IRF1010ZS_LPbF.pmd

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/irf1010zspbf-html.html
background image

07/06/10

www.irf.com

1

HEXFET

®

 Power MOSFET

V

DSS

 = 55V

R

DS(on)

 = 7.5m

I

D

 = 75A

This HEXFET

®

 Power MOSFET utilizes the latest

processing techniques to achieve extremely low
on-resistance per silicon area. Additional features
of this design  are a 175°C junction operating
temperature, fast switching speed and improved
repetitive avalanche rating . These features
combine to make this design an extremely efficient
and reliable device for use in a wide variety of
applications.

S

D

G

Description

l

Advanced Process Technology

l

Ultra Low On-Resistance

l

175°C Operating Temperature

l

Fast Switching

l

Repetitive Avalanche Allowed up to Tjmax

l

Lead-Free

Features

IRF1010ZPbF

IRF1010ZSPbF

IRF1010ZLPbF

D

2

Pak

IRF1010ZSPbF

TO-220AB

IRF1010ZPbF

TO-262

IRF1010ZLPbF

Absolute Maximum Ratings

Parameter

Units

I

D

 @ T

C

 = 25°C Continuous Drain Current, V

GS

 @ 10V 

(Silicon Limited)

I

D

 @ T

C

 = 100°C Continuous Drain Current, V

GS

 @ 10V 

A

I

D

 @ T

C

 = 25°C Continuous Drain Current, V

GS

 @ 10V 

(Package Limited)

I

DM

Pulsed Drain Current 

c

P

D

 @T

C

 = 25°C Power Dissipation  

W

Linear Derating Factor  

W/°C

V

GS

Gate-to-Source Voltage

V

E

AS (Thermally limited) 

Single Pulse Avalanche Energy

d

mJ

E

AS 

(Tested ) 

Single Pulse Avalanche Energy Tested Value 

h

I

AR

Avalanche Current

c

A

E

AR

Repetitive Avalanche Energy 

g

mJ

T

Operating Junction and

T

STG

Storage Temperature Range

°C

Soldering Temperature, for 10 seconds
Mounting Torque, 6-32 or M3 screw 

i

Thermal Resistance

Parameter

Typ.

Max.

Units

R

θJC 

Junction-to-Case

–––

1.11

°C/W

R

θCS 

Case-to-Sink, Flat Greased Surface 

i

0.50

–––

R

θJA 

Junction-to-Ambient  

i

–––

62

R

θJA 

Junction-to-Ambient (PCB Mount) 

j

–––

40

180

130

See Fig.12a, 12b, 15, 16

140

0.90

 ± 20

Max.

94
66

360

75

-55  to + 175

300 (1.6mm from case )

10 lbf

yin (1.1Nym)

PD - 95361A

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/irf1010zspbf-html.html
background image

IRF1010Z/S/LPbF

2

www.irf.com

Electrical Characteristics @ T

J

 = 25°C (unless otherwise specified)

Parameter

Min. Typ. Max. Units

V

(BR)DSS

Drain-to-Source Breakdown Voltage

55

–––

–––

V

∆V

(BR)DSS

/

∆T

Breakdown Voltage Temp. Coefficient

–––

0.049

–––

V/°C

R

DS(on)

Static Drain-to-Source On-Resistance

–––

5.8

7.5

m

V

GS(th)

Gate Threshold Voltage

2.0

–––

4.0

V

gfs

Forward Transconductance

33

–––

–––

S

I

DSS

Drain-to-Source Leakage Current

–––

–––

20

µA

–––

–––

250

I

GSS

Gate-to-Source Forward Leakage

–––

–––

200

nA

Gate-to-Source Reverse Leakage

–––

–––

-200

Q

g

Total Gate Charge

–––

63

95

Q

gs

Gate-to-Source Charge

–––

19

–––

nC

Q

gd

Gate-to-Drain ("Miller") Charge

–––

24

–––

t

d(on)

Turn-On Delay Time

–––

18

–––

t

r

Rise Time

–––

150

–––

t

d(off)

Turn-Off Delay Time

–––

36

–––

ns

t

f

Fall Time

–––

92

–––

L

D

Internal Drain Inductance

–––

4.5

–––

Between lead, 

nH

6mm (0.25in.)

L

S

Internal Source Inductance

–––

7.5

–––

from package

and center of die contact

C

iss

Input Capacitance

–––

2840

–––

C

oss

Output Capacitance

–––

420

–––

C

rss

Reverse Transfer Capacitance

–––

250

–––

pF

C

oss

Output Capacitance

–––

1630

–––

C

oss

Output Capacitance

–––

360

–––

C

oss

 eff.

Effective Output Capacitance

–––

560

–––

Source-Drain Ratings and Characteristics

        Parameter

Min. Typ. Max. Units

I

S

Continuous Source Current 

–––

–––

75

(Body Diode)

A

I

SM

Pulsed Source Current

–––

–––

360

(Body Diode)

c

V

SD

Diode Forward Voltage

–––

–––

1.3

V

t

rr

Reverse Recovery Time

–––

22

33

ns

Q

rr

Reverse Recovery Charge

–––

15

23

nC

t

on

Forward Turn-On Time

Intrinsic turn-on time is negligible (turn-on is dominated by LS+LD)

V

GS

 = 0V,  V

DS

 = 1.0V,  ƒ = 1.0MHz

V

GS

 = 0V,  V

DS

 = 44V,  ƒ = 1.0MHz

V

GS

 = 0V, V

DS

 = 0V to 44V 

f

V

GS

 = 10V 

e

V

DD

 = 28V

I

D

 = 75A

R

G

 = 6.8 

T

J

 = 25°C, I

S

 = 75A, V

GS

 = 0V 

e

T

J

 = 25°C, I

F

 = 75A, V

DD

 = 25V

di/dt = 100A/µs 

e

Conditions

V

GS

 = 0V, I

D

 = 250µA

Reference to 25°C, I

D

 = 1mA 

V

GS

 = 10V, I

D

 = 75A 

e

V

DS

 = V

GS

, I

D

 = 250µA

V

DS

 = 55V, V

GS

 = 0V

V

DS

 = 55V, V

GS

 = 0V, T

J

 = 125°C

MOSFET symbol

showing  the
integral reverse

p-n junction diode.

V

DS

 = 25V, I

D

 = 75A

I

D

 = 75A

V

DS

 = 44V

Conditions

V

GS

 = 10V 

e

V

GS

 = 0V

V

DS

 = 25V

ƒ = 1.0MHz

V

GS

 = 20V

V

GS

 = -20V

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/irf1010zspbf-html.html
background image

IRF1010Z/S/LPbF

www.irf.com

3

Fig 2.  Typical Output Characteristics

Fig 1.  Typical Output Characteristics

Fig 3.  Typical Transfer Characteristics

Fig 4.  Typical Forward Transconductance

Vs. Drain Current

0.1

1

10

100

VDS, Drain-to-Source Voltage (V)

1

10

100

1000

I D

, D

ra

in

-t

o-

S

ou

rc

C

ur

re

nt

 (

A

)

4.5V 20µs PULSE WIDTH

Tj = 25°C

            V

GS

 TOP          15V

                   10V

                8.0V

                   7.0V

                   6.0V

                   5.5V

                   5.0V

BOTTOM  4.5V

0.1

1

10

100

VDS, Drain-to-Source Voltage (V)

10

100

1000

I D

, D

ra

in

-t

o-

S

ou

rc

C

ur

re

nt

 (

A

)

4.5V

20µs PULSE WIDTH

Tj = 175°C

            V

GS

 TOP          15V

                   10V

                8.0V

                   7.0V

                   6.0V

                   5.5V

                   5.0V

BOTTOM  4.5V

4.0

5.0

6.0

7.0

8.0

9.0

10.0

11.0

VGS, Gate-to-Source Voltage (V)

1

10

100

1000

I D

, D

ra

in

-t

o-

S

ou

rc

C

ur

re

nt

  

( A

)

TJ = 25°C

TJ = 175°C

VDS = 25V

20µs PULSE WIDTH

0

20

40

60

80

ID, Drain-to-Source Current (A)

0

20

40

60

80

100

G

fs

, F

or

w

ar

T

ra

ns

co

nd

uc

ta

nc

(S

)

TJ = 25°C

TJ = 175°C

VDS = 10V

20µs PULSE WIDTH

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/irf1010zspbf-html.html
background image

IRF1010Z/S/LPbF

4

www.irf.com

Fig 8.  Maximum Safe Operating Area

Fig 6.  Typical Gate Charge Vs.

Gate-to-Source Voltage

Fig 5.  Typical Capacitance Vs.

Drain-to-Source Voltage

Fig 7.  Typical Source-Drain Diode

Forward Voltage

1

10

100

VDS, Drain-to-Source Voltage (V)

0

1000

2000

3000

4000

5000

C

, C

ap

ac

ita

nc

(p

F

)

Coss

Crss

Ciss

VGS   = 0V,       f = 1 MHZ

Ciss   = Cgs + Cgd,  C ds SHORTED
Crss   = Cgd 

Coss  = Cds + Cgd

0

20

40

60

80

100

 QG  Total Gate Charge (nC)

0

4

8

12

16

20

V

G

S

, G

at

e-

to

-S

ou

rc

V

ol

ta

ge

 (

V

)

VDS= 44V

VDS= 28V

ID= 75A

0.2

0.6

1.0

1.4

1.8

VSD, Source-toDrain Voltage (V)

0.1

1.0

10.0

100.0

1000.0

I S

D

, R

ev

er

se

 D

ra

in

 C

ur

re

nt

 (

A

)

TJ = 25°C

TJ = 175°C

VGS = 0V

1

10

100

1000

VDS  , Drain-toSource Voltage (V)

0.1

1

10

100

1000

10000

I D

,  

D

ra

in

-t

o-

S

ou

rc

C

ur

re

nt

 (

A

)

Tc = 25°C

Tj = 175°C

Single Pulse

1msec

10msec

OPERATION IN THIS AREA 

LIMITED BY R DS(on)

100µsec

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/irf1010zspbf-html.html
background image

IRF1010Z/S/LPbF

www.irf.com

5

Fig 11.  Maximum Effective Transient Thermal Impedance, Junction-to-Case

Fig 9.  Maximum Drain Current Vs.

Case Temperature

Fig 10.  Normalized On-Resistance

Vs. Temperature

25

50

75

100

125

150

175

 TC , Case Temperature (°C)

0

20

40

60

80

100

I D

 , 

D

ra

in

 C

ur

re

nt

 (

A

)

LIMITED BY PACKAGE

-60 -40 -20 0

20 40 60 80 100 120 140 160 180

TJ , Junction Temperature (°C)

0.5

1.0

1.5

2.0

2.5

R

D

S

(o

n)

 ,

 D

ra

in

-t

o-

S

ou

rc

O

R

es

is

ta

nc

   

   

   

   

   

   

   

 (

N

or

m

al

iz

ed

)

ID = 75A

VGS = 10V

1E-006

1E-005

0.0001

0.001

0.01

0.1

t1 , Rectangular Pulse Duration (sec)

0.001

0.01

0.1

1

10

T

he

rm

al

 R

es

po

ns

Z

 th

JC

 )

0.20

0.10

D = 0.50

0.02

0.01

0.05

SINGLE PULSE

( THERMAL RESPONSE )

Notes:

1. Duty Factor D = t1/t2

2. Peak Tj = P dm x Zthjc + Tc

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/irf1010zspbf-html.html
background image

IRF1010Z/S/LPbF

6

www.irf.com

Q

G

Q

GS

Q

GD

V

G

Charge

10 V

Fig 13b.  Gate Charge Test Circuit

Fig 13a.  Basic Gate Charge Waveform

Fig 12c.  Maximum Avalanche Energy

Vs. Drain Current

Fig 12b.  Unclamped Inductive Waveforms

Fig 12a.  Unclamped Inductive Test Circuit

tp

V

(BR)DSS

I

AS

Fig 14.  Threshold Voltage Vs. Temperature

RG

IAS

0.01

tp

D.U.T

L

VDS

+

- VDD

DRIVER

A

15V

20V

V

GS

25

50

75

100

125

150

175

Starting TJ, Junction Temperature (°C)

0

50

100

150

200

250

E

A

S

, S

in

gl

P

ul

se

 A

va

la

nc

he

 E

ne

rg

(m

J)

               I

D

 TOP            31A

                     53A

BOTTOM    75A

-75 -50 -25

0

25

50

75 100 125 150 175

TJ , Temperature ( °C )

1.0

2.0

3.0

4.0

V

G

S

(t

h)

 G

at

th

re

sh

ol

V

ol

ta

ge

 (

V

)

ID = 250µA

1K

VCC

DUT

0

L

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/irf1010zspbf-html.html
background image

IRF1010Z/S/LPbF

www.irf.com

7

Fig 15.  Typical Avalanche Current Vs.Pulsewidth

Fig 16.  Maximum Avalanche Energy

Vs. Temperature

Notes on Repetitive Avalanche Curves , Figures 15, 16:
(For further info, see AN-1005 at www.irf.com)
1. Avalanche failures assumption:

  Purely a thermal phenomenon and failure occurs at a

    temperature far in excess of T

jmax

. This is validated for

    every part type.
2. Safe operation in Avalanche is allowed as long asT

jmax

 is

  not exceeded.

3. Equation below based on circuit and waveforms shown in

  Figures 12a, 12b.

4. P

D (ave) 

= Average power dissipation per single

    avalanche pulse.
5. BV = Rated breakdown voltage (1.3 factor accounts for
    voltage increase during avalanche).
6. I

av 

= Allowable avalanche current.

7. 

∆T

 = 

Allowable rise in junction temperature, not to exceed

    T

jmax 

(assumed as 25°C in Figure 15, 16).

  t

av = 

Average time in avalanche.

  D = Duty cycle in avalanche =  t

av 

·f

  Z

thJC

(D, t

av

) = Transient thermal resistance, see figure 11)

P

D (ave)

 = 1/2 ( 1.3·BV·I

av

) =

 DT/ Z

thJC

I

av 

=

 

2

DT/ [1.3·BV·Z

th

]

E

AS (AR)

 = P

D (ave)

·t

av

25

50

75

100

125

150

175

Starting TJ , Junction Temperature (°C)

0

20

40

60

80

100

120

140

E

A

R

 , 

A

va

la

nc

he

 E

ne

rg

(m

J)

TOP          Single Pulse                
BOTTOM   10% Duty Cycle
ID = 75A

1.0E-08

1.0E-07

1.0E-06

1.0E-05

1.0E-04

1.0E-03

1.0E-02

1.0E-01

tav (sec)

0.1

1

10

100

1000

A

va

la

nc

he

 C

ur

re

nt

 (

A

)

0.05

Duty Cycle = Single Pulse

0.10

Allowed avalanche Current vs 
avalanche pulsewidth, tav 
assuming 

∆ Tj = 25°C due to 

avalanche losses. Note: In no 
case should Tj be allowed to 
exceed Tjmax

0.01

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/irf1010zspbf-html.html
background image

IRF1010Z/S/LPbF

8

www.irf.com

Fig 17. 

Peak Diode Recovery dv/dt Test Circuit for N-Channel

HEXFET

®

 Power MOSFETs

Circuit Layout Considerations

   •  Low Stray Inductance

   •  Ground Plane

   •  Low Leakage Inductance

      Current Transformer

P.W.

Period

di/dt

Diode Recovery

dv/dt

Ripple 

≤ 5%

Body Diode  Forward Drop

Re-Applied

Voltage

Reverse

Recovery

Current

Body Diode Forward

Current

V

GS

=10V

V

DD

I

SD

Driver Gate Drive

D.U.T. I

SD

Waveform

D.U.T. V

DS

Waveform

Inductor Curent

D = 

P.W.

Period

*

 V

GS

 = 5V for Logic Level Devices

*

+

-

+

+

+

-

-

-

ƒ

„

‚

R

G

V

DD

•  dv/dt controlled by R

G

•  Driver same type as D.U.T.

•  I

SD

 controlled by Duty Factor "D"

•  D.U.T. - Device Under Test

D.U.T



V

DS

90%

10%
V

GS

t

d(on)

t

r

t

d(off)

t

f

V

DS

Pulse Width ≤ 1 µs

Duty Factor ≤ 0.1 %

R

D

V

GS

R

G

D.U.T.

10V

+

-

V

DD

Fig 18a.  Switching Time Test Circuit

Fig 18b.  Switching Time Waveforms

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/irf1010zspbf-html.html
background image

IRF1010Z/S/LPbF

www.irf.com

9

TO-220AB Part Marking Information

TO-220AB  Package  Outline

Dimensions  are  shown  in  millimeters  (inches)

INTERNATIONAL

PART  NUMBER

RECTIFIER

LOT CODE

ASS EMBLY

LOGO

YEAR 0 =  2000

DAT E CODE

WEEK 19
LINE C

LOT  CODE 1789

EXAMPLE: T HIS IS AN IRF1010 

Note: "P" in assembly line position

indicates  "Lead - Free"

IN THE AS SEMBLY LINE "C"

ASSEMBLED ON  WW 19, 2000

Notes:

1. For an Automotive Qualified version of this part please see http://www.irf.com/product-info/datasheets/data/auirf1010z.pdf
2. For the most current drawing please refer to IR website at http://www.irf.com/package/

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/irf1010zspbf-html.html
background image

IRF1010Z/S/LPbF

10

www.irf.com

D

2

Pak (TO-263AB) Part Marking Information

DATE CODE

YEAR 0 =  2000
WEEK 02
A =  ASSEMBLY SITE CODE

RECTIFIER

INTERNATIONAL

PART NUMBER

P =  DESIGNATES LEAD - FREE

PRODUCT (OPTIONAL)

F530S

IN THE ASSEMBLY LINE "L"

AS SEMBLED ON WW 02, 2000

THIS IS AN IRF530S  WITH

LOT CODE 8024

INTERNATIONAL

LOGO

RECTIFIER

LOT CODE

ASSEMBLY

YEAR 0 =  2000

PART NUMBER

DATE CODE

LINE L

WEEK 02

OR

F530S

LOGO

ASSEMBLY
LOT CODE

D

2

Pak (TO-263AB) Package Outline

Dimensions  are  shown  in  millimeters  (inches)

Notes:

1. For an Automotive Qualified version of this part please see http://www.irf.com/product-info/datasheets/data/auirf1010z.pdf
2. For the most current drawing please refer to IR website at http://www.irf.com/package/

Maker
Infineon Technologies
Datasheet PDF Download