ICE1PCS01_v1-2.fm

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/Infineon-ICE1PCS01-DS-v01_03-en-html.html
background image

CCM-PFC

ICE1PCS01
ICE1PCS01G

Standalone Power Factor 
Correction (PFC) Controller in 
Continuous Conduction Mode 
(CCM)

N e v e r   s t o p   t h i n k i n g .

Datasheet, V1.3, 06 Feb 2007

P o w e r   M a n a g e m e n t   &   S u p p l y

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/Infineon-ICE1PCS01-DS-v01_03-en-html.html
background image

Edition 2007-02-06
Published by Infineon Technologies AG,

St.-Martin-Strasse 53,

D-81541 München

©

 Infineon Technologies AG 1999.

All Rights Reserved.

Attention please!
The information herein is given to describe certain components and shall not be considered as warranted charac-

teristics.
Terms of delivery and rights to technical change reserved.
We hereby disclaim any and all warranties, including but not limited to warranties of non-infringement, regarding 

circuits, descriptions and charts stated herein.
Infineon Technologies is an approved CECC manufacturer.

Information
For further information on technology, delivery terms and conditions and prices please contact your nearest Infi-

neon Technologies Office in Germany or our Infineon Technologies Representatives worldwide (see address list).

Warnings
Due to technical requirements components may contain dangerous substances. For information on the types in 

question please contact your nearest Infineon Technologies Office.
Infineon Technologies Components may only be used in life-support devices or systems with the express written 

approval of Infineon Technologies, if a failure of such components can reasonably be expected to cause the failure 

of that life-support device or system, or to affect the safety or effectiveness of that device or system. Life support 

devices or systems are intended to be implanted in the human body, or to support and/or maintain and sustain 

and/or protect human life. If they fail, it is reasonable to assume that the health of the user or other persons may 

be endangered.

For questions on technology, delivery and prices please contact the Infineon Technologies Offices in Germany or

the Infineon Technologies Companies and Representatives worldwide: see our webpage at http://

www.infineon.com

CoolMOST™, CoolSET™ are trademarks of Infineon Technologies AG.

CCM-PFC
 
Revision History:

2007-02-06

Datasheet

Previous Version: V1.2

Page

Subjects ( major changes since last revision )

Update package information

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/Infineon-ICE1PCS01-DS-v01_03-en-html.html
background image

 CCM-PFC

ICE1PCS01

ICE1PCS01G

 

Version 1.2

3

06 Feb 2007

 

Type

Package

ICE1PCS01

PG-DIP-8

ICE1PCS01G

PG-DSO-8

Standalone Power Factor Correction 
(PFC) Controller in Continuous 
Conduction Mode (CCM)

ICE1PCS01

PG-DIP-8

ICE1PCS01G

PG-DSO-8

Product Highlights

• Wide Input Range
• Output Power Controllable by External Sense Resistor
• Programmable Operating Frequency 
• Output Under-Voltage Detection
• Fast Output Dynamic Response during LoadJumps
• Pb-free lead plating; RoHS compliant

Features

• Ease of Use with Few External Components
• Supports Wide Range 
• Average Current Control
• External Current and Voltage Loop Compensation 

for Greater User Flexibility

• Programmable Operating/Switching Frequency 

(50kHz - 250kHz)

• Max Duty Cycle of 95% (typ) at 125kHz
• Trimmed Internal Reference Voltage (5V+2%)
• VCC Under-Voltage Lockout
• Cycle by Cycle Peak Current Limiting
• Over-Voltage Protection
• Open Loop Detection
• Output Under-Voltage Detection
• Brown-Out Protection
• Enhanced Dynamic Response
• Unique Soft-Start to Limit Start Up Current
• Fulfills Class D Requirements of IEC 1000-3-2

Description

The ICE1PCS01/G is a 8-pin wide input range controller
IC for active power factor correction converters. It is de-
signed for converters in boost topology, and requires few
external components. Its power supply is recommended
to be provided by an external auxiliary supply which will
switch on and off the IC.
The IC operates in the CCM with average current control,
and in DCM only under light load condition. The switching
frequency is programmable by the resistor at pin 4. Both
compensations for the current and voltage loop are exter-
nal to allow full user control.
There are various protection features incorporated to en-
sure safe system operation conditions. Examples are
peak current limitation, brown-out protection and output
under voltage detection. The internal reference is trimmed
(5V+2%) to ensure precise protection and control level.
The device has an unique soft-start function which limits
the start up current thus reducing the stress on the boost
diode.

85 ... 265 VAC

EMI-Filter

Voltage Loop

Compensation

Protection Unit

Variable

Oscillator

Current Loop

Compensation

PWM Logic

Driver

ICE1PCS01/

ICE1PCS01G

PFC-Controller

VCC

Auxiliary Supply

V

OUT

Typical Application

SWITCH

Ramp

Generator

FREQ

ICOMP

VSENSE

VCOMP

ISENSE

GND

Nonlinear

Gain

GATE

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/Infineon-ICE1PCS01-DS-v01_03-en-html.html
background image

CCM-PFC

ICE1PCS01/G

Version 1.2

4

06 Feb 2007

1

Pin Configuration and Functionality  . . . . . . . . . . . . . . . . . . . . . . . . . . . . .5

1.1

Pin Configuration  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .5

1.2

Pin Functionality   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .5

2

Representative Block diagram  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .6

3

Functional Description  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .7

3.1

General   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .7

3.2

Power Supply . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .7

3.3

Start-up (Soft-Start)  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .7

3.4

System Protection  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .8

3.4.1

Brown-Out Protection (BOP)  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .8

3.4.2

Soft Over Current Control (SOC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .8

3.4.3

Peak Current Limit (PCL) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .8

3.4.4

Open Loop Protection / Input Under Voltage Protect (OLP)  . . . . . . . . . . .9

3.4.5

Output Under Voltage Detection (OUV) . . . . . . . . . . . . . . . . . . . . . . . . . . .9

3.4.6

Over-Voltage Protection (OVP)  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .9

3.5

Frequency Setting  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .9

3.6

Average Current Control  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .9

3.6.1

Complete Current Loop  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .9

3.6.2

Current Loop Compensation  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .9

3.6.3

Pulse Width Modulation (PWM) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .9

3.6.4

Nonlinear Gain Block  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .10

3.7

PWM Logic   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .10

3.8

Voltage Loop  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .10

3.8.1

Voltage Loop Compensation  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .10

3.8.2

Enhanced Dynamic Response   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .11

3.9

Output Gate Driver . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .11

4

Electrical Characteristics  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .12

4.1

Absolute Maximum Ratings  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .12

4.2

Operating Range  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .12

4.3

Characteristics  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .13

4.3.1

Supply Section . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .13

4.3.2

Variable Frequency Section . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .13

4.3.3

PWM Section  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .13

4.3.4

System Protection Section . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .14

4.3.5

Current Loop Section . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .15

4.3.6

Voltage Loop Section . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .15

4.3.7

Driver Section   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .16

5

Outline Dimension  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .17

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/Infineon-ICE1PCS01-DS-v01_03-en-html.html
background image

 

Version 1.2

5

06 Feb 2007

CCM-PFC

ICE1PCS01/G

Pin Configuration and Functionality

1

Pin Configuration and Functionality

1.1

Pin Configuration

Figure 1

Pin Configuration (top view)

1.2

Pin Functionality

GND (Ground)
The ground potential of the IC.

ICOMP (Current Loop Compensation)
Low pass filter and compensation of the current control
loop. The capacitor which is connected at this pin
integrates the output current of OTA2 and averages the
current sense signal.

ISENSE (Current Sense Input)
The ISENSE Pin senses the voltage drop at the
external sense resistor (R1). This is the input signal for
the average current regulation in the current loop. It is
also fed to the peak current limitation block.
During power up time, high inrush currents cause high
voltage drop at R1, driving currents into pin 3 which
could be beyond the absolute maximum ratings.
Therefore a series resistor (R2) of around 220

Ω is

recommended in order to limit this current into the IC.

FREQ (Frequency Setting)
This pin allows the setting of the operating switching
frequency by connecting a resistor to ground. The
frequency range is from 50kHz to 250kHz.

VSENSE (Voltage Sense/Feedback)
The output bus voltage is sensed at this pin via a
resistive divider. The reference voltage for this pin is
5V.

VCOMP (Voltage Loop Compensation)
This pin provides the compensation of the output
voltage loop with a compensation network to ground
(see Figure 2). This also gives the soft start function
which controls an increasing AC input current during
start-up.

VCC (Power Supply)
The VCC pin is the positive supply of the IC and should
be connected to an external auxiliary supply. The
operating range is between 10V and 21V. The turn-on
threshold is at 11.2V and under voltage occurs at
10.2V. There is no internal clamp for a limitation of the
power supply.

GATE
The GATE pin is the output of the internal driver stage,
which has a capability of 1.5A source and sink current.
Its gate drive voltage is clamped at 11.5V (typically).

Pin

Symbol

Function

1

GND

IC Ground

2

ICOMP

Current Loop Compensation

3

ISENSE Current Sense Input

4

FREQ

Switching Frequency Setting

5

VCOMP Voltage Loop Compensation

6

VSENSE V

OUT

 Sense (Feedback) Input

7

VCC

IC Supply Voltage

8

GATE

Gate Drive Output

Package PG-DIP-8 / PG-DSO-8

1

6

7

8

4

3

2

5

GATE

GND

ICOMP

ISENSE

VCC

VSENSE

FREQ

VCOMP

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/Infineon-ICE1PCS01-DS-v01_03-en-html.html
background image

CCM-PFC

ICE1PCS01/G

Representative Block diagram

 

Version 1.2

6

06 Feb 2007

2

Representative Block diagram

Figure 2

Representative Block diagram

ICE1PCS01/G

8

5

 ...

 26

5 VAC

Vo

ut

au

xil

iary

 s

u

p

p

ly

30

0n

s

C2

1.

5V

-1.

43x

OT

A

3

2.

5V

ISENSE

GAT

E

VS

ENSE

VC

C

FR

EQ

C1

VCOMP

OT

A

2

IC

OMP

4.

0V

Fault

UVLO

VCC

0.

8V

GND

PWM

Com

par

ator

Ra

mp Ge

ne

rat

or

V

a

ri

ab

le

 Osc

il

la

to

r

Tof

f m

in

O

ver

-cur

ren

t

Com

par

ator

D

e

gl

itch

er

PW

M Lo

gi

c

Gate

 Drive

r

under

volt

age lockout

open-

lo

o

p

 pr

ot

ect

Vol

tag

e

 Loo

p

Cur

rent

 Loop

Com

pensat

io

n

Prot

ec

tion

 Bl

oc

k

2.

5V

out

put 

 uv pr

ot

e

c

t

P

e

a

k

 C

u

rr

e

nt

 Li

mi

t

Curre

nt Lo

op

Non

lin

ea

r

Gain

C3

C4

OT

A

1

5V

+

/-

30uA,

 4

2uS

1.

1m

S

+

/-50u

A li

near

 r

ange

R1

R5

L1

C2

R3

R4

C3

C5

C4

R6

R2

S2

Vin

D1

Fault

4.

75V

5.

25V

0.

73 V

0

-ve

Wi

nd

ow D

e

te

ct

+v

e

0

-ve

Sof

t Ove

r

Cur

re

nt

 Cont

ro

l

4.

0V

S1

Fault

Soft

 St

art

OP

1

Cur

rent

 Sense

Opam

p

O

S

C CL

K

250n

s

R

S

R

S

Prot

ecti

on

Logi

c

C1

RF

I F

ilt

er

D2

 ...

 D5

R7

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/Infineon-ICE1PCS01-DS-v01_03-en-html.html
background image

CCM-PFC

ICE1PCS01/G

Functional Description

 

 

Version 1.2

7

06 Feb 2007

3.1

General

The ICE1PCS01/G is a 8 pin control IC for power factor
correction converters. It comes in both DIP and DSO
packages and is suitable for wide range line input
applications from 85 to 265 VAC. The IC supports
converters in boost topology and it operates in
continuous conduction mode (CCM) with average
current control.
The IC operates with a cascaded control; the inner
current loop and the outer voltage loop. The inner
current loop of the IC controls the sinusoidal profile for
the average input current. It uses the dependency of
the PWM duty cycle on the line input voltage to
determine the corresponding input current. This means
the average input current follows the input voltage as
long as the device operates in CCM. Under light load
condition, depending on the choke inductance, the
system may enter into discontinuous conduction mode
(DCM). In DCM, the average current waveform will be
distorted but the resultant harmonics are still low
enough to meet the Class D requirement of IEC 1000-
3-2.
The outer voltage loop controls the output bus voltage.
Depending on the load condition, OTA1 establishes an
appropriate voltage at VCOMP pin which controls the
amplitude of the average input current.
The IC is equipped with various protection features to
ensure safe operating condition for both the system
and device. Important protection features are namely
Brown-out protection, Current Limitation and Output
Under-voltage Protection.

3.2

Power Supply

An internal under voltage lockout (UVLO) block
monitors the VCC power supply. As soon as it exceeds
11.2V and the voltage at pin 6 (VSENSE) is >0.8V, the
IC begins operating its gate drive and performs its Soft-
Start as shown in Figure 3.
.

Figure 3

State of Operation respect to VCC

If VCC drops below 10.2V, the IC is off. The IC will then
be consuming typically 200

µA, whereas consuming

18mA during normal operation.
The IC can be turned off and forced into standby mode
by pulling down the voltage at pin 6 (VSENSE) to lower
than 0.8V. The current consumption is reduced to 3mA
in this mode. 

3.3

Start-up (Soft-Start)

Figure 4 and 5 show the operation of OTA1 during
startup. It sources a constant 10.8

µA into the

compensation network at pin 5 (VCOMP). The voltage
at this pin rises linearly and so does the amplitude of
the input current. As soon as the output voltage V

OUT

reaches 80% of its rated level, the startup procedure is
finished and the normal voltage control takes over. In
normal operation, the IC operates with a higher
maximum current at OTA1 and therefore with a higher
voltage loop gain in order to improve the dynamic
behavior of the device.
.

Figure 4

Soft Start Circuit

Figure 5

Soft Start with controlled current

The advantage of this technique is a soft-start function
with lower stress for the boost diode but without the risk
of audible noise. 

V

CC

V

VSENSE

> 0,8 V

V

VSENSE

< 0,8 V

11.2 V

10.5 V

t

OFF

Soft
start

Open loop/

Standby

Normal

Operation

IC's
State

OFF

V

VSENSE

> 0,8 V

Normal

Operation

VCOMP

C5

C4

VSENSE

OTA1

5V

ICE1PCS01/G

C3

Open-Loop

Protect

(OLP)

0.8V

R3 + R4

R4

x V

OUT 

)

(

10.8uA during
Soft Start

R6

S1

4.0V

Soft Start

Soft Start

Normal Operation

av(I

IN

)

V

OUT

 < 80% rated

V

OUT

 > 80% rated

t

3

Functional Description

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/Infineon-ICE1PCS01-DS-v01_03-en-html.html
background image

CCM-PFC

ICE1PCS01/G

Functional Description

 

 

Version 1.2

8

06 Feb 2007

3.4

System Protection

The IC provides several protection features in order to
ensure the PFC system in safe operating range.
Depending on the input line voltage (V

IN

) and output

bus voltage (V

OUT

), Figure 6 and 7 show the conditions

when these protections are active.

Figure 6

V

IN 

Related Protection Features 

Figure 7

V

OUT 

Related Protection Features 

The following sections describe the functionality of
these protection features.

3.4.1

Brown-Out Protection (BOP)

Brown-out occurs when the input voltage V

IN 

falls below

the minimum input voltage of the design (i.e. 85V for
universal input voltage range) and the VCC has not
entered into the V

CCUVLO

 level yet. For a system without

BOP, the boost converter will increasingly draw a
higher current from the mains at a given output power
which may exceed the maximum design values of the
input current. The ICE1PCS01/G limits internally the
current drawn from the mains and therefore also limits
the input power. The difference of input and output
power will result in decreasing output voltage. If the
condition prolongs, the decreasing V

OUT 

will terminate

in output under voltage condition (OUV, 50% of rated),
and the IC will be shut down (See section 3.4.5).
Figure 8 shows the occurrence of BOP in respect to the
ISENSE voltage.

Figure 8

BOP, SOC and PCL Protection as function 
of V

ISENSE

The V

IN

 threshold for BOP to occur is dependent on the

voltage at ISENSE and thus the output power. The
rated output power with a minimum V

IN

 (V

INMIN

) is

Due to the internal parameter tolerance, the maximum
power with V

INMIN

 before BOP occurs is

And the BOP takes over the normal operation under
rated output power latest at an input voltage of 

3.4.2

Soft Over Current Control (SOC)

The IC is designed not to support any output power
that corresponds to a voltage lower than -0.73V at the
ISENSE pin. A further increase in the inductor current,
which results in a lower ISENSE voltage, will activate
the Soft Over Current Control (SOC). This is a soft
control as it does not directly switch off the gate drive
like the PCL. It acts on the nonlinear gain block to result
in a reduced PWM duty cycle.

3.4.3

Peak Current Limit (PCL)

The IC provides a cycle by cycle peak current limitation
(PCL). It is active when the voltage at pin 3 (ISENSE)
reaches -1.08V. This voltage is amplified by OP1 by a
factor of -1.43 and connected to comparator C2 with a
reference voltage of 1.5V as shown in Figure 9. A
deglitcher with 300ns after the comparator improves
noise immunity to the activation of this protection.

t

V

INMIN

(1)

V

IN 

(VAC)

VCC > V

CCUVLO

Normal

Operation

IC OFF

BOP

VCC<V

CCUVLO

(1)

 V

INMIN

 where BOP activates depends on the output power

IC’s

State

t

V

OUT

PCL / SOC

16%

50%

100%

OLP

OLP

OUV

105%

OVP

V

OUT,Rated

V

ISENSE

-0.6V -0.73V

-1.08V

Normal

Operation

SOC

PCL

P

OUT

(rated)

BOP

IC’s

State

0

(BOP occurs at V

ISENSE 

= -0.6V Max) 

P

OUT

(max)

P

OUT

rated

(

)

V

INMIN

0.6

R1

2

-------------------

×

=

P

OUT

max

(

)

V

INMIN

0.73

R1

2

-------------------

×

=

V

BOPMAX

P

OUT

rated

(

) R1

2

0.73

-------------------

×

=

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/Infineon-ICE1PCS01-DS-v01_03-en-html.html
background image

CCM-PFC

ICE1PCS01/G

Functional Description

 

 

Version 1.2

9

06 Feb 2007

Figure 9

Peak Current Limit (PCL)

3.4.4

Open Loop Protection / Input Under
Voltage Protect (OLP)

Whenever VSENSE voltage falls below 0.8V, or
equivalently V

OUT

 falls below 16% of its rated value, it

indicates an open loop condition (i.e. VSENSE pin not
connected) or an insufficient input voltage V

IN

 for

normal operation. In this case, most of the blocks within
the IC will be shutdown. It is implemented using
comparator C3 with a threshold of 0.8V as shown in the
IC block diagram in Figure 2.

3.4.5

Output Under Voltage Detection (OUV)

In the event of main interrupt or brown-out condition,
the PFC system is not able to deliver the rated output
power. This will cause the output voltage V

OUT

 to drop

below its rated value. The IC provides an output under
voltage detection that checks if V

OUT

 is falling below

50% of its rated value. Comparator C4 as shown in the
device block diagram (Figure 2) senses the voltage at
pin 6 (VSENSE) with a reference of 2.5V. If comparator
C4 trips, the IC will be shut down as in OLP. The IC will
be ready to restart if there is sufficient V

IN

 to pull V

OUT

out of OLP.

3.4.6

Over-Voltage Protection (OVP)

Whenever V

OUT

 exceeds the rated value by 5%, the

over-voltage protection OVP is active as shown in
Figure 7. This is implemented by sensing the voltage at
pin VSENSE with respect to a reference voltage of
5.25V. A VSENSE voltage higher than 5.25V will
immediately reduce the output duty cycle, bypassing
the normal voltage loop control. This results in a lower
input power to reduce the output voltage V

OUT

.

3.5

Frequency Setting

The switching frequency of the PFC converter can be
set with an external resistor R5 at FREQ pin. The pin
voltage V

FREQ

 is typically 2.5V. The corresponding

capacitor for the oscillator is integrated in the device
and the R5/frequency relationship is given at the

Electrical Characteristic” section. The
recommended operating frequency range is from
50kHz to 250kHz. As an example, a R5 of 33k

Ω at pin

FREQ will set a switching frequency F

SW

 of 133kHz

typically.

3.6

Average Current Control

3.6.1

Complete Current Loop

The complete system current loop is shown in Figure
10.

Figure 10 Complete System Current Loop

It consists of the current loop block which averages the
voltage at pin ISENSE, resulted from the inductor
current flowing across R1. The averaged waveform is
compared with an internal ramp in the ramp generator
and PWM block. Once the ramp crosses the average
waveform, the comparator C1 turns on the driver stage
through the PWM logic block. The Nonlinear Gain block
defines the amplitude of the inductor current. The
following sections describe the functionality of each
individual blocks.

3.6.2

Current Loop Compensation

The compensation of the current loop is done at the
ICOMP pin. This is the OTA2 output and a capacitor C3
has to be installed at this node to ground (see Figure
10). Under normal mode of operation, this pin gives a
voltage which is proportional to the averaged inductor
current. This pin is internally shorted to 5V in the event
of IC shuts down when OLP and UVLO occur.

3.6.3

Pulse Width Modulation (PWM)

The IC employs an average current control scheme in
continuous conduction mode (CCM) to achieve the
power factor correction.

ISENSE

ICE1PCS01/G

R1

R2

I

INDUCTOR

OP1

1.43x

Current Limit

300ns

C2

Deglitcher

Turn Off

Driver

1.5V

Full-wave

Rectifier

R
S

ICE1PCS01/G

Vout

L1

C2

R3

R4

Gate

Driver

D1

From

Full-wave

Retifier

GATE

R1

R2

OTA2

ICOMP

4V

Current Loop

Compensation

Current Loop

Nonlinear

Gain

1.1mS
+/-50uA (linear range)

C3

S2

Fault

ISENSE

C1

PWM

Comparator

PWM Logic

Q

Input From

Voltage Loop

voltage

proportional to

averaged

Inductor current

R7

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/Infineon-ICE1PCS01-DS-v01_03-en-html.html
background image

CCM-PFC

ICE1PCS01/G

Functional Description

 

 

Version 1.2

10

06 Feb 2007

Assuming the voltage loop is working and output
voltage is kept constant, the off duty cycle D

OFF

 for a

CCM PFC system is given as 

From the above equation, D

OFF

 is proportional to V

IN

.

The objective of the current loop is to regulate the
average inductor current such that it is proportional to
the off duty cycle D

OFF

, and thus to the input voltage

V

IN

. Figure 11 shows the scheme to achieve the

objective.

Figure 11 Average Current Control in CCM

The PWM is performed by the intersection of a ramp
signal with the averaged inductor current at pin 5
(ICOMP). The PWM cycle starts with the Gate turn off
for a duration of T

OFFMIN

 (250ns typ.) and the ramp is

kept discharged. The ramp is then allowed to rise after
T

OFFMIN

 expires. The off time of the boost transistor

ends at the intersection of the ramp signal and the
averaged current waveform. This results in the
proportional relationship between the average current
and the off duty cycle D

OFF

.

Figure 12 shows the timing diagrams of T

OFFMIN

 and the

PWM waveforms.

Figure 12 Ramp and PWM waveforms

3.6.4

Nonlinear Gain Block

The nonlinear gain block controls the amplitude of the
regulated inductor current. The input of this block is the
voltage at pin VCOMP. This block has been designed
to support the wide input voltage range (85-265VAC).

3.7

PWM Logic

The PWM logic block prioritizes the control input
signals and generates the final logic signal to turn on
the driver stage. The speed of the logic gates in this
block, together with the width of the reset pulse T

OFFMIN

,

are designed to meet a maximum duty cycle D

MAX

 of

95% at the GATE output under 133kHz of operation.
In case of high input currents which result in Peak
Current Limitation, the GATE will be turned off
immediately and maintained in off state for the current
PWM cycle. The signal Toffmin resets (highest priority,
overriding other input signals) both the current limit
latch and the PWM on latch as illustrated in Figure 13.

Figure 13 PWM Logic

3.8

Voltage Loop

The voltage loop is the outer loop of the cascaded
control scheme which controls the PFC output bus
voltage V

OUT

. This loop is closed by the feedback

sensing voltage at VSENSE which is a resistive divider
tapping from V

OUT

. The pin VSENSE is the input of

OTA1 which has an internal reference of 5V. Figure 14
shows the important blocks of this voltage loop.

3.8.1

Voltage Loop Compensation

The compensation of the voltage loop is installed at the
VCOMP pin (see Figure 14). This is the output of OTA1
and the compensation must be connected at this pin to
ground. The compensation is also responsible for the
soft start function which controls an increasing AC input
current during start-up.

D

OFF

V

IN

V

OUT

--------------

=

t

ave(I

IN

) at ICOMP

ramp profile

GATE

drive

T

OFFMIN

250ns

V

CREF

(1)

V

RAMP

PWM

ramp

released

PWM cycle

(1)

 V

CREF 

is a function of V

ICOMP

t

G1

R

S

L1

R

S

L2

Peak Current

Limit

Current Loop

PWM on signal

Toffmin

250ns

Current

Limit Latch

PWM on

Latch

HIGH =

turn GATE on

Q

Q

Maker
Infineon Technologies
Datasheet PDF Download