Datasheet_ICE2QR4765_v23_20121114.fm

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/Infineon-ICE2QR4765-DS-v02_03-en-html.html
background image

C o o l S E T

® 

-Q1

I C E 2 Q R 4 7 6 5

O f f - L i n e   S M P S   Q u a s i - R e s o n a n t  
P W M   C o n t r o l l e r   w i t h   i n t e g r a t e d  
6 5 0 V   C o o l M O S

®

  a n d   s t a r t u p   c e l l   i n  

D I P - 8

N e v e r   s t o p   t h i n k i n g .

P o w e r   M a n a g e m e n t   &   S u p p l y

  D a t a s h e e t , V e r s i o n   2 . 3 ,   N o v e m b e r   1 4 ,   2 0 1 2

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/Infineon-ICE2QR4765-DS-v02_03-en-html.html
background image

Edition 2012-11-14

Published by
Infineon Technologies AG
81726 München, Germany

©

 Infineon Technologies AG 11/14/12.

All Rights Reserved.

Attention please!

The information given in this data sheet shall in no event be regarded as a guarantee of conditions or 
characteristics (“Beschaffenheitsgarantie”). With respect to any examples or hints given herein, any typical values 
stated herein and/or any information regarding the application of the device, Infineon Technologies hereby 
disclaims any and all warranties and liabilities of any kind, including without limitation warranties of 
non-infringement of intellectual property rights of any third party.

Information

For further information on technology, delivery terms and conditions and prices please contact your nearest 
Infineon Technologies Office (

www.infineon.com

).

Warnings

Due to technical requirements components may contain dangerous substances. For information on the types in 
question please contact your nearest Infineon Technologies Office.
Infineon Technologies Components may only be used in life-support devices or systems with the express written 
approval of Infineon Technologies, if a failure of such components can reasonably be expected to cause the failure 
of that life-support device or system, or to affect the safety or effectiveness of that device or system. Life support 
devices or systems are intended to be implanted in the human body, or to support and/or maintain and sustain 
and/or protect human life. If they fail, it is reasonable to assume that the health of the user or other persons may 
be endangered.

For questions on technology, delivery and prices please contact the Infineon Technologies Offices in Germany or
the Infineon Technologies Companies and Representatives worldwide: see our webpage at http://
www.infineon.com

CoolMOS

®

, CoolSET

®

 are trademarks of Infineon Technologies AG.

CoolSET

® 

-Q1

ICE2QR4765
Revision History: 

November 14, 2012

Datasheet

Previous Version: 

 2.2

Page

Subjects (major changes since last revision)

20

Revised outline dimension.

21

Add marking

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/Infineon-ICE2QR4765-DS-v02_03-en-html.html
background image

Type

Package

Marking

V

DS

R

DSon

1)

1)

typ @ T=25°C

230VAC ±15%

2)

2)

Calculated maximum input power rating at T

a

=50°C, T

i

=125°C and without copper area as heat sink.

85-265 VAC

2)

ICE2QR4765

PG-DIP-8

ICE2QR4765

650V

4.7

30W

19W

 

 

 

CoolSET

® 

-Q1

ICE2QR4765

Version 2.3

3

November 14, 2012

Off-Line SMPS Quasi-Resonant PWM 
Controller with integrated 650V CoolMOS

®

 

and startup cell in DIP-8

PG-DIP-8

Description

The CoolSET

®

-Q1 series (ICE2QRxx65) is the first

generation of quasi-resonant integarted power ICs. It is
optimized for off-line switch mode power supply
applications such as LCD monitor, DVD R/W, DVD
Combo, Blue-ray DVD, set top box, etc. Operting the
MOSFET switch in quasi-resonant mode, lower EMI,
higher efficiency and lower voltage stress on secondary
diodes are expected for the SMPS. Based on the
BiCMOS technology, the CoolSET

®

-Q1 series has a

wide operation range (up to 25V) of IC power supply
and lower power consumption. It also offers many
advantages such as: a quasi-resonant operation till very
low load increasing the average system efficiency
compared to other conventional solutions; the  Active
Burst Mode operation enables an ultra-low power
consumption at standby mode with small and
controllable output voltage ripple. 

Product Highlights

Active Burst Mode to reach the lowest standby power requirement 
<100mW@no load

Quasi resonant operation

Digital frequency reduction for better overall system efficiency

Integrated 650V startup cell

Features

650V avalanche rugged CoolMOS

®

 with built-in 

startup cell 

Quasiresonant operation till very low load

Active burst mode operation for low standby input 
power (< 0.1W)

Digital frequency reduction with decreasing load for 
reduced switching loss

Built-in digital soft-start 

Foldback point correction and cycle-by-cycle peak 
current limitation 

Maximum on time limitation

Auto restart mode for VCC Overvoltage and 
Undervoltage protections

Auto restart mode for overload protection

Auto restart mode for overtemperature protection

Latch-off mode for adjustable output overvoltage 
protection and transformer short-winding protection

85 ~ 265 VAC

Snubber

C

bus

D

r1

~D

r4

R

CS

TL431

Optocoupler

R

b1

R

b2

R

c1

C

c1

C

c2

R

ovs2

R

ovs1

C

VCC

D

VCC

D

O

C

O

L

f

C

f

V

O

C

PS

Startup Cell

CoolSET

®

-Q1

Depl. CoolMOS

®

Power Cell

W

p

W

s

W

a

R

VCC

C

ZC

R

ZC2

R

ZC1

Drain

Zero Crossing Block

Power Management

Cycle-by-Cycle 

current limitation

Active Burst Mode

PWM controller

Current Mode Control

Protections

VCC

CS

Control Unit

ZC

FB

GND

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/Infineon-ICE2QR4765-DS-v02_03-en-html.html
background image

CoolSET

®

 - Q1

ICE2QR4765

Table of Contents

Page

 

Version 2.3

4

November 14, 2012

1

Pin Configuration and Functionality  . . . . . . . . . . . . . . . . . . . . . . . . . . . . .5

1.1

Pin Configuration with PG-DIP-8  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .5

1.2

Package PG-DIP-8   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .5

1.3

Pin Functionality   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .5

2

Representative Blockdiagram   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .6

3

Functional Description  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .7

3.1

VCC Pre-Charging and Typical VCC Voltage During Start-up   . . . . . . . . . . .7

3.2

Soft-start   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .7

3.3

Normal Operation   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .7

3.3.1

Digital Frequency Reduction  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .7

3.3.1.1

Up/down counter  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .8

3.3.1.2

Zero crossing (ZC counter)  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .8

3.3.1.3

Ringing suppression time   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .9

3.3.2

Switch Off Determination  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .9

3.4

Current Limitation   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .9

3.4.1

Foldback Point Correction  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .9

3.5

Active Burst Mode Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .10

3.5.1

Entering Active Burst Mode Operation   . . . . . . . . . . . . . . . . . . . . . . . . . .10

3.5.2

During Active Burst Mode Operation  . . . . . . . . . . . . . . . . . . . . . . . . . . . .10

3.5.3

Leaving Active Burst Mode Operation  . . . . . . . . . . . . . . . . . . . . . . . . . . .10

3.6

Protection Functions   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .11

4

Electrical Characteristics  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .12

4.1

Absolute Maximum Ratings  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .12

4.2

Operating Range  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .12

4.3

Characteristics  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .13

4.3.1

Supply Section . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .13

4.3.2

Internal Voltage Reference   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .13

4.3.3

PWM Section  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .14

4.3.4

Current Sense  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .14

4.3.5

Soft Start  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .14

4.3.6

Foldback Point Correction  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .14

4.3.7

Digital Zero Crossing  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .15

4.3.8

Active Burst Mode  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .15

4.3.9

Protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .16

4.3.10

CoolMOS® Section  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .16

5

Typical CoolMOS

®

 Performance Characteristic  . . . . . . . . . . . . . . . . . . .17

6

Input power curve  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .19

7

Outline Dimension  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .20

8

Marking  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .21

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/Infineon-ICE2QR4765-DS-v02_03-en-html.html
background image

 

Version 2.3

5

November 14, 2012

CoolSET

®

 - Q1

ICE2QR4765

Pin Configuration and Functionality

 

1

Pin Configuration and Functionality

1.1

Pin Configuration with PG-DIP-8

1.2

Package PG-DIP-8

Figure 1

Pin Configuration PG-DIP-8 (top view)

Note: Pin 4 and 5 are shorted 

1.3

Pin Functionality

ZC (Zero Crossing)

At this pin, the voltage from the auxiliary winding after
a time delay circuit is applied. Internally, this pin is
connected to the zero-crossing detector for switch-on
determination. Additionally, the output overvoltage
detection is realized by comparing the voltage Vzc with
an internal preset threshold.

FB (Feedback)

Normally, an external capacitor is connected to this pin
for a smooth voltage V

FB

. Internally, this pin is

connected to the PWM signal generator for switch-off
determination (together with the current sensing
signal), the digital signal processing for the frequency
reduction with decreasing load during normal
operation, and the Active Burst Mode controller for
entering Active Burst Mode operation determination
and burst ratio control during Active Burst Mode
operation. Additionally, the open-loop / over-load
protection is implemented by monitoring the voltage at
this pin. 

CS (Current Sense)

This pin is connected to the shunt resistor for the
primary current sensing, externally, and the PWM
signal generator for switch-off determination (together
with the feedback voltage), internally. Moreover, short-
winding protection is realised by monitoring the voltage
V

cs

 during on-time of the main power switch. 

Drain (Drain of integrated Depl. CoolMOS

®

)

Drain pin is the connection to the drain of the internal
CoolMOS

®.

VCC (Power supply)

VCC pin is the positive supply of the IC. The operating
range is between V

VCCoff

 and V

VCCOVP

.

GND (Ground)

This is the common ground of the controller.

Pin

Symbol

Function

1

ZC

Zero Crossing

2

FB

Feedback

3

CS

Current Sense/
650V

1)

 CoolMOS

®

 Source

1)

at T

j

=110°C

4, 5

Drain

650V

1) 

CoolMOS

® 

Drain

6

n.c. Not 

connected

7

VCC

Controller Supply Voltage

8

GND

Controller Ground

1

6

7

8

4

3

2

5

GND

ZC

FB

CS

VCC

n.c.

Drain

Drain

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/Infineon-ICE2QR4765-DS-v02_03-en-html.html
background image

CoolSET

®

 - Q1

ICE2QR4765

Representative Blockdiagram

 

Version 2.3

6

November 14, 2012

 

2

Representative Blockdiagram

Figure 2

Representative Block diagram

1

G2

1

G7

R

SQ

la

tc

hed

 

P

rot

ec

t

R

SQ

Au

to

re

st

ar

t

Pr

ot

ec

t

P

ro

tect

io

n

R

FB

1

G3

25

kO

2pF

D1

&

G1

&

G5

1

G4

t

BE

B

&

G6

A

ctiv

e B

ur

st B

lo

ck

FB

C8

V

FB

E

B

C9

V

FB

B

O

n

C1

0

V

FB

B

O

ff

C3

V

ZC

R

S

C2

V

ZC

O

V

P

De

la

y

t

ZC

O

V

P

f

sB

OS

C

Ac

tiv

e

Bu

rs

t M

od

e

t

CO

UN

T

C1

V

ZC

C

ZC

U

p/

dow

n c

ount

er

ZC

 c

ount

er

cl

k

C

om

par

at

or

So

ft-

st

ar

t

R

ingi

ng

S

uppr

es

si

on

C

oun

t=

7

V

REF

R

S

Q

G8

&

G9

St

ar

tu

p C

el

l

Dr

ai

n

CS

VC

C

Ga

te

Dr

iv

e

G

PW

M

PW

M

 O

P

C

urre

nt

 M

od

e

PW

C

om

par

at

or

V

PW

M

q

V

ol

tage

 

R

ef

er

enc

e

U

nde

rv

ol

ta

ge

 Lo

ck

ou

t

18

V

10.

5

10us

In

te

rn

al

 

Bi

as

P

ow

er

 M

an

age

m

ent

D

epl

. C

ool

M

O

S

®

T

On

M

ax

C7

V

FB

ZL

C6

V

FB

ZH

C5

V

FB

R

1

C4

V

FB

O

LP

t

OL

P

_B

R

egul

at

io

n

C

ur

re

nt L

im

iti

ng

10

kO

D2

Lea

di

ng

 

E

dge 

B

lank

ing 

t

LE

B

1p

F

Fo

ld

bac

C

orre

ct

io

n

De

la

t

CSS

W

C1

3

V

CSB

C1

4

V

CSS

W

C1

5

PW

M

 C

ont

ro

l

Ze

ro

 C

ros

si

ng

Ga

te

 D

ri

ve

r

GN

D

en

C1

2

V

VCCO

V

P

T

O

ffM

ax

OT

P

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/Infineon-ICE2QR4765-DS-v02_03-en-html.html
background image

 

Version 2.3

7

November 14, 2012

CoolSET

®

 - Q1

ICE2QR4765

Functional Description

 

3

Functional Description

3.1

VCC Pre-Charging and Typical
VCC Voltage During Start-up

In ICE2QR4765, a startup cell is integrated into the
CoolMOS

®

. As shown in Figure 2, the start cell consists

of a high voltage device and a controller, whereby the
high voltage device is controlled by the controller. The
startup cell provides a pre-charging of the VCC
capacitor till VCC voltage reaches the VCC turned-on
threshold V

VCCon

 and the IC begins to operate.

Once the mains input voltage is applied, a rectified
voltage shows across the capacitor C

bus

. The high

voltage device provides a current to charge the VCC
capacitor C

vcc

. Before the VCC voltage reaches a

certain value, the amplitude of the current through the
high voltage device is only determined by its channel
resistance and can be as high as several mA. After the
VCC voltage is high enough, the controller controls the
high voltage device so that a constant current around
1mA is provided to charge the VCC capacitor further,
until the VCC voltage exceeds the turned-on threshold
V

VCCon

. As shown as the time phase I in Figure 3, the

VCC voltage increase near linearly and the charging
speed is independent of the mains voltage level.

Figure 3

VCC voltage at start up

The time taking for the VCC pre-charging can then be
approximately calculated as:

[1]

where  I

VCCcharge2

 is the charging current from the

startup cell which is 1.05mA, typically. 

Exceeds the VCC voltage the turned-on threshold
V

VCCon 

of at time t

1

, the startup cell is switched off, and

the IC begins to operate with a soft-start. Due to power
consumption of the IC and the fact that still no energy
from the auxiliary winding to charge the VCC capacitor
before the output voltage is built up, the VCC voltage
drops (Phase II). Once the output voltage is high
enough, the VCC capacitor receives then energy from
the auxiliary winding from the time point t

on. The VCC

then will reach a constant value depending on output
load.

3.2

Soft-start

At the time t

on

, the IC begins to operate with a soft-start.

By this soft-start the switching stresses for the switch,
diode and transformer are minimised. The soft-start
implemented in ICE2QR4765 is a digital time-based
function. The preset soft-start time is 12ms with 4
steps. If not limited by other functions, the peak voltage
on CS pin will increase step by step from 0.32V to 1V
finally.

Figure 4

Maximum current sense voltage during 

softstart

3.3

Normal Operation

The PWM controller during normal operation consists
of a digital signal processing circuit including an up/
down counter, a zero-crossing counter (ZC counter)
and a comparator, and an analog circuit including a
current measurement unit and a comparator. The
switch-on and -off time points are each determined by
the digital circuit and the analog circuit, respectively. As
input information for the switch-on determination, the
zero-crossing input signal and the value of the up/down
counter are needed, while the feedback signal V

FB

 and

the current sensing signal V

CS

 are necessary for the

switch-off determination. Details about the full
operation of the PWM controller in normal operation
are illustrated in the following paragraphs. 

3.3.1

Digital Frequency Reduction

As mentioned above, the digital signal processing
circuit consists of an up/down counter, a ZC counter
and a comparator. These three parts are key to
implement digital frequency reduction with decreasing
load. In addition, a ringing suppression time controller
is implemented to avoid mistriggering by the high
frequency oscillation, when the output voltage is very
low under conditions such as soft start or output short
circuit . Functionality of these parts is described as in
the following.

V

VCCon

V

VCC

V

VCCoff

t1

t2

i

ii

iii

t

1

V

VCCon

C

vcc

I

VCCch

e2

arg

------------------------------------------

=

t

on

3

6

9

12

0.32

0.49

0.66

0.83

1.00

Vcs_sst

(V)

Time(ms)

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/Infineon-ICE2QR4765-DS-v02_03-en-html.html
background image

CoolSET

®

 - Q1

ICE2QR4765

Functional Description

 

 

Version 2.3

8

November 14, 2012

3.3.1.1

Up/down counter 

The up/down counter stores the number of the zero
crossing to be ignored before the main power switch is
switched on after demagnetisation of the transformer.
This value is fixed according to the feedback voltage,
V

FB

, which contains information about the output

power. Indeed, in a typical peak current mode control,
a high output power results in a high feedback voltage,
and a low output power leads to a low regulation
voltage. Hence, according to V

FB

, the value in the up/

down counter is changed to vary the power MOSFET
off-time according to the output power. In the following,
the variation of the up/down counter value according to
the feedback voltage is explained.

The feedback voltage V

FB

 is internally compared with

three threshold voltages V

RL

, V

RH

 and V

RM

, at each

clock period of 48ms. The up/down counter counts then
upward, keep unchanged or count downward, as
shown in Table 1. 

Table 1

Operation of the up/down counter 

In the ICE2QR4765, the number of zero crossing is
limited to 7. Therefore, the counter varies between 1
and 7, and any attempt beyond this range is ignored.
When V

FB

 exceeds V

FBR1

 voltage, the up/down counter

is initialised to 1, in order to allow the system to react
rapidly to a sudden load increase. The up/down
counter value is also intialised to 1 at the start-up, to
ensure an efficient maximum load start up. 

Figure 5

shows some examples on how up/down counter is
changed according to the feedback voltage over time.

The use of two different thresholds V

FBZL

 and V

FBZH

 to

count upward or downward is to prevent frequency
jittereing when the feedback voltage is close to the
threshold point. However, for a stable operation, these
two thresholds must not be affected by the foldback
current limitation (see Section 3.4.1), which limits the
V

CS

 voltage. Hence, to prevent such situation, the

threshold voltages, V

FBZL

 and V

FBZH

, are changed

internally depending on the line voltage levels. 

Figure 5

Up/down counter operation

3.3.1.2

Zero crossing (ZC counter)

In the system, the voltage from the auxiliary winding is
applied to the zero-crossing pin through a RC network,
which provides a time delay to the voltage from the
auxiliary winding. Internally, this pin is connected to a
clamping network, a zero-crossing detector, an output
overvoltage detector and a ringing suppression time
controller. 

During on-state of the power switch a negative voltage
applies to the ZC pin. Through the internal clamping
network, the voltage at the pin is clamped to certain
level. 

The ZC counter has a minimum value of 0 and
maximum value of 7. After the internal MOSFET is
turned off, every time when the falling voltage ramp of
on ZC pin crosses the 100mV threshold, a zero
crossing is detected and ZC counter will increase by 1.
It is reset every time after the DRIVER output is
changed to high. 

The voltage v

ZC

 is also used for the output overvoltage

protection. Once the voltage at this pin is higher than
the threshold V

ZCOVP

 during off-time of the main switch,

the IC is latched off after a fixed blanking time.

To achieve the switch-on at voltage valley, the voltage
from the auxiliary winding is fed to a time delay network
(the RC network consists of D

zc

, R

zc1

, R

zc2

 and C

zc 

as

shown in typical application circuit) before it is applied
to the zero-crossing detector through the ZC pin. The
needed time delay to the main oscillation signal 

Δt

should be approximately one fourth of the oscillation
period (by transformer primary inductor and drain-
source capacitor) minus the propagation delay from

v

FB

 

up/down counter 
action

Always lower than V

FBZL

Count upwards till 
7

Once higher than V

FBZL

, but 

always lower than V

FBZH

Stop counting, no 
value changing

Once higher than V

FBZH

, but 

always lower than V

FBR1

Count downwards 
till 1

Once higher than V

FBR1

Set up/down 
counter to 1 

1

Case 3

Case 2

Case 1

Up/down

counter

n

n+1

n+2

n+2

n+2

n+2

n+1

n

n-1

4     5    6     6     6     6    5    4    3   

1

1

2     3    4     4     4     4    3    2    1   

7     7    7     7     7     7    6    5    4   

t

t

V

FB

V

FBR1

V

FBZH

V

FBZL

clock

T=48ms

1

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/Infineon-ICE2QR4765-DS-v02_03-en-html.html
background image

CoolSET

®

 - Q1

ICE2QR4765

Functional Description

 

 

Version 2.3

9

November 14, 2012

thedetected zero-crossing to the switch-on of the main
switch t

delay

, theoretically:

[2]

This time delay should be matched by adjusting the
time constant of the RC network which is calculated as:

[3]

3.3.1.3

Ringing suppression time

After MOSFET is turned off, there will be some
oscillation on V

DS

, which will also appear on the voltage

on ZC pin. To avoid that the MOSFET is turned on
mistriggerred by such oscillations, a ringing
suppression timer is implemented. The time is
dependent on the voltage v

ZC

. When the voltage v

ZC 

is

lower than the threshold V

ZCRS

, a longer preset time

applies, while a shorter time is set when the voltage v

ZC

is higher than the threshold. 

3.3.1.4

Switch on determination

After the gate drive goes to low, it can not be changed
to high during ring suppression time.

After ring suppression time, the gate drive can be
turned on when the ZC counter value is higher or equal
to up/down counter value. 

However, it is also possible that the oscillation between
primary inductor and drain-source capacitor damps
very fast and IC can not detect enough zero crossings
and ZC counter value will not be high enough to turn on
the gate drive. In this case, a maximum off time is
implemented. After gate drive has been remained off
for the period of T

OffMax

, the gate drive will be turned on

again regardless of the counter values and V

ZC

. This

function can effectively prevent the switching
frequency from going lower than 20kHz, otherwise
which will cause audible noise, during start up. 

3.3.2

Switch Off Determination

In the converter system, the primary current is sensed
by an external shunt resistor, which is connected
between low-side terminal of the main power switch
and the common ground. The sensed voltage across
the shunt resistor v

CS

 is applied to an internal current

measurement unit, and its output voltage V

1

 is

compared with the regulation voltage V

FB

. Once the

voltage V

exceeds the voltage V

FB

, the output flip-flop

is reset. As a result, the main power switch is switched
off. The relationship between the V

1

 and the v

CS

 is

described by:

[4]

To avoid mistriggering caused by the voltage spike
across the shunt resistor at the turn on of the main
power switch, a leading edge blanking time, t

LEB

, is

applied to the output of the comparator. In other words,
once the gate drive is turned on, the minimum on time
of the gate drive is the leading edge blanking time. 

In addition, there is a maximum on time, t

OnMax

,

limitation implemented in the IC. Once the gate drive
has been in high state longer than the maximum on
time, it will be turned off to prevent the switching
frequency from going too low because of long on time.

3.4

Current Limitation

There is a cycle by cycle current limitation realized by
the current limit comparator to provide an overcurrent
detection. The source current of the MOSFET is
sensed via a sense resistor R

CS

. By means of R

CS

 the

source current is transformed to a sense voltage V

CS

which is fed into the pin CS. If the voltage V

CS

 exceeds

an internal voltage limit, adjusted according to the
Mains voltage, the comparator immediately turns off
the gate drive. 

To prevent the Current Limitation process from
distortions caused by leading edge spikes, a Leading
Edge Blanking time (t

LEB

) is integrated in the current

sensing path.

A further comparator is implemented to detect
dangerous current levels (V

CSSW

) which could occur if

one or more transformer windings are shorted or if the
secondary diode is shorted. To avoid an accidental
latch off, a spike blanking time of t

CSSW

 is integrated in

the output path of the comparator .

3.4.1

Foldback Point Correction

When the main bus voltage increases, the switch on
time becomes shorter and therefore the operating
frequency is also increased. As a result, for a constant
primary current limit, the maximum possible output
power is increased, which the converter may have not
been designed to support.

To avoid such a situation, the internal foldback point
correction circuit varies the V

CS

 voltage limit according

to the bus voltage. This means the V

CS

 will be

decreased when the bus voltage increases. To keep a
constant maximum input power of the converter, the

Δt

T

osc

4

------------

t

delay

=

τ

td

C

zc

R

zc1

R

zc2

R

zc1

R

zc2

+

---------------------------------

=

V

1

3.3 V

cs

0.7

+

=

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/Infineon-ICE2QR4765-DS-v02_03-en-html.html
background image

CoolSET

®

 - Q1

ICE2QR4765

Functional Description

 

 

Version 2.3

10

November 14, 2012

required maximum V

CS

 versus various input bus

voltage can be calculated, which is shown in 

Figure 6

.

Figure 6

Variation of the VCS limit voltage according 
to the IZC current

According to the typical application circuit, when
MOSFET is turned on, a negative voltage proportional
to bus voltage will be coupled to auxiliary winding.
Inside CoolSET

® 

-Q1, an internal circuit will clamp the

voltage on ZC pin to nearly 0V. As a result, the current
flowing out from ZC pin can be calculated as

[5]

When this current is higher than I

ZC_1

, the amount of

current exceeding this threshold is used to generate an
offset to decrease the maximum limit on V

CS

. Since the

ideal curve shown in 

Figure 6

 is a nonlinear one, a

digital block in CoolSET

® 

-Q1 is implemented to get a

better control of maximum output power. Additional
advantage to use digital circuit is the production
tolerance is smaller compared to analog solutions. The
typical maximum limit on V

CS 

versus the ZC current is

shown in 

Figure 7

.

Figure 7

V

CS-max

 versus I

ZC

3.5

Active Burst Mode Operation

At light load condition, the IC enters  Active Burst Mode
operation to minimize the power consumption. Details

about  Active Burst Mode operation are explained in the
following paragraphs. 

3.5.1

Entering Active Burst Mode Operation

For determination of entering  Active Burst Mode
operation, three conditions apply: 

the feedback voltage is lower than the threshold of
V

FBEB

(1.25V). Accordingly, the peak current sense

voltage across the shunt resistor is 0.17;

the up/down counter is 7; and

a certain blanking time (t

BEB

).

Once all of these conditions are fulfilled, the  Active
Burst Mode flip-flop is set and the controller enters
Active Burst Mode operation. This multi-condition
determination for entering  Active Burst Mode operation
prevents mistriggering of entering  Active Burst Mode
operation, so that the controller enters  Active Burst
Mode operation only when the output power is really
low during the preset blanking time. 

3.5.2

During Active Burst Mode Operation

After entering the Active Burst Mode the feedback
voltage rises as V

OUT

 starts to decrease due to the

inactive PWM section. One comparator observes the
feedback signal if the voltage level V

BH

 (3.6V) is

exceeded. In that case the internal circuit is again
activated by the internal bias to start with swtiching. 

Turn-on of the power MOSFET is triggered by the
timer. The PWM generator for Active Burst Mode
operation composes of a timer with a fixed frequency of
52kHz, typically, and an analog comparator. Turn-off is
resulted by comparison of the voltage signal v

1

 with an

internal threshold, by which the voltage across the
shunt resistor V

csB 

is 0.34V, accordingly. A turn-off can

also be triggered by the maximal duty ratio controller
which sets the maximal duty ratio to 50%. In operation,
the output flip-flop will be reset by one of these signals
which come first.

If the output load is still low, the feedback signal
decreases as the PWM section is operating. When
feedback signal reaches the low threshold V

BL

(3.0V),

the internal bias is reset again and the PWM section is
disabled until next time regultaion siganl increases
beyond the V

BH 

threshold. If working in  Active Burst

Mode the feedback signal is changing like a saw tooth
between 3.0V and 3.6V shown in 

Figure 8

.

3.5.3

Leaving Active Burst Mode Operation

The feedback voltage immediately increases if there is
a high load jump. This is observed by one comparator.
As the current limit is 34% during  Active Burst Mode a
certain load is needed so that feedback voltage can
exceed V

LB

 (4.5V). After leaving active busrt mode,

maximum current can now be provided to stabilize V

O

.

In addition, the up/down counter will be set to 1

0.6

0.7

0.8

0.9

1

80

100 120 140 160 180 200 220 240 260 280 300 320 340 360 380 400

Vin(V)

Vc

s

-m

a

x

(V)

I

ZC

V

BUS

N

a

R

ZC1

N

P

------------------------

=

0.6

0.7

0.8

0.9

1

300

500

700

900

1100

1300

1500

1700

1900

2100

Iz c(uA)

Vc

s

-m

a

x

(V)

Maker
Infineon Technologies
Datasheet PDF Download