Datasheet_ICE1HS01G-1_v20_20110704.fm

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/Infineon-ICE1HS01G_1-DS-v02_00-en-html.html
background image

N e v e r

s t o p

t h i n k i n g .

Power Management & Supply

Datasheet, Version 2.0, 04 July 2011

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/Infineon-ICE1HS01G_1-DS-v02_00-en-html.html
background image

Edition 04 July 2011
Published by

Infineon Technologies AG,

81726 Munich, Germany,

©

2011 Infineon Technologies AG.

All Rights Reserved.

Legal disclaimer
The information given in this document shall in no event be regarded as a guarantee of conditions or

characteristics. With respect to any examples or hints given herein, any typical values stated herein and/or any

information regarding the application of the device, Infineon Technologies hereby disclaims any and all warranties

and liabilities of any kind, including without limitation, warranties of non-infringement of intellectual property rights

of any third party.

Information
For further information on technology, delivery terms and conditions and prices, please contact your nearest

Infineon Technologies Office (www.infineon.com).

Warnings
Due to technical requirements, components may contain dangerous substances. For information on the types in

question, please contact your nearest Infineon Technologies Office.
Infineon Technologies Components may be used in life-support devices or systems only with the express written

approval of Infineon Technologies, if a failure of such components can reasonably be expected to cause the failure

of that life-support device or system or to affect the safety or effectiveness of that device or system. Life support

devices or systems are intended to be implanted in the human body or to support and/or maintain and sustain

and/or protect human life. If they fail, it is reasonable to assume that the health of the user or other persons may

be endangered.

For questions on technology, delivery and prices please contact the Infineon Technologies Offices in Germany or
the Infineon Technologies Companies and Representatives worldwide: see our webpage at http://
www.infineon.com

CoolMOS

™, CoolSET™ are trademarks of Infineon Technologies AG.

ICE1HS01G-1

Revision History:

04 July 2011

Previous Version:

Page

Subjects (major changes since last revision)

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/Infineon-ICE1HS01G_1-DS-v02_00-en-html.html
background image

Type

Marking

Package

ICE1HS01G-1

1H01-1

PG-DSO-8

Version 2.0

3

02 July 2011

ICE1HS01G-1

Half-Bridge Resonant Controller

PG-DSO-8

Product Highlights

• Minimum number of external components
• High accuracy oscillator
• Two-level over current protection
• Over load/open loop protection
• Mains undervoltage protection with adjustable

hysteresis

• Adjustable blanking time for over load protection

and restart

Features

• DSO8 package

• Maximum 600kHz switching frequency

• Adjustable minimum switching frequency with high

accuracy

• 50% duty cycle

• Mains input under voltage protection with adjustable

hysteresis

• Two levels of overcurrent protection: frequency shift

and latch off

• Open-loop/over load protection with extended

blanking time

• Built-in digital and nonlinear softstart

• Adjustable restart time during fault protection period

• High-accuracy oscillator

Applications

• LCD/PDP TV

• AC-DC adapter

• Audio SMPS

Typical Application Circuit

C

bus

TL431

R

B1

R

B2

R

C1

C

C2

R

OS2

R

OS1

D

O1

D

O2

C

O

C

f

L

f

V

O

V

INDC

W

P

W

SH

W

SL

FMIN

CS

FB

VINS

GND

LG

HG

VCC

ICE1HS01/G

Auxiliary

Supply

Driver

Module

C

C1

R

CS2

R

CS1

D

CS1

D

CS2

C

CS1

C

CS2

C

S

Q

1

Q

2

R

FMIN

R

INS1

R

INS2

C

INS

OPTO

C

FB

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/Infineon-ICE1HS01G_1-DS-v02_00-en-html.html
background image

Half-Bridge Resonant Controller

ICE1HS01G-1

Table of Contents

Page

Version 2.0

4

02 July 2011

1

Pin Configuration and Functionality . . . . . . . . . . . . . . . . . . . . . . . . . . . . .5

1.1

Pin configuration with PG-DSO-8 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .5

1.2

Pin Functionality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .5

2

Representative Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .6

3

Functional description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .7

3.1

Oscillator and Pulse Frequency Modulation . . . . . . . . . . . . . . . . . . . . . . . . .7

3.1.1

Minimum charge current . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .7

3.1.2

Feedback regulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .8

3.1.3

Current sense current ICS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .8

3.1.4

Soft start current ISS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .8

3.1.5

Charge current Ichg . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .8

3.2

IC power supply . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .9

3.3

Soft start . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .9

3.4

Current sense . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .9

3.5

Over current protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .9

3.6

Mains Input Voltage Sense . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .9

3.7

Over load protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .10

4

Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .12

4.1

Absolute Maximum Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .12

4.2

Operating Range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .12

4.3

Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .13

4.3.1

Supply Section . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .13

4.3.2

Oscillator Section . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .13

4.3.3

Input voltage sense . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .14

4.3.4

Current sense . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .14

4.3.5

Soft start . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .15

4.3.6

Feedback . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

4.3.7

Over load/Open loop protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .16

4.3.8

Gate driver . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .16

5

Outline Dimension . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .17

6

Marking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .18

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/Infineon-ICE1HS01G_1-DS-v02_00-en-html.html
background image

Version 2.0

5

02 July 2011

Half-Bridge Resonant Controller

ICE1HS01G-1

Pin Configuration and Functionality

1

Pin Configuration and

Functionality

1.1

Pin configuration with PG-DSO-8

Figure 1

Pin configuration with PG-DSO-8

1.2

Pin Functionality

FMIN (minimum switching frequency)

An external resistor is connected between this pin and
the ground. The voltage of this pin is constant during
operation and thus the resistance determines the
current flowing out of this pin. The minimum switching
frequency is determined by this current. The maximum

switching frequency and the switching frequency
during soft start are also related to the current flowing
out of FMIN pin.

CS (current sense)

The current sense signal is fed to this pin. Inside the IC,
two comparators are provided. If the voltage on CS pin
is higher than the first threshold, IC will increase the
switching frequency to limit the maximum output power
of the converter. If the voltage on this pin exceeds the
second threshold, IC will be latched off immediately.

FB (feedback)

This pin is connected to the collector of the opto-
coupler. Internally, during normal operation, this pin is
connected to reference voltage source with a pull-up
resistor (R

FB

). The IC uses the voltage on this pin to

adjust the switching frequency within the range of
maximum and minimum frequency set by FMIN pin. If
FB voltage is higher than V

FBH

for a certain fixed

blanking time, an extended timer will be started. If over
load/open loop protection exists longer than the
extended blanking time, IC will enter auto-restart mode.
An off timer starts from the instant IC stops switching till
IC starts another soft start. This off time is determined
by the resistors and capacitor connected to VINS pin.

VINS (mains input voltage sense)

The mains input voltage is fed to this pin via a resistive
voltage divider. If the voltage on VINS pin is higher than
the threshold V

INSON

, IC will start to operate with

softstart

when

VCC

increases

beyond

turn

on

threshold. During operation, if the voltage on this pin
falls below the threshold V

INSON

, IC will stop switching

until the voltage on this pin increases again.

When IC goes into over load protection mode, IC will
stop switching and try to restart after a period of time.
This period can be adjusted by connecting different
capacitors between this pin and ground.

GND (ground)

IC common ground.

LG (low side gate drive)

Low side power MOSFET driver.

HG (high-side gate drive)

Up side power MOSFET driver.

VCC (IC power supply)

Supply voltage of the IC.

Pin

Symbol

Function

1

FMIN

Minimum switching frequency

2

CS

Current sense

3

FB

Feedback voltage

4

VINS

Input voltage sense

5

GND

IC ground

6

LG

Low side gate drive

7

HG

High side gate drive

8

VCC

IC power supply

1

2

FMIN

3

4

CS

FB

VINS

8

7

6

5

GND

VCC

HG

LG

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/Infineon-ICE1HS01G_1-DS-v02_00-en-html.html
background image

Half-Bridge Resonant Controller

ICE1HS01G-1

Representative Block Diagram

Version 2.0

6

02 July 2011

2

Representative Block Diagram

Figure 2

Representative Block Diagram

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/Infineon-ICE1HS01G_1-DS-v02_00-en-html.html
background image

Version 2.0

7

02 July 2011

Half-Bridge Resonant Controller

ICE1HS01G-1

Functional description

3

Functional description

The controller ICE1HS01G-1 with two gate outputs is

specially designed for LLC resonant half-bridge

converters. An oscillator with accurately-programmed

frequency range is built inside the IC. The two gate

signals are obtained by passing the signal out from the

oscillator through a divide-by-two flip-flop. Therefore,

two signals are of exactly 50% duty cycle and 180

o

out

of phase. To guarantee the zero-voltage-switching and

safe operation in half-bridge topologies, a fixed dead

time of 380ns is inserted in each internal when one

switch is turned off and the other is turned on.
For LLC resonant half-bridge converter, the output

voltage is regulated by changing the switching

frequency. ICE1HS01G-1 offers the designer to

choose suitable operation frequency range by

programming the oscillator with one single resistor.
In addition, ICE1HS01G-1 offers a programmed soft-

start function to limit both the inrush current and the

overshoot in output voltage.
To protect the system during operation, mains input

under-voltage protection and over-current protection

are integrated in ICE1HS01G-1 as well.

3.1

Oscillator and Pulse Frequency
Modulation

The oscillator is programmed with only one external

resistor R

FMIN

connected to FMIN pin. The trimmed

capacitor C

FS

is built inside the IC with high accuracy.

The simplified oscillator circuit is shown in Figure 3.

Figure 3

Simplified oscillator circuit

The charge current I

chg

is sum of four currents which

are I

chg_min

, I

FB

, I

CS

and I

SS

.

[1]

Everytime the capacitor C

FS

is charged by I

chg

to V

CH

,

the upper switch is turned off and C

FS

will be

discharged through I

disc

. The charge time determines

the on time for gate signal. The discharge time

determines the dead time during transition from one

gate off to another gate on. The switching waveforms

of the oscillator and gate signals are shown in Figure 4.

Figure 4

Oscillator waveforms

According to Figures 3 and 4, the on time of each gate

can be obtained as

[2]

The switching frequency can be obtained as

[3]

where the dead time T

d

is fixed as 380ns.

3.1.1

Minimum charge current

The voltage on pin FMIN is a constant of 1.5V during

normal operation. The resistor R

FMIN

determines the

current (I

FMIN

) flowing out from FMIN pin. Around one-

tenth of I

FMIN

is defined as the minimum charging

current (I

chg_min

), which in turn defines the minimum

switching frequency as follows.

C

O2

C

O1

V

CH

V

CL

R

S

Q

R

S

Q

FMIN

C

F1

Vdd

Q

F1

I

chg_min

C

FS

I

disc

1.5V

R

FMIN

Q

F2

Q

F3

I

chg

I

FB

I

CS

I

SS

FB

CS

ICE1HS01G

I

chg

I

chgmin

I

FB

I

cs

I

ss

+

+

+

=

V

CF

V

delay

V

LG

V

HG

4V

1V

5V

10V

10V

0V

0V

0V

t

t

t

t

t

d

T

on

3C

FS

I

chg

------------

=

f

s

1

2

3C

FS

I

chg

------------

T

d

+

è

ø

æ

ö

---------------------------------

=

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/Infineon-ICE1HS01G_1-DS-v02_00-en-html.html
background image

Version 2.0

8

02 July 2011

Half-Bridge Resonant Controller

ICE1HS01G-1

Functional description

Figure 5

FMIN versus R

FMIN

3.1.2

Feedback regulation

The output information is fed into the controller through

feedback voltage. If the output power is higher, the

feedback voltage will be higher, which will cause the

switching frequency to decrease and vice versa.
The regulation of switching frequency is achieved by

changing the charging current. An accurate operational

transconductance amplifier (OTA) is used to translate

the feedback voltage V

FB

into current I

FB

. The effective

range of feedback voltage is from 0.9V to 3.9V.
Figure 6 graphs the relationship between the actual

switching frequency and feedback voltage V

FB

when

R

FMIN

=22kohm.

Figure 6

Switching frequency versus V

FB

Burst mode operation is also provided by ICE1HS01G-

1. During LLC operation, the feedback signal V

FB

is

continuously monitored. When V

FB

drops below V

FB_off

,

the switching signal will be disabled after a fixed

blanking time T

FB

. V

FB

will then rise as V

out

starts to

decrease due to no switching signal. Once V

FB

exceeds

the threshold V

FB_on

, the IC resumes to normal

operation.

3.1.3

Current sense current I

CS

In LLC resonant topologies, it is necessary to limit the

resonant current in case of short circuit or other fault

conditions. It is achieved by adding another current Ics

to the charging current I

chg

. I

CS

is limited to 3 times of

the minimum charge current.

3.1.4

Soft start current I

SS

To limit the inrush current and output overshoot during

start up, the switching frequency shall be necessary

high at start up. The switching frequency will change

gradually toward the minimum switching frequency

until the feedback voltage comes into regulation. The

switching frequency will then go to desired value

according to load and input conditions. The soft start

current I

ss

also has a upper limit of around 3.4 times of

minimum charge current. Details of soft start will be

shown later.

3.1.5

Charge current I

chg

The charge current I

chg

for IC oscillator capacitor C

FS

is

the sum of the four parts including I

chg_min

, I

FB

, I

SS

and

I

CS

. To limit the maximum switching frequency,

maximum value of I

chg

is 5 times of I

chg_min

.

In summary, the maximum charge current during
normal operation is 3I

chg_min

while the maximum charge

current during fault condition or softstart is around
4I

chg_min

and 4.43*I

chg_min

respectively. Figure 7 shows

the maximum switching frequency versus minimum
switching frequency during normal operation.

Figure 7

Fmax versus Fmin during normal

operation

0

20

40

60

80

100

120

140

160

180

200

220

240

260

280

0

5

10 15 20 25 30 35 40 45 50 55 60 65

R

FMIN

[kohm]

M

in

im

u

m

s

w

it

c

h

in

g

fr

e

q

u

e

n

c

y

[k

H

z

]

50

60

70

80

90

100

110

120

130

140

150

160

170

180

190

200

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

Feedback voltage Vfb [V]

F

re

q

u

e

n

c

y

[k

H

z

]

0

50

100

150

200

250

300

350

400

450

0

25

50

75

100

125

150

175

200

FMIN [kHz]

F

M

A

X

[k

H

z

]

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/Infineon-ICE1HS01G_1-DS-v02_00-en-html.html
background image

Version 2.0

9

02 July 2011

Half-Bridge Resonant Controller

ICE1HS01G-1

Functional description

Figure 8 shows the maximum switching frequency
versus minimum switching frequency during softstart.

Figure 8

Fmax_ss versus Fmin during soft start

3.2

IC power supply

The

controller

ICE1HS01G-1

is

targeting

at

applications with auxiliary power supply. In most cases,

a front-end PFC pre-regulator with a PFC controller is

used in the same system.
The controller ICE1HS01G-1 starts to operate when

the supply voltage V

VCC

reaches the on-threshold,

V

VCCon

of 12V. The minimum operating voltage after

turn-on,

V

VCCoff

,

is

at

11V.

The

maximum

recommended operating voltage V

VCCmax

is 18V.

3.3

Soft start

At the beginning of the startup phase, the IC provides

a soft start with duration of 32ms with 32 steps. During

this period, the switching frequency is controlled

internally by changing the current I

SS

.

Figure 9 illustrates the actual switching frequency vs.

startup time when R

FMIN

=22kohm. During softstart, the

frequency starts from 250kHz, and step by step drops

to normal operation point.

Figure 9

Switching frequency during softstart

when R

FMIN

=22kohm

During soft start, the overload protection is disabled

although FB voltage is high.

3.4

Current sense

Current sense in LLC half bridge converters is for

protection purpose. The voltage of resonant capacitor

C

S

is the sum of the resonant voltage and the dc

voltage which is equal to half of the input bus voltage.

If resonant current is higher, then the voltage on C

S

is

higher.The current informations for both primary side

and secondary side are almost the same and can be

obtained by dividing and filtering the resonant voltage.

The circuit is shown in Figure 10.

Figure 10

Current sense circuit

3.5

Over current protection

The controller ICE1HS01G-1 incorporates two-level

over current protection. In case of over-load condition,

the lower level OCP will be triggered, the switching

frequency will be increased according to the duration

and power of the over load. The higher level OCP is

used to protect the converter if transformer winding is

shorted, the IC will be latched immediately.
If V

CS

is higher than 0.8V, IC will boost up the switching

frequency. If Vcs is lower than 0.75V, IC will resume to

normal operation gradually. If V

CS

is always higher than

0.8V for 1.5ms, the frequency will rise to its maximum

level. And vice versa.
To sum up, ICE1HS01G-1 will increase the switching

frequency to limit the resonant current in case of

temporary over-load and will also decrease the

switching frequency to its normal value after over-load

condition goes away.

3.6

Mains Input Voltage Sense

The working range of mains input voltage needs to be

specified for LLC resonant converter. It is important for

the controller to have input voltage sensing function

and protection features, which lets the IC stop

switching when the input voltage falls below the

specified range and restarts when the input voltage

increases back within the range. The mains input

voltage sensing circuit is shown Figure 2. With the

0

50

100

150

200

250

300

350

400

450

500

550

0

25

50

75

100

125

150

175

200

FMIN[kHz]

F

M

A

X

_

s

o

ft

s

ta

rt

[k

H

z

]

0

50

100

150

200

250

300

0

5

10

15

20

25

30

35

Time [ms]

F

re

q

u

e

n

c

y

[k

H

z

]

R

CS2

R

CS1

D

CS1

D

CS2

C

S

Q

1

Q

2

W

P

C

CS1

V

CS

V

BUS

C

CS2

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/Infineon-ICE1HS01G_1-DS-v02_00-en-html.html
background image

Version 2.0

10

02 July 2011

Half-Bridge Resonant Controller

ICE1HS01G-1

Functional description

current source I

hys

connected between VINS and

Ground, an adjustable hysteresis between the on and

off input voltage can be created as

[4]

The mains input voltage is divided by R

INS1

and R

INS2

as

shown in the typical application circuit. A current source

I

hys

is connected from VINS pin to ground in the IC. If

the on and off threshold for mains voltage is V

mainon

and

V

mainoff

, the resistors can be decided as

[5]

[6]

3.7

Over load protection

In case of open control loop or output over load fault,

the FB voltage will increase to its maximum level. If FB

voltage is higher than V

FBH

and this condition last

longer than a fixed blanking time of T

OLP

(20ms), the IC

will start the extended blanking timer. The extended

blanking timer is realized by charging and discharging

the filter capacitor C

FB

via the pull up resistor R

FB

and

Q

FB

. The circuit for extended blanking timer is shown in

Figure 11.

Figure 11

Circuit connected to FB pin

The FB voltage waveform during a OLP period is

shown in Figure 12. After FB voltage has been higher

than V

FBH

for the fixed blanking time t1 shown in Figure

11, IC will use internal switch Q

FB

to discharge V

FB

to

V

FBL

. After the switch Q

FB

is released, C

FB

will be

charged up by Vdd through R

FB

. The time needed for

C

FB

being charged to V

FBH

can be calculated as

[7]

If C

FB

is 10nF, the time is about 439us. After V

FB

reaches V

FBH

, an internal counter will increase by 1 and

the capacitor is discharged to 0.5V by Q

FB

again. The

charging and discharging process of C

FB

will be

repeated for N

OLP_E

times if the fault condition still exist.

After the last time of N

OLP_E

the FB voltage is pulled

down to zero, IC will stop the switch when FB voltage

rises to V

FBH

again. This is called over load/open loop

protection. During the charging and discharging period,

the IC will operate with frequency determined by I

chg_min

and I

CS

.

Figure 12

FB voltage waveform during over load

protection

If the converter returns to normal operation during the

extended blanking time period, FB voltage can not

reach V

FBH

again. Therefore, after FB voltage is

discharged to zero voltage, if it can not reach V

FBH

within T

OLP_R

, IC will reset all the fault timer to zero and

return to normal operation.
After IC enters into OLP, both switches will be stopped.

However, the IC remains active and will try to start with

soft start after an adjustable period. This period is

realized by charging and discharging the capacitor C

INS

connected to VINS pin for N

OLP_R

times. The time is

therefore determined by the capacitor C

INS

and resistor

R

INS1

and R

INS2

. The circuit implementation of the

adjustable off time is shown in Figure 13 and Figure 14

shows the voltage waveform of VINS in this case.
As shown in Figure 14, the C

INS

is discharged to V

INS_L

when IC enters into OLP at time t1. After that, an

internal constant current source I

INST

is turned on to

charge C

INS

. Once the voltage on VINS is charged to

V

INS_H

, the current source will be turned off and C

INS

is

discharged by another switch Q3 to V

INS_L

again. The

charging and discharging of C

INS

is thought as one

cycle. The cycle time is also influenced by the bus

V

HYS

R

INS1

I

hys

×

=

R

INS1

V

mainon

V

mainoff

I

hys

-------------------------------------------

=

R

INS2

R

INS1

V

INSON

V

mainoff

V

INSON

-------------------------------------------

×

=

FB

I

1.0V

I

FB

Vdd

R

FB

C

FB1

4.5V

T

OLP

24ms

C

FB3

C

FB2

EnA

EnA

0.5V

S

R

Q

Q

FB

CLK

OLP

UP

Reset

T

OLP_R

1.2ms

S

R

Q

C

FB4

EnA

C

FB5

EnA

0.8V

0.5V

S

R

Q

Gate_off

AR

I

ref

S

R

Q

AR_R

ICE1HS01G

t

chg

V

dd

V

FBH

V

dd

V

FBL

---------------------------

è

ø

æ

ö

ln

R

FB

C

FB

×

×

=

V

F

B

(V

)

Time

5V

4.5V

t

1

t

2

t

3

0.5V

Maker
Infineon Technologies
Datasheet PDF Download