FULLY PROTECTED LOW SIDE SWITCH

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/auips7141-html.html
background image

August, 27th 2009  

Automotive grade

  
 

AUIPS7141R 

www.irf.com 

Subject to change without notice    1

 

 

 

CURRENT SENSE HIGH SIDE SWITCH 

 

Features 

• 

Suitable for 24V systems 

• 

Over current shutdown

 

Over temperature shutdo

• 

 

• 

Current sensing 

wn

/Off for EMI 

amp 

 for trucks 

 is a fully protected four terminal high 

• 

Active clamp 

• 

Low current 

• 

ESD protection 

• 

Optimized Turn On

Applications 

• 

21W Filament l

• 

Solenoid 

• 

24V loads

Description 

The AUIPS7141R
side switch specifically designed for driving lamp. It 
features current sensing, over-current, over-temperature, 
ESD protection and drain to source active clamp. When 
the input voltage Vcc - Vin is higher than the specified 
threshold, the output power Mosfet is turned on. When the 
Vcc - Vin is lower than the specified Vil threshold, the 
output Mosfet is turned off. The Ifb pin is used for current 
sensing. The over-current shutdown is higher than inrush 
current of the lamp. 

Product Summary 

 
Rds(on)              100m

Ω 

max. 

Vclamp                       65V 
Current shutdown    20A min. 
 
 

 
 

Packages 

 

 

 
 

 
 

 
                                  DPak         
 

 

 

 

Typical Connection 

Out

 

IPS 

IN 

2.5k 

Vcc

Load

Battery

Input 

Power

Ground

Ifb 

Logic 

Ground

Current feeback 

10k

On 

Off 

 

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/auips7141-html.html
background image

AUIPS7141R 

Qualification Information

Automotive

(per AEC-Q100

††

Qualification Level 

Comments: This family of ICs has passed an Automotive qualification.  IR’s 
Industrial and Consumer qualification level is granted by extension of the 
higher Automotive level. 

Moisture Sensitivity Level 

DPAK-5L 

MSL1, 

 

260°C 

(per IPC/JEDEC J-STD-020) 

Machine Model 

Class M2 (200 V) 

(per AEC-Q100-003) 

Human Body Model 

Class H1C (1500 V) 

(per AEC-Q100-002) 

ESD 

Charged Device Model 

Class C5 (1000 V) 

(per AEC-Q100-011) 

IC Latch-Up Test 

Class II, Level A 

(per AEC-Q100-004) 

RoHS Compliant 

Yes 

 

† 

Qualification standards can be found at International Rectifier’s web site 

http://www.irf.com/

†† 

Exceptions to AEC-Q100 requirements are noted in the qualification report. 

†††  Higher MSL ratings may be available for the specific package types listed here.  Please contact your International 

Rectifier sales representative for further information. 

www.irf.com 

2

 

 

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/auips7141-html.html
background image

AUIPS7141R 

Absolute Maximum Ratings 

Absolute maximum ratings indicate sustained limits beyond which damage to the device may occur. (Tambient=25°C unless 
otherwise specified). 

meter 

Symbol Para

Min. 

Max. 

Units 

Vout 

Maximum output voltage  

Vcc-60  Vcc+0.3 

Vcc-Vin max.  Maximum Vcc voltage 

-16 

60 

Iifb, max. 

Maximum feedback current 

-50 

10 

mA 

Vcc sc. 

Maximum Vcc voltage with short circuit protection see page 7 

 

50 

Maximum power dissipation (internally lim

rmal protection) 

ited by the

 

 

Pd 

 

Rth=50°C/W DPack 6cm² footprint 

 

 

2.5 

W

Tj max. 

Max. storage & operating junction temperature 

-40 

150 

°C 

 

Thermal Characteristics 

bol 

p. 

Max. 

Units 

Sym

Parameter 

Ty

Rth1 

Thermal resistance junction to ambient DPak Std footpri

70 

 

nt 

Rth2 

 junction to ambient Dpak 6cm² footp

50 

 

Thermal resistance

rint 

Rth3 

Thermal resistance junction to case Dpak  

⎯ 

°C/W 

 

Recommended Operating Conditions 

These values are given for a quick design.  

Sym

in. 

Max. 

Units 

bol Parameter 

M

Continuous output current, Tambient=85°C, Tj=125°C 

 

 

Iout

 

 

 

Rth=50°C/W, Dpak 6cm² footprint 

⎯ 

2.1 

RIfb Ifb 

resistor 

1.5 

 

k

Ω 

www.irf.com 

3

 

 

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/auips7141-html.html
background image

AUIPS7141R 

Static Electrical Characteristics 

meter 

Min. 

Typ. 

Max. 

Units 

Test 

Conditions 

Tj=25°C, Vcc=28V (unless otherwise specified)  

Symbol Para

Vcc op. 

Operating voltage 

 

60 V 

 

ON state resistance Tj=25°C 

 

75 100 

Rds(on)  

150°C(2) 

 

135 180 

m

Ω 

ON state resistance Tj=

Id

A

s=2  

Icc off 

Supply leakage current 

 

1 3 

Iout off 

Output leakage current 

⎯ 

1 3 

µA 

V

cc /

=Vg

V

Vgn

in=V

 Vifb

nd 

out=

I in on 

mA 

Vcc-Vin=28V 

Input current while on 

0.6 

1.6 

V clamp1 

cc to Vout clamp voltage 1 

Id=10mA 

V

60 

64 

 

V clamp2 

 

65 

72 

Id=6A see fig. 2 

Vcc to Vout clamp voltage 2 

60

Vih(1) 

High level Input threshold voltage 

 

3 4.5 

Id=10mA 

Vil(1) 

Low level Input threshold voltage 

1.5 

2.3 

 

 

F

iode vol

orward body d

tage Tj=25°C 

 

0.8 0.9 

Vf 

F

orward body diode voltage Tj=125°C 

⎯ 

0.65 0.75 

If=1A 

(

t threshold

S

hing E

cc=28V, Resistive load=27 , Tj=25°C  

in. 

Typ. 

Max. 

Units 

Test 

Conditions 

1) Inpu

s are measured directly between the input pin and the tab. 

witc

lectrical Characteristics 

V

Symbol Parameter 

M

tdon 

Turn on delay time to 20% 

10 

20 

tr 

Rise time from 20% to 80% of Vcc 

10 

µs 

tdoff 

T

80 

urn off delay time 

20 

40 

tf 

F

µs 

all time from 80% to 20% of Vcc 

2.5 

10 

See fig 1 

 

Protection Characteristics 

Symbol Parameter 

Min. 

Typ. 

Max. 

Units 

Test 

Conditions 

Tsd 

Over temperature threshold 

150(2)

165 

 

°C 

See fig. 3 and fig.11 

Isd 

Over-current shutdown 

20 

25 

35 

See fig. 3 and page 6 

I fault 

Ifb after an over-current or an over-
temperature (latched) 

2.7 3.3  4 

mA 

See fig. 3 

 

Current Sensing Characteristics 

Symbol Parameter 

Min. 

Typ. 

Max. 

Units 

Test 

Conditions 

Ratio 

I load / Ifb current ratio 

2000 

2400 

2800 

 

Iload=2A 

Ratio_TC 

I load / Ifb variation over temperature(2) 

-5% 

+5 

Tj=-40°C to +150°C 

I offset 

Load current offset 

-0.2 

0.2 

Iout<2A 

Ifb leakage 

Ifb leakage current On in open load 

100 

µA 

Iout=0A 

(2) Guaranteed by design 

www.irf.com 

4

 

 

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/auips7141-html.html
background image

AUIPS7141R 

Lead Assignments 

 

1- NC 
2- In 
3- Vcc 
4- Ifb 

5- Ou

1 2    4 5 

ak  

cc

DP

3- V

 

 

 

Functional Block Diagram 

All values are typical 

 
 

Diag 

Charge

Pump 

D

VCC 

ri

r

ve

IFB OUT 

75V 

100

 

Tj > 165°C

Iout > 25A 

60V 

75V 

75V 

IN 

Set 

Reset 

Latch

1.5mA 

3V 

 

www.irf.com 

5

 

 

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/auips7141-html.html
background image

AUIPS7141R 

Truth Table 

Op. Conditions 

Input 

Output 

Ifb pin voltage 

Normal mode 

0V 

Normal mode 

I load x Rfb / Ratio  

Open load 

0V 

Open load 

0V 

Short circuit to GND 

0V 

Short circuit to GND 

V fault (latched) 

Over temperature 

0V 

Over temperature 

V fault (latched) 

 

Operating voltage 

Maximum Vcc voltage : this is the maximum voltage before the breakdown of the IC process. 
Operating voltage : This is the Vcc range in which the functionality of the part is guaranteed. The AEC-Q100 qualification 
is run at the maximum operating voltage spe
 

cified in the datasheet. 

Reverse battery 

During the reverse battery the Mosfet is kept off and the load current is flowing into the body diode of the power Mosfet. 
Power dissipation in the IPS : P = I load * Vf  
If the power dissipation is too high in Rifb, a diode in serial can be added to block the current. 
The transistor used to pull-down the input should be a bipolar in order to block the reverse current. The 100ohm input 
resistor can not sustain continuously 16V (see Vcc-Vin max. in the Absolute Maximum Ratings section) 
 

Active clamp 

The purpose of the active clamp is to limit the voltage across the MOSFET to a value below the body diode break down 
voltage to reduce the amount of stress on the device during switching. 
The temperature increase during active clamp can be estimated as follows: 

)

t

(

Z

P

CLAMP

TH

CL

Tj

=

  

Where:

)

t

(

Z

CLAMP

TH

 is the thermal impedance at t

CLAMP 

and can be read from the thermal impedance curves given in the 

data sheets. 

CLavg

CL

CL

I

V

P

=

: Power dissipation during active clamp 

65V

V

CL

=

: Typical V

CLAMP

 value. 

2

I

I

CL

CLavg

=

: Average current during active clamp 

dt

di

I

t

CL

CL

=

: Active clamp duration 

L

V

V

dt

di

CL

Battery

=

: Demagnetization current 

 
Figure 9 gives the maximum inductance versus the load current in the worst case : the part switches off after an over 
temperature detection. If the load inductance exceeds the curve, a free wheeling diode is required. 

Over-current protection 

The threshold of the over-current protection is set in order to guarantee that the device is able to turn on a load with an 
inrush current lower than the minimum of Isd. Nevertheless for high current and high temperature the device may switch 
off for a lower current due to the over-temperature protection. This behavior is shown in Figure 11. 

www.irf.com 

6

 

 

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/auips7141-html.html
background image

AUIPS7141R 

Current sensing accuracy 

 
 
 
 
 
 
 
 
 

Ifb 

 
 

Iout 

Ifb leakage 

Ifb2 

Ifb1 

Iout2 

Iout1 

I offset 

 

)/( Ifb2 – Ifb1) 

 Iout1 

 the system will depends on the variation of 

the I offset and the ratio over the temperature range. The 

 Ratio_TC specified in page 4. 

 on the Rdson : 

set@25°C / 1.9 

Maximum Vcc voltage with short circuit protection  

rt circuit is the maximum voltage for which the part is able to protect itself under test 

of short circuits are considered : terminal and load short circuit. 

 
 

 

L SC 

R SC 

The current sensing is specified by measuring 3 points : 
- Ifb1 for Iout1 
- Ifb2 for Iout2 
- Ifb leakage for Iout=0 
 
The parameters in the datasheet are computed with the following formula : 
Ratio = ( Iout2 – Iout1 
I offset = Ifb1 x Ratio –
This allows the designer to evaluate the Ifb for any Iout value using : 
Ifb = ( Iout + I offset ) / Ratio if Ifb > Ifb leakage 
For some applications, a calibration is required. In that case, the accuracy of

ratio variation is given by

The Ioffset variation depends directly
I offset@-40°C= I offset@25°C / 0.8 
I offset@150°C= I off
 

The maximum Vcc voltage with sho
conditions representative of the application. 2 kind 

Terminal SC 

0.1 µH 

10 mohm 

Load SC 

10 µH 

100 mohm 

 

Out

IPS 

Vcc

L SC

L s

upply 

R supply 
10mohm

R SC

www.irf.com 

7

 

 

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/auips7141-html.html
background image

AUIPS7141R 

 
 

 
 
 
 
 
 
 
 
 
 
 

Tj 

Tsd 

165°C 

Ids 

Vin 

I shutdown 

Tshutdown 

Vifb 

V fault 

Figure 3 – Protection timing diagram 

itching definitions 

 
 
 
 
 
 
 
 
 
 
 

Vds

Ids

Vcc-Vin

Figure 1 – IN rise time & sw

Vcc

Vds clamp 

T clamp 

See Application Notes to evaluate power dissipation 

Figure 2 – Active clamp waveforms 

 

0

2

4

8

-50

0

50

100

150

Tj, junction temperature (°C) 

Figure 4 – Icc off (µA) Vs Tj (°C) 

 

 

 
 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 

Vout 

Vcc-Vin 

80% 

20% 

80% 

20% 

Td on 

Tr 

Td off

Tf 

 
 
 
 
 
 
 
 
 

10

 
 

 

6

 
 

Icc off, supply leakage current (µA) 

 
 

 
 
 
 

www.irf.com 

8

 

 

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/auips7141-html.html
background image

AUIPS7141R 

www.irf.com 

9

 

 

 
 
 

Figure 8 – Transient thermal impedance (°C/W) 

Vs time (s) 

 

h

tr

a

n

s

ie

n

th

e

rm

a

im

p

e

d

a

n

c

e

 (

°C

/W

Z

t

Time (s) 

50%

100%

150%

200%

-50

0

50

100

150

Rds(on), Drain-to-Source On Resistance 

(Normalized) 

Fig

C) 

Tj, junction temperature (°C) 

ure 7 - Normalized Rds(on) (%) Vs Tj (°

0

-50

-25

0

25

50

75

100 125 150

1

2

3

4

VIH

VIL

Tj, junction temperature (°C) 

Vih and Vil (V) 

Vcc-Vout, supply voltage (V) 

Figure 6 – Vih and Vil (V) Vs Tj (°C) 

Figure 5 – Icc off (µA) Vs Vcc-Vout (V) 

Icc, supply current (µA) 

0.01

0.10

1.00

10.00

100.00

1.E-

05

1.E-

04

1.E-

03

1.E-

02

1.E-

01

1.E+0

0

1.E+0

1

1.E+0

2

20

 

 

 
 
 

5

10

15

 
 
 
 
 
 
 
 
 
 
 
 

0

0

10

20

30

40

50

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/auips7141-html.html
background image

AUIPS7141R 

www.irf.com 

10

 

 

 
 
 
 

1

10

100

1.E+01

1.E+02

1.E+03

1.E+04

1.E+05

Fi

)  

If

b

c

u

rr

e

e

n

(m

A

gure 9 – Max. Iout (A) Vs inductance (µH

Inductance (µH) 

Max. output current (A) 

Figure 10 – Ifb (mA) Vs Iout (A) 

Iout, output current (A) 

n

fe

e

d

b

a

c

k

 c

u

rr

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

0

1

2

3

25°C

150°C

 
 
 
 
 
 
 
 
 
 
 
 

 

 
 
 
 
 

4

SMD with 6cm² 

T

s

d

ti

m

e

 t

o

 s

h

u

td

o

w

n

(s

 
 
 
 
 
 
 
 
 

0.0001

0.001

0.01

0.1

1

10

100

0

5

10

15

20

'-40°C

'+25°C

'+125°C

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Iout, output current (A) 

 
 
 

Figure 11 – Tsd (s) Vs I out (A) 

 
 
 
 

Maker
Infineon Technologies
Datasheet PDF Download