IRF1010EZ_S_LPbF Product Data sheet

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/irf1010ezpbf-html.html
background image

07/06/10

www.irf.com

1

HEXFET

®

 is a registered trademark of International Rectifier.

IRF1010EZPbF

IRF1010EZSPbF

IRF1010EZLPbF

HEXFET

®

 Power MOSFET

S

D

G

V

DSS

 = 60V

R

DS(on)

 = 8.5m

I

D

 = 75A

Features

l

Advanced Process Technology

l

Ultra Low On-Resistance

l

Dynamic dv/dt Rating

l

175°C Operating Temperature

l

Fast Switching

l

Repetitive Avalanche Allowed up to Tjmax

l

Lead-Free

Description

This HEXFET

®

 Power MOSFET utilizes the latest

processing techniques to achieve extremely low
on-resistance per silicon area.  Additional features
of this design  are a 175°C junction operating
temperature, fast switching speed and improved
repetitive avalanche rating.These features
combine to make this design an extremely efficient
and reliable device for use in a wide variety of
applications.

D

2

Pak

IRF1010EZSPbF

TO-220AB

IRF1010EZPbF

TO-262

IRF1010EZLPbF

Absolute Maximum Ratings

Parameter

Units

I

D

 @ T

C

 = 25°C

Continuous Drain Current, V

GS

 @ 10V (Silicon Limited)

A

I

D

 @ T

C

 = 100°C

Continuous Drain Current, V

GS

 @ 10V (See Fig. 9)

I

D

 @ T

C

 = 25°C

Continuous Drain Current, V

GS

 @ 10V 

(Package Limited)

I

DM

Pulsed Drain Current 

c

P

D

 @T

C

 = 25°C

Maximum Power Dissipation

W

Linear Derating Factor  

W/°C

V

GS

Gate-to-Source Voltage

V

E

AS

Single Pulse Avalanche Energy (Thermally Limited) 

d

mJ

E

AS 

(tested)

Single Pulse Avalanche Energy Tested Value 

i

I

AR

Avalanche Current 

c

A

E

AR

Repetitive Avalanche Energy 

h

mJ

T

Operating Junction and

°C

T

STG

Storage Temperature Range
Soldering Temperature, for 10 seconds
Mounting torque, 6-32 or M3 screw

Thermal Resistance

Parameter

Typ.

Max.

Units

R

θJC 

Junction-to-Case

–––

1.11

°C/W

R

θCS 

Case-to-Sink, Flat, Greased Surface 

0.50

–––

R

θJA 

Junction-to-Ambient

–––

62

R

θJA 

Junction-to-Ambient (PCB Mount, steady state)

j

–––

40

Max.

84
60

340

75

10 lbf•in (1.1N•m)

140

0.90

 ± 20

99

180

See Fig.12a,12b,15,16

300 (1.6mm from case )

-55  to + 175

PD - 95483C

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/irf1010ezpbf-html.html
background image

IRF1010EZ/S/LPbF

2

www.irf.com

Notes:



Repetitive rating;  pulse width limited by

     max. junction temperature. (See fig. 11).

‚

 

 Limited by T

Jmax

, starting T

= 25°C, L = 0.077mH,

     R

= 25

Ω, I

AS 

= 51A, V

GS

 =10V. Part not

     recommended for use above this value.

ƒ

I

SD 

≤ 51A, di/dt ≤ 260A/µs, V

DD 

≤ V

(BR)DSS

,

     T

≤ 175°C.

„

Pulse width 

≤ 1.0ms; duty cycle ≤ 2%.

…

C

oss

 eff. is a fixed capacitance that gives the same charging time

as C

oss 

while V

DS 

is rising from 0 to 80% V

DSS

 .

†

Limited by T

Jmax

 , see Fig.12a, 12b, 15, 16 for typical repetitive

avalanche performance.

‡

This value determined from sample failure population. 100%
tested to this value in production.

ˆ

This is applied to D

2

Pak, when mounted on 1" square PCB

( FR-4 or G-10 Material ).  For recommended footprint and
soldering techniques refer to application note #AN-994.

S

D

G

S

D

G

Static @ T

J

 = 25°C (unless otherwise specified)

Parameter

Min. Typ. Max. Units

V

(BR)DSS

Drain-to-Source Breakdown Voltage

60

–––

–––

V

∆ΒV

DSS

/

∆T

Breakdown Voltage Temp. Coefficient –––

0.058 –––

V/°C

R

DS(on)

Static Drain-to-Source On-Resistance –––

6.8

8.5

m

V

GS(th)

Gate Threshold Voltage

2.0

–––

4.0

V

gfs

Forward Transconductance

200

–––

–––

S

I

DSS

Drain-to-Source Leakage Current

–––

–––

20

µA

–––

–––

250

I

GSS

Gate-to-Source Forward Leakage

–––

–––

200

nA

Gate-to-Source Reverse Leakage

–––

–––

-200

Q

g

Total Gate Charge –––

58

86

nC

Q

gs

Gate-to-Source Charge

–––

19

28

Q

gd

Gate-to-Drain ("Miller") Charge

–––

21

32

t

d(on)

Turn-On Delay Time

–––

19

–––

ns

t

r

Rise Time

–––

90

–––

t

d(off)

Turn-Off Delay Time

–––

38

–––

t

f

Fall Time

–––

54

–––

L

D

Internal Drain Inductance

–––

4.5

–––

nH

Between lead,
6mm (0.25in.)

L

S

Internal Source Inductance

–––

7.5

–––

from package
and center of die contact

C

iss

Input Capacitance

–––

2810

–––

pF

C

oss

Output Capacitance

–––

420

–––

C

rss

Reverse Transfer Capacitance

–––

200

–––

C

oss

Output Capacitance

–––

1440

–––

C

oss

Output Capacitance

–––

320

–––

C

oss

 eff.

Effective Output Capacitance

–––

510

–––

Diode Characteristics

        Parameter

Min. Typ. Max. Units

I

S

Continuous Source Current 

–––

–––

84

(Body Diode)

A

I

SM

Pulsed Source Current

–––

–––

340

(Body Diode)

c

V

SD

Diode Forward Voltage

–––

–––

1.3

V

t

rr

Reverse Recovery Time

–––

41

62

ns

Q

rr

Reverse Recovery Charge

–––

54

81

nC

t

on

Forward Turn-On Time

Intrinsic turn-on time is negligible (turn-on is dominated by LS+LD)

Conditions

V

GS

 = 0V, I

D

 = 250µA

Reference to 25°C, I

D

 = 1mA 

V

GS

 = 10V, I

D

 = 51A 

f

V

DS

 = V

GS

, I

D

 = 100µA

V

DS

 = 60V, V

GS

 = 0V

V

DS

 = 60V, V

GS

 = 0V, T

J

 = 125°C

R

G

 = 7.95

I

D

 = 51A

V

DS

 = 25V, I

D

 = 51A

V

DD

 = 30V

I

D

 = 51A

V

GS

 = 20V

V

GS

 = -20V

T

J

 = 25°C, I

F

 = 51A, V

DD

 = 30V

di/dt = 100A/µs 

f

T

J

 = 25°C, I

S

 = 51A, V

GS

 = 0V 

f

showing  the
integral reverse
p-n junction diode.

MOSFET symbol

V

GS

 = 0V

V

DS

 = 25V

V

GS

 = 0V,  V

DS

 = 48V,  ƒ = 1.0MHz

Conditions

V

GS

 = 0V, V

DS

 = 0V to 48V 

V

DS

 = 48V

V

GS

 = 10V 

f

ƒ = 1.0MHz, See Fig. 5
V

GS

 = 0V,  V

DS

 = 1.0V,  ƒ = 1.0MHz

V

GS

 = 10V 

f

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/irf1010ezpbf-html.html
background image

IRF1010EZ/S/LPbF

www.irf.com

3

Fig 2.  Typical Output Characteristics

Fig 1.  Typical Output Characteristics

Fig 3.  Typical Transfer Characteristics

Fig 4.  Typical Forward Transconductance

vs. Drain Current

0.01

0.1

1

10

100

VDS, Drain-to-Source Voltage (V)

0.1

1

10

100

1000

I D

, D

ra

in

-t

o-

S

ou

rc

C

ur

re

nt

 (

A

)

20µs PULSE WIDTH
Tj = 175°C

4.5V

VGS

TOP          

15V

10V

8.0V

7.0V

6.0V

5.5V

5.0V

BOTTOM

4.5V

4

5

6

7

8

9

10

VGS, Gate-to-Source Voltage (V)

0.1

1

10

100

1000

I D

, D

ra

in

-t

o-

S

ou

rc

C

ur

re

nt

 (

Α

)

TJ = 25°C

TJ = 175°C

0.1

1

10

100

VDS, Drain-to-Source Voltage (V)

0.1

1

10

100

1000

10000

I D

, D

ra

in

-t

o-

S

ou

rc

C

ur

re

nt

 (

A

)

VGS

TOP          

15V

10V

8.0V

7.0V

6.0V

5.5V

5.0V

BOTTOM

4.5V

20µs PULSE WIDTH
Tj = 25°C

4.5V

0

20

40

60

80

100

120

140

ID,Drain-to-Source Current (A)

0

10

20

30

40

50

60

70

80

90

100

G

fs

, F

or

w

ar

T

ra

ns

co

nd

uc

ta

nc

(S

)

TJ = 25°C

TJ = 175°C

VDS = 25V
≤60µs PULSE WIDTH

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/irf1010ezpbf-html.html
background image

IRF1010EZ/S/LPbF

4

www.irf.com

Fig 8.  Maximum Safe Operating Area

Fig 6.  Typical Gate Charge vs.

Gate-to-Source Voltage

Fig 5.  Typical Capacitance vs.

Drain-to-Source Voltage

Fig 7.  Typical Source-Drain Diode

Forward Voltage

1

10

100

VDS, Drain-to-Source Voltage (V)

100

1000

10000

100000

C

, C

ap

ac

ita

nc

e(

pF

)

VGS   = 0V,       f = 1 MHZ

Ciss   = Cgs + Cgd,  C ds SHORTED
Crss   = Cgd 
Coss  = Cds + Cgd

Coss

Crss

Ciss

0

10

20

30

40

50

60

 QG  Total Gate Charge (nC)

0.0

2.0

4.0

6.0

8.0

10.0

12.0

V

G

S

, G

at

e-

to

-S

ou

rc

V

ol

ta

ge

 (

V

)

VDS= 48V

VDS= 30V

VDS= 12V

ID= 51A

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0

VSD, Source-to-Drain Voltage (V)

0.10

1.00

10.00

100.00

1000.00

I S

D

, R

ev

er

se

 D

ra

in

 C

ur

re

nt

 (

A

)

TJ = 25°C

TJ = 175°C

VGS = 0V

1

10

100

VDS, Drain-to-Source Voltage (V)

0.1

1

10

100

1000

10000

I D

,  

D

ra

in

-t

o-

S

ou

rc

C

ur

re

nt

 (

A

)

1msec

10msec

OPERATION IN THIS AREA 

LIMITED BY R DS(on)

100µsec

Tc = 25°C

Tj = 175°C

Single Pulse

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/irf1010ezpbf-html.html
background image

IRF1010EZ/S/LPbF

www.irf.com

5

Fig 11.  Maximum Effective Transient Thermal Impedance, Junction-to-Case

Fig 9.  Maximum Drain Current vs.

Case Temperature

Fig 10.  Normalized On-Resistance

vs. Temperature

-60 -40 -20 0 20 40 60 80 100 120 140 160 180

TJ , Junction Temperature (°C)

0.5

1.0

1.5

2.0

2.5

R

D

S

(o

n)

 ,

 D

ra

in

-t

o-

S

ou

rc

O

R

es

is

ta

nc

   

   

   

   

   

   

   

 (

N

or

m

al

iz

ed

)

ID = 84A

VGS = 10V

1E-006

1E-005

0.0001

0.001

0.01

0.1

t1 , Rectangular Pulse Duration (sec)

0.001

0.01

0.1

1

10

T

he

rm

al

 R

es

po

ns

Z

 th

JC

 )

0.20
0.10

D = 0.50

0.02

0.01

0.05

SINGLE PULSE

( THERMAL RESPONSE )

Notes:

1. Duty Factor D = t1/t2

2. Peak Tj = P dm x Zthjc + Tc

Ri (°C/W)   

 τi (sec)

0.415       0.000246
0.410       0.000898
0.285       0.009546

τ

J

τ

J

τ

1

τ

1

τ

2

τ

2

τ

3

τ

3

R

1

R

1

R

2

R

2

R

3

R

3

τ

τ

C

Ci   i

/Ri

Ci= 

τi/Ri

25

50

75

100

125

150

175

 TC , Case Temperature (°C)

0

10

20

30

40

50

60

70

80

90

100

I D

,   

D

ra

in

 C

ur

re

nt

 (

A

)

Limited By Package

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/irf1010ezpbf-html.html
background image

IRF1010EZ/S/LPbF

6

www.irf.com

Q

G

Q

GS

Q

GD

V

G

Charge

D.U.T.

V

DS

I

D

I

G

3mA

V

GS

.3

µF

50K

.2

µF

12V

Current Regulator

Same Type as D.U.T.

Current Sampling Resistors

+

-

10 V

Fig 13b.  Gate Charge Test Circuit

Fig 13a.  Basic Gate Charge Waveform

Fig 12c.  Maximum Avalanche Energy

vs. Drain Current

Fig 12b.  Unclamped Inductive Waveforms

Fig 12a.  Unclamped Inductive Test Circuit

tp

V

(BR)DSS

I

AS

Fig 14.  Threshold Voltage vs. Temperature

RG

IAS

0.01

tp

D.U.T

L

VDS

+

- VDD

DRIVER

A

15V

20V

V

GS

25

50

75

100

125

150

175

Starting TJ , Junction Temperature (°C)

0

50

100

150

200

250

300

350

400

E

A

S

 , 

S

in

gl

P

ul

se

 A

va

la

nc

he

 E

ne

rg

(m

J)

ID

TOP         5.7A

9.1A

BOTTOM 51A

-75 -50 -25

0

25

50

75 100 125 150 175

TJ , Temperature ( °C )

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

V

G

S

(t

h)

 G

at

th

re

sh

ol

V

ol

ta

ge

 (

V

)

ID = 250µA

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/irf1010ezpbf-html.html
background image

IRF1010EZ/S/LPbF

www.irf.com

7

Fig 15.  Typical Avalanche Current vs.Pulsewidth

Fig 16.  Maximum Avalanche Energy

vs. Temperature

Notes on Repetitive Avalanche Curves , Figures 15, 16:
(For further info, see AN-1005 at www.irf.com)
1. Avalanche failures assumption:

  Purely a thermal phenomenon and failure occurs at a

    temperature far in excess of T

jmax

. This is validated for

    every part type.
2. Safe operation in Avalanche is allowed as long asT

jmax

 is

  not exceeded.

3. Equation below based on circuit and waveforms shown in

  Figures 12a, 12b.

4. P

D (ave) 

= Average power dissipation per single

    avalanche pulse.
5. BV = Rated breakdown voltage (1.3 factor accounts for
    voltage increase during avalanche).
6. I

av 

= Allowable avalanche current.

7. 

∆T

 = 

Allowable rise in junction temperature, not to exceed

    T

jmax 

(assumed as 25°C in Figure 15, 16).

  t

av = 

Average time in avalanche.

  D = Duty cycle in avalanche =  t

av 

·f

  Z

thJC

(D, t

av

) = Transient thermal resistance, see figure 11)

P

D (ave)

 = 1/2 ( 1.3·BV·I

av

) =

 DT/ Z

thJC

I

av 

=

 

2

DT/ [1.3·BV·Z

th

]

E

AS (AR)

 = P

D (ave)

·t

av

1.0E-06

1.0E-05

1.0E-04

1.0E-03

1.0E-02

1.0E-01

tav (sec)

0.1

1

10

100

1000

A

va

la

nc

he

 C

ur

re

nt

 (

A

)

0.05

Duty Cycle = Single Pulse

0.10

Allowed avalanche Current vs 
avalanche pulsewidth, tav 
assuming 

∆ Tj = 25°C due to 

avalanche losses

0.01

25

50

75

100

125

150

175

Starting TJ , Junction Temperature (°C)

0

25

50

75

100

E

A

R

 , 

A

va

la

nc

he

 E

ne

rg

(m

J)

TOP          Single Pulse                
BOTTOM   1% Duty Cycle
ID = 51A

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/irf1010ezpbf-html.html
background image

IRF1010EZ/S/LPbF

8

www.irf.com

Fig 17. 

Peak Diode Recovery dv/dt Test Circuit for N-Channel

HEXFET

®

 Power MOSFETs

Circuit Layout Considerations

   •  Low Stray Inductance

   •  Ground Plane

   •  Low Leakage Inductance

      Current Transformer

P.W.

Period

di/dt

Diode Recovery

dv/dt

Ripple 

≤ 5%

Body Diode  Forward Drop

Re-Applied

Voltage

Reverse

Recovery

Current

Body Diode Forward

Current

V

GS

=10V

V

DD

I

SD

Driver Gate Drive

D.U.T. I

SD

Waveform

D.U.T. V

DS

Waveform

Inductor Curent

D = 

P.W.

Period

*

 V

GS

 = 5V for Logic Level Devices

*

+

-

+

+

+

-

-

-

ƒ

„

‚

R

G

V

DD

•  dv/dt controlled by R

G

•  Driver same type as D.U.T.

•  I

SD

 controlled by Duty Factor "D"

•  D.U.T. - Device Under Test

D.U.T



V

DS

90%

10%
V

GS

t

d(on)

t

r

t

d(off)

t

f

V

DS

Pulse Width ≤ 1 µs

Duty Factor ≤ 0.1 %

R

D

V

GS

R

G

D.U.T.

10V

+

-

V

DD

Fig 18a.  Switching Time Test Circuit

Fig 18b.  Switching Time Waveforms

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/irf1010ezpbf-html.html
background image

IRF1010EZ/S/LPbF

www.irf.com

9

TO-220AB Part Marking Information

TO-220AB Package Outline

Dimensions are shown in millimeters (inches)

INTERNATIONAL

PART NUMBER

RECTIFIER

LOT CODE

ASSEMBLY

LOGO

YEAR 0 =  2000

DATE CODE

WEEK 19
LINE C

LOT CODE 1789

EXAMPLE: THIS IS AN IRF1010 

Note: "P"  in assembly line  position

indicates "Lead - Free"

IN THE ASSEMBLY LINE "C"

ASSEMBLED ON WW 19, 2000

Notes:

1. For an Automotive Qualified version of this part please see http://www.irf.com/product-info/datasheets/data/auirf1010ez.pdf
2. For the most current drawing please refer to IR website at http://www.irf.com/package/

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/irf1010ezpbf-html.html
background image

IRF1010EZ/S/LPbF

10

www.irf.com

D

2

Pak (TO-263AB) Part Marking Information

DATE CODE

YEAR 0 =  2000
WEEK 02
A =  ASS EMBLY SITE CODE

RECT IFIER

INT ERNAT IONAL

PART  NUMBER

P =  DESIGNATES LEAD - FREE

PRODUCT  (OPTIONAL)

F530S

IN THE ASS EMBLY LINE "L"

ASSEMBLED  ON WW 02, 2000

THIS IS AN IRF530S  WITH

LOT  CODE 8024

INTERNAT IONAL

LOGO

RECT IFIER

LOT  CODE

ASSEMBLY

YEAR 0 =  2000

PART  NUMBER

DATE CODE

LINE L

WEEK 02

OR

F530S

LOGO

ASSEMBLY

LOT CODE

D

2

Pak (TO-263AB) Package Outline

Dimensions are shown in millimeters (inches)

Notes:

1. For an Automotive Qualified version of this part please see http://www.irf.com/product-info/datasheets/data/auirf1010ez.pdf
2. For the most current drawing please refer to IR website at http://www.irf.com/package/

Maker
Infineon Technologies