die contact

C

iss

Input Capacitance

–––

5360

–––

C

oss

Output Capacitance

–––

1310

–––

C

rss

Reverse Transfer Capacitance

–––

340

–––

C

oss

Output Capacitance

–––

6080

–––

C

oss

Output Capacitance

–––

920

–––

C

oss

 eff.

Effective Output Capacitance

–––

1700

–––

Diode Characteristics

        Parameter

Min.

Typ.

Max.

Units

I

S

Continuous Source Current 

(Body Diode)

A

I

SM

Pulsed Source Current

(Body Diode)

c

V

SD

Diode Forward Voltage

–––

–––

1.3

V

t

rr

Reverse Recovery Time

–––

63

95

ns

Q

rr

Reverse Recovery Charge

–––

160

240

nC

pF

nA

nC

μA

ns

–––

–––

150

–––

–––

590

V

DS

 = V

GS

, I

D

 = 150μA

V

DS

 = 55V, V

GS

 = 0V

V

DS

 = 55V, V

GS

 = 0V, T

J

 = 125°C

Conditions

V

GS

 = 0V, I

D

 = 250μA

Reference to 25°C, I

D

 = 1mA 

V

GS

 = 10V, I

D

 = 88A 

e

T

J

 = 25°C, I

F

 = 88A, V

DD

 = 28V

di/dt = 100A/μs 

e

T

J

 = 25°C, I

S

 = 88A, V

GS

 = 0V 

e

showing  the

integral reverse

p-n junction diode.

V

GS

 = 0V,  V

DS

 = 1.0V,  ƒ = 1.0MHz

V

GS

 = 10V 

d

MOSFET symbol

V

GS

 = 0V

V

DS

 = 25V

V

GS

 = 0V,  V

DS

 = 44V,  ƒ = 1.0MHz

Conditions

V

GS

 = 0V, V

DS

 = 0V to 44V 

ƒ = 1.0MHz, See Fig. 5

R

G

 = 5.0

Ω

I

D

 = 88A

V

DS

 = 25V, I

D

 = 88A

V

DD

 = 28V

I

D

 = 88A

V

GS

 = 20V

V

GS

 = -20V

V

DS

 = 44V

V

GS

 = 10V 

e

Notes:

 Repetitive rating;  pulse width limited by max. junction temperature. (See fig. 11).

‚ Limited by T

Jmax

, starting T

= 25°C, L=0.064mH, R

= 25

Ω, I

AS 

= 88A, V

GS

 =10V.

Part not recommended for use above this value.

ƒ Pulse width ≤ 1.0ms; duty cycle ≤ 2%.

„ C

oss

 eff. is a fixed capacitance that gives the same charging time as C

oss 

while V

DS 

is rising from 0 to 80% V

DSS

.

… Limited by T

Jmax

 , see Fig.12a, 12b, 15, 16 for typical repetitive avalanche performance.

† This value determined from sample failure population. 100% tested to this value in production.

‡ This is applied to D

2

Pak, when mounted on 1" square PCB  ( FR-4 or G-10 Material ).  For recommended footprint and

soldering techniques refer to application note #AN-994.

ˆ R

θ 

is measured at T

J

 of approximately 90°C.

‰ Solder mounted on IMS substrate.

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/irf1405zs-7ppbf-html.html
background image

  

  

 3

          www.irf.com  

© 

2014 International Rectifier  

           Submit Datasheet Feedback

              October  29,  2014

IRF1405ZS/L-7PPbF

Fig 2.  Typical Output Characteristics

Fig 1.  Typical Output Characteristics

Fig 3.  Typical Transfer Characteristics

Fig 4.  Typical Forward Transconductance

vs. Drain Current

0.1

1

10

100

1000

VDS, Drain-to-Source Voltage (V)

1

10

100

1000

I D

, D

ra

in

-t

o-

S

ou

rc

C

ur

re

nt

 (

A

)

VGS

TOP          

15V
10V

8.0V

7.0V

6.0V

5.5V

5.0V

BOTTOM

4.5V

≤60μs PULSE WIDTH

Tj = 25°C

4.5V

0

2

4

6

8

10

12

VGS, Gate-to-Source Voltage (V)

0.1

1

10

100

1000

I D

, D

ra

in

-t

o-

S

ou

rc

C

ur

re

nt

 (

Α

)

TJ = 25°C

TJ = 175°C

VDS = 25V
≤60μs PULSE WIDTH

0.1

1

10

100

1000

VDS, Drain-to-Source Voltage (V)

1

10

100

1000

I D

, D

ra

in

-t

o-

S

ou

rc

C

ur

re

nt

 (

A

)

4.5V

≤60μs PULSE WIDTH

Tj = 175°C

VGS

TOP          

15V

10V
8.0V

7.0V

6.0V

5.5V

5.0V

BOTTOM

4.5V

0

25

50

75

100 125 150 175 200

ID,Drain-to-Source Current (A)

0

25

50

75

100

125

150

G

fs

, F

or

w

ar

T

ra

ns

co

nd

uc

ta

nc

(S

)

TJ = 25°C

TJ = 175°C

VDS = 10V 
300μs PULSE WIDTH

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/irf1405zs-7ppbf-html.html
background image

  

 

  4

          www.irf.com  

© 

2014 International Rectifier 

             Submit Datasheet Feedback

            October  29,  2014

IRF1405ZS/L-7PPbF

Fig 8.  Maximum Safe Operating Area

Fig 6.  Typical Gate Charge vs.

Gate-to-Source Voltage

Fig 5.  Typical Capacitance vs.

Drain-to-Source Voltage

Fig 7.  Typical Source-Drain Diode

Forward Voltage

0

50

100

150

200

 QG  Total Gate Charge (nC)

0.0

2.0

4.0

6.0

8.0

10.0

12.0

V

G

S

, G

at

e-

to

-S

ou

rc

V

ol

ta

ge

 (

V

)

VDS= 44V

VDS= 28V

ID= 88A

1

10

100

VDS, Drain-to-Source Voltage (V)

100

1000

10000

100000

C

, C

ap

ac

ita

nc

e(

pF

)

VGS   = 0V,       f = 1 MHZ

Ciss   = Cgs + Cgd,  C ds SHORTED
Crss   = Cgd 

Coss  = Cds + Cgd

Coss

Crss

Ciss

0.0

0.5

1.0

1.5

2.0

2.5

VSD, Source-to-Drain Voltage (V)

1

10

100

1000

I S

D

, R

ev

er

se

 D

ra

in

 C

ur

re

nt

 (

A

)

TJ = 25°C

TJ = 175°C

VGS = 0V

1

10

100

1000

VDS, Drain-to-Source Voltage (V)

0.01

0.1

1

10

100

1000

10000

I D

,  

D

ra

in

-t

o-

S

ou

rc

C

ur

re

nt

 (

A

)

OPERATION IN THIS AREA 

LIMITED BY R DS(on)

Tc = 25°C

Tj = 175°C

Single Pulse

100μsec

1msec

10msec

DC

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/irf1405zs-7ppbf-html.html
background image

  

  

 5

          www.irf.com  

© 

2014 International Rectifier  

           Submit Datasheet Feedback

              October  29,  2014

IRF1405ZS/L-7PPbF

Fig 11.  Maximum Effective Transient Thermal Impedance, Junction-to-Case

Fig 9.  Maximum Drain Current vs.

Case Temperature

Fig 10.  Normalized On-Resistance

vs. Temperature

-60 -40 -20 0 20 40 60 80 100 120 140 160 180

TJ , Junction Temperature (°C)

0.5

1.0

1.5

2.0

2.5

R

D

S

(o

n)

 ,

 D

ra

in

-t

o-

S

ou

rc

O

R

es

is

ta

nc

   

   

   

   

   

   

   

 (

N

or

m

al

iz

ed

)

ID = 88A

VGS = 10V

1E-006

1E-005

0.0001

0.001

0.01

0.1

1

t1 , Rectangular Pulse Duration (sec)

0.0001

0.001

0.01

0.1

1

T

he

rm

al

 R

es

po

ns

Z

 th

JC

 )

0.20

0.10

D = 0.50

0.02

0.01

0.05

SINGLE PULSE

( THERMAL RESPONSE )

Notes:

1. Duty Factor D = t1/t2

2. Peak Tj = P dm x Zthjc + Tc

Ri (°C/W)   

 τi (sec)

0.1707     0.000235
0.1923     0.000791
0.2885     0.008193

τ

J

τ

J

τ

1

τ

1

τ

2

τ

2

τ

3

τ

3

R

1

R

1

R

2

R

2

R

3

R

3

τ

τ

C

Ci   i

/Ri

Ci= 

τi/Ri

25

50

75

100

125

150

175

 TC , Case Temperature (°C)

0

25

50

75

100

125

150

I D

,   

D

ra

in

 C

ur

re

nt

 (

A

)

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/irf1405zs-7ppbf-html.html
background image

  

 

  6

          www.irf.com  

© 

2014 International Rectifier 

             Submit Datasheet Feedback

            October  29,  2014

IRF1405ZS/L-7PPbF

Q

G

Q

GS

Q

GD

V

G

Charge

D.U.T.

V

DS

I

D

I

G

3mA

V

GS

.3

μF

50K

Ω

.2

μF

12V

Current Regulator

Same Type as D.U.T.

Current Sampling Resistors

+

-

10 V

Fig 13b.  Gate Charge Test Circuit

Fig 13a.  Basic Gate Charge Waveform

Fig 12c.  Maximum Avalanche Energy

vs. Drain Current

Fig 12b.  Unclamped Inductive Waveforms

Fig 12a.  Unclamped Inductive Test Circuit

tp

V

(BR)DSS

I

AS

Fig 14.  Threshold Voltage vs. Temperature

RG

IAS

0.01

Ω

tp

D.U.T

L

VDS

+

- VDD

DRIVER

A

15V

20V

V

GS

25

50

75

100

125

150

175

Starting TJ , Junction Temperature (°C)

0

200

400

600

800

1000

E

A

S

 , 

S

in

gl

P

ul

se

 A

va

la

nc

he

 E

ne

rg

(m

J)

ID

TOP         14A

23A

BOTTOM 88A

-75 -50 -25

0

25 50 75 100 125 150 175 200

TJ , Temperature ( °C )

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

V

G

S

(t

h)

 G

at

th

re

sh

ol

V

ol

ta

ge

 (

V

)

ID = 150μA

ID = 250μA

ID = 1.0mA

ID = 1.0A

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/irf1405zs-7ppbf-html.html
background image

  

  

 7

          www.irf.com  

© 

2014 International Rectifier  

           Submit Datasheet Feedback

              October  29,  2014

IRF1405ZS/L-7PPbF

Fig 15.  Typical Avalanche Current vs.Pulsewidth

Fig 16.  Maximum Avalanche Energy

vs. Temperature

Notes on Repetitive Avalanche Curves , Figures 15, 16:
(For further info, see AN-1005 at www.irf.com)
1. Avalanche failures assumption:

  Purely a thermal phenomenon and failure occurs at a

    temperature far in excess of T

jmax

. This is validated for

    every part type.
2. Safe operation in Avalanche is allowed as long asT

jmax

 is

  not exceeded.

3. Equation below based on circuit and waveforms shown in

  Figures 12a, 12b.

4. P

D (ave) 

= Average power dissipation per single

    avalanche pulse.
5. BV = Rated breakdown voltage (1.3 factor accounts for
    voltage increase during avalanche).
6. I

av 

= Allowable avalanche current.

7. 

ΔT

 = 

Allowable rise in junction temperature, not to exceed

    T

jmax 

(assumed as 25°C in Figure 15, 16).

  t

av = 

Average time in avalanche.

  D = Duty cycle in avalanche =  t

av 

·f

  Z

thJC

(D, t

av

) = Transient thermal resistance, see figure 11)

P

D (ave)

 = 1/2 ( 1.3·BV·I

av

) =

 DT/ Z

thJC

I

av 

=

 

2

DT/ [1.3·BV·Z

th

]

E

AS (AR)

 = P

D (ave)

·t

av

25

50

75

100

125

150

175

Starting TJ , Junction Temperature (°C)

0

50

100

150

200

250

300

E

A

R

 , 

A

va

la

nc

he

 E

ne

rg

(m

J)

TOP          Single Pulse                
BOTTOM   1% Duty Cycle
ID = 88A

1.0E-06

1.0E-05

1.0E-04

1.0E-03

1.0E-02

1.0E-01

tav (sec)

0.1

1

10

100

1000

A

va

la

nc

he

 C

ur

re

nt

 (

A

)

0.05

Duty Cycle = Single Pulse

0.10

Allowed avalanche Current vs avalanche 
pulsewidth, tav, assuming 

ΔΤj = 25°C and 

Tstart = 150°C.

0.01

Allowed avalanche Current vs avalanche 
pulsewidth, tav, assuming 

ΔTj = 150°C and 

Tstart =25°C (Single Pulse)

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/irf1405zs-7ppbf-html.html
background image

  

 

  8

          www.irf.com  

© 

2014 International Rectifier 

             Submit Datasheet Feedback

            October  29,  2014

IRF1405ZS/L-7PPbF

Fig 17. 

Peak Diode Recovery dv/dt Test Circuit for N-Channel

HEXFET

®

 Power MOSFETs

Circuit Layout Considerations

   •  Low Stray Inductance

   •  Ground Plane

   •  Low Leakage Inductance

      Current Transformer

P.W.

Period

di/dt

Diode Recovery

dv/dt

Ripple 

≤ 5%

Body Diode  Forward Drop

Re-Applied

Voltage

Reverse

Recovery

Current

Body Diode Forward

Current

V

GS

=10V

V

DD

I

SD

Driver Gate Drive

D.U.T. I

SD

Waveform

D.U.T. V

DS

Waveform

Inductor Curent

D = 

P.W.

Period

*

 V

GS

 = 5V for Logic Level Devices

*

+

-

+

+

+

-

-

-

ƒ

„

‚

R

G

V

DD

•  dv/dt controlled by R

G

•  Driver same type as D.U.T.

•  I

SD

 controlled by Duty Factor "D"

•  D.U.T. - Device Under Test

D.U.T



V

DS

90%

10%
V

GS

t

d(on)

t

r

t

d(off)

t

f

V

DS

Pulse Width ≤ 1 µs

Duty Factor ≤ 0.1 %

R

D

V

GS

R

G

D.U.T.

10V

+

-

V

DD

Fig 18a.  Switching Time Test Circuit

Fig 18b.  Switching Time Waveforms

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/irf1405zs-7ppbf-html.html
background image

  

  

 9

          www.irf.com  

© 

2014 International Rectifier  

           Submit Datasheet Feedback

              October  29,  2014

IRF1405ZS/L-7PPbF

D

2

Pak - 7 Pin Package Outline

Dimensions are shown in millimeters (inches)

Note: For the most current drawing please refer to IR website at:

 http://www.irf.com/package/

D

2

Pak - 7 Pin Part Marking Information

Note: For the most current drawing please refer to IR website at:

 http://www.irf.com/package/

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/irf1405zs-7ppbf-html.html
background image

  

 

  10

          www.irf.com  

© 

2014 International Rectifier 

             Submit Datasheet Feedback

            October  29,  2014

IRF1405ZS/L-7PPbF

TO-263CA 7 Pin  Long Leads Package Outline

Dimensions are shown in millimeters (inches)

Note: For the most current drawing please refer to IR website at:

 http://www.irf.com/package/

Maker
Infineon Technologies