CURRENT SENSE HIGH SIDE SWITCH

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/auips7121-html.html
background image

August, 27th 2009  

Automotive grade

 
 

AUIPS7121R 

www.irf.com 

Subject to change without notice        1

 

 

 

CURRENT SENSE HIGH SIDE SWITCH 

 

Features 

• 

Suitable for 24V systems

 

Over current shutdown

 

• 

• 

Over temperature shutdown

 

n/Off for EMI 

sfet on) 

lly protected five terminal high 

• 

Current sensing 

• 

Active clamp 

• 

Optimized Turn O

• 

Reverse battery  protection (Mo

Applications 

amp 

• 

75W Filament l

• 

Solenoid 

• 

24V loads for trucks 

Description 

 is a fu

The AUIPS7121R
side switch specifically designed for driving lamp. It 
features current sensing, over-current, over-temperature, 
ESD protection and drain to source active clamp. When 
the input voltage Vcc - Vin is higher than the specified 
threshold, the output power Mosfet is turned on. When the 
Vcc - Vin is lower than the specified Vil threshold, the 
output Mosfet is turned off. The Ifb pin is used for current 
sensing. The over-current shutdown is higher than inrush 
current of the lamp. 
 

Product Summary 

 
Rds(on)               30m

Ω 

max. 

Vclamp                       65V 
Current shutdown    50A min. 
 
 

 
 

Packages 

 

 

 
 

 
 

 
                                 DPak         
 

 

 

 

Typical Connection 

Out

 

AUIPS7121R

IN 

Rifb 

Vcc

Load

Battery

Input 

Power

Ground

Ifb 

Logic 

Ground

Current feeback 

10k

On 

Off 

 

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/auips7121-html.html
background image

AUIPS7121R 

Qualification Information

Automotive

(per AEC-Q100

††

Qualification Level 

Comments: This family of ICs has passed an Automotive qualification. 
IR’s Industrial and Consumer qualification level is granted by extension 
of the higher Automotive level. 

 

Moisture Sensitivity Level 

DPAK-5L 

MSL1, 

 

260°C 

(per IPC/JEDEC J-STD-020) 

Machine Model 

Class M2 (200 V) 

(per AEC-Q100-003) 

Human Body Model 

Class H1C (1500 V) 

(per AEC-Q100-002) 

ESD 

Charged Device Model 

Class C5 (1000 V) 

(per AEC-Q100-011) 

IC Latch-Up Test 

Class II, Level A 

(per AEC-Q100-004) 

RoHS Compliant 

Yes 

 

† 

Qualification standards can be found at International Rectifier’s web site 

http://www.irf.com/

†† 

Exceptions to AEC-Q100 requirements are noted in the qualification report. 

www.irf.com 

2

 

 

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/auips7121-html.html
background image

AUIPS7121R 

Absolute Maximum Ratings 

Absolute maximum ratings indicate sustained limits beyond which damage to the d

cur. (Tambient=25°C unless 

otherwise specified). 

arameter 

evice may oc

Symbol P

Min. 

Max. 

Units 

Vout 

Maximum output voltage  

Vcc-60  Vcc+0.3 

Vcc-Vin max.  Maximum Vcc voltage 

-32 

60 

Iifb, max. 

Maximum feedback current 

-50 

10 

mA 

Vcc sc 

Maximum Vcc voltage with short circuit protection see page 7 

 

50 

Maximum power dissipation (internally limited

 protection) 

 by thermal

 

 

Pd 

 

Rth=50°C/W DPack 6cm² footprint 

 

2.5 

Tj max. 

Max. storage & operating junction temperature 

-40 

150 

°C 

 

Thermal Characteristics 

mbol 

Max. 

Units 

Sy

Parameter 

Typ. 

Rth1 

Thermal resistance junction to ambient DPak Std footprint 

 

70 

Rth2 

tion to ambient Dpak 6cm² footprin

 

 

Thermal resistance junc

50

Rth3 

Thermal resistance junction to case Dpak  

⎯ 

°C/W 

 

Recommended Operating Conditions 

These values are given for a quick design.  

S

Min. 

Max. 

Units 

ymbol Parameter 

Continuous output current, Tambient=85°C, Tj=125°C 

 

 

I
 

⎯ 

3.8 

out 

 

Rth=50°C/W, Dpak 6cm² footprint 

Rifb Ifb 

resistor 

1.5 

 

k

Ω 

www.irf.com 

3

 

 

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/auips7121-html.html
background image

AUIPS7121R 

Static Electrical Characteristics 

meter 

Min. 

Typ. 

Max. 

Units 

Test 

Conditions 

Tj=25°C, Vcc=28V (unless otherwise specified)  

Symbol Para

Vcc op. 

Operating voltage range  

 

60 V 

 

ON state resistance Tj=25°C 

 

24 30 

Rds(on)  

150°C(2) 

 

45 55 

m

Ω 

ON state resistance Tj=

Ids=2A 

Icc off 

Supply leakage current 

 

2 4 

Iout off 

Output leakage current 

⎯ 

2 4 

µA 

Vi

c=28

ifb=V

Vout=Vgnd 

n=Vc

V,V

gnd 

Iin on 

mA 

Vcc

in=28V

Input current when device on 

2.5 

-V

 

V clamp1 

cc to Vout clamp voltage 1 

Id=10mA 

V

60 

64 

 

V clamp2 

65 

72 

Id=20A see fig. 2 

Vcc to Vout clamp voltage 2 

60 

Vih(1) 

High level Input threshold voltage 

 

3.5 5.9 

Id=10mA 

Vil(1) 

Low level Input threshold voltage 

1.5 

3.2 

 

 

Rds(on) rev 

R

te resist

everse On sta

ance Tj=25°C 

⎯ 

25 40 m

Ω 

Isd=2A 

F

.85 

orward body diode voltage Tj=25°C 

⎯ 

0.75 0

Vf 

F

I

orward body diode voltage Tj=125°C 

⎯ 

0.62 0.

f=3A 

Rin In

Ω 

 

put 

resistor 

180 

250 

35

(1) Input threshold

in and the tab. 

Min. 

Typ. 

Max. 

Units 

o

n

s are measured directly between the input p

Switching Electrical Characteristics 

Vcc=28V, Resistive load=6.8

Ω, Tj=25°C  

P

Symbol  arameter 

Test 

C nditio s 

tdon 

T

30 

urn on delay time 

15 

tr 

R

µs 

ise time from 20% to 80% of Vcc 

10 

30 

tdoff 

Turn off delay time 

 

25 

50 

100

tf 

Fall time from 80% to 20% of Vcc 

15 

30 

µs 

See fig. 1 

 

Protection Characteristics 

Tj=25°C, Vcc=28V (unless otherwise specified) 

Symbol Parameter 

Min. 

Typ. 

Max. 

Units 

Test 

Conditions 

Tsd 

Over temperature threshold(2) 

150 

165 

 

°C 

See fig. 3 and fig. 11 

Isd 

Over-current shutdown 

50 

60 

80 

See fig. 3 and page 7 

I fault 

Ifb after an over-current or an over-
temperature (latched) 

2.7 3.3  4 

mA 

See fig. 3 

 

Current Sensing Characteristics 

Tj=25°C, Vcc=28V (unless otherwise specified), Vcc-Vifb>4V 

Symbol Parameter 

Min. 

Typ. 

Max. 

Units 

Test 

Conditions 

Ratio 

I load / Ifb current ratio 

7050 

8500 

9950 

 

Iload=5A 

Ratio_TC 

I load / Ifb variation over temperature(2) 

-5% 

+5 

Tj=-40°C to +150°C 

I offset 

Load current offset 

-0.6 

0.6 

Iout<5A 

Ifb leakage 

Ifb leakage current 

10 

100 

µA 

Iout=0A 

(2) Guaranteed by design 

www.irf.com 

4

 

 

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/auips7121-html.html
background image

AUIPS7121R 

Lead Assignments 

 

1- NC 
2- In 

- Vcc 

3
4- Ifb 

5- Ou

1 2    4 5

ak  

Vcc

 

DP

3- 

 

 

Functiona

All values are typ

l Block Diagram 

ical 

 
 
 

Diag 

Charge

Pump 

Driver

IFB OUT 

VCC 

75V 

250

 

Tj > 165°C

Iout > 60A 

60V 

75V 

75V 

IN 

Set 

Reset 

Latch

1.5mA 

3V 

Reverse 

Battery 

Protection

 

www.irf.com 

5

 

 

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/auips7121-html.html
background image

AUIPS7121R 

Truth Table 

Op. Conditions 

Input 

Output 

Ifb pin voltage 

Normal mode 

0V 

Normal mode 

I load x Rfb / Ratio  

Open load 

0V 

Open load 

Ifb leakage x Rifb 

Short circuit to GND 

0V 

Short circuit to GND 

I fault x Rifb(latched) 

Over temperature 

0V 

Over temperature 

I fault x Rifb (latched) 

 

Operating voltage 

Maximum Vcc voltage : this is the maximum voltage before the breakdown of the IC process. 
Operating voltage : This is the Vcc range in which the functionality of the part is guaranteed. The AEC-Q100 qualification 
is run at the maximum operating voltage spe
 

cified in the datasheet. 

Reverse battery 

During the reverse battery the Mosfet is turned on if the input pin is powered with a diode in parallel of the input transistor. 
Power dissipation in the IPS : P = Rdson rev * I load² + Vcc² / 250 ( internal input resistor ). 
If the power dissipation is too high in Rifb, a diode in serial can be added to block the current. 
 

Active clamp 

The purpose of the active clamp is to limit the voltage across the MOSFET to a value below the body diode break down 
voltage to reduce the amount of stress on the device during switching. 
The temperature increase during active clamp can be estimated as follows: 

)

t

(

Z

P

CLAMP

TH

CL

Tj

=

  

Where:

)

t

(

Z

CLAMP

TH

 is the thermal impedance at t

CLAMP 

and can be read from the thermal impedance curves given in the 

data sheets. 

CLavg

CL

CL

I

V

P

=

: Power dissipation during active clamp 

65V

V

CL

=

: Typical V

CLAMP

 value 

2

I

I

CL

CLavg

=

: Average current during active clamp 

dt

di

I

t

CL

CL

=

: Active clamp duration 

L

V

V

dt

di

CL

Battery

=

: Demagnetization current 

 
Figure 9 gives the maximum inductance versus the load current in the worst case : the part switches off after an over 
temperature detection. If the load inductance exceeds the curve, a free wheeling diode is required. 

 
Over-current protection 

The threshold of the over-current protection is set in order to guarantee that the device is able to turn on a load with an 
inrush current lower than the minimum of Isd. Nevertheless for high current and high temperature the device may switch 
off for a lower current due to the over-temperature protection. This behavior is shown in Figure 11. 
 

www.irf.com 

6

 

 

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/auips7121-html.html
background image

AUIPS7121R 

Current sensing accuracy 

 

 
 
 
 
 
 
 
 

Iout 

Ifb 

 
 
 

Ifb leakage 

Ifb2 

Ifb1 

Iout1 

I offset 

Iout2 

 

The current sensing is specified by measuring 3 points : 
- Ifb1 for Iout1 
- Ifb2 for Iout2 
- Ifb leakage for Iout=0
 

 

the Ifb for any Iout value using : 

, the accuracy of the system will depends on the variation of 

 Ratio_TC specified in page 4. 

The Ioffset variation depends directly on the Rdson : 
I offset@-40°C= I offset@25°C / 0.8 

 

Maximum Vcc voltage with short circuit protection  

The maximum Vcc voltage with short circuit is the maximum voltage for which the part is able to protect itself under test 
conditions representative of the application. 2 kind of short circuits are considered : terminal and load short circuit. 

 
 

 

L SC 

R SC 

The parameters in the datasheet are computed with the following formula : 
Ratio = ( Iout2 – Iout1 )/( Ifb2 – Ifb1) 
I offset = Ifb1 x Ratio – Iout1 
 
This allows the designer to evaluate 
Ifb = ( Iout + I offset ) / Ratio if Ifb > Ifb leakage 
 
For some applications, a calibration is required. In that case
the I offset and the ratio over the temperature range. The ratio variation is given by

I offset@150°C= I offset@25°C / 1.9 

 

Out

IPS 

Vcc

L SC

L supply 

5µH 

R supply 
10mohm

Terminal SC 

0.1 µH 

10 mohm 

Load SC 

10 µH 

100 mohm 

R SC

www.irf.com 

7

 

 

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/auips7121-html.html
background image

AUIPS7121R 

 
 
 

 
 
 
 
 
 
 
 
 
 
 

Tj 

Tsd 

165°C 

Ids 

Vin 

I shutdown 

Tshutdown 

Vifb 

V fault 

Figure 3 – Protection timing diagram 

 
 
 
 
 
 
 
 
 
 
 

Vds

Ids

Vcc-Vin

 
 
 
 
 
 
 
 

Vout 

Vcc-Vin 

80% 

20% 

80% 

20% 

Td on 

Tr 

Td off

Tf 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Vcc

Vds clamp 

T clamp 

See Application Notes to evaluate power dissipation 

ctive clamp waveforms 

 

 
 
 
 
 
 

Figure 2 – A

Figure 1 – IN rise time & switching definitions 

 
 
 

0

5

15

25

-

0

100

150

Tj, junction temperature (°C) 

Figure 4 – Icc off (µA) Vs Tj (°C) 

 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

20

 
 

10

 
 

Icc off, supply leakage current (µA) 

 
 

 

 

 
 
 
 

50

50

www.irf.com 

8

 

 

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/auips7121-html.html
background image

AUIPS7121R 

www.irf.com 

9

 

 

 
 
 
 

Figure 8 – Transient thermal impedance (°C/W) 

Vs time (s) 

 

h

tr

a

n

s

ie

n

th

e

rm

a

im

p

e

d

a

n

c

e

 (

°C

/W

Z

t

Time (s) 

50%

100%

150%

-50

0

50

100

150

200%

Fig

C) 

Tj, junction temperature (°C) 

Rds(on), Drain-to-Source On Resistance 

(Normalized) 

ure 7 - Normalized Rds(on) (%) Vs Tj (°

1

2

3

4

5

6

VIH

VIL

0

-50

-25

0

25

50

75

100

125

150

Tj, junction temperature (°C) 

Vih and Vil (V) 

Figure 6 – Vih and Vil (V) Vs Tj (°C) 

0

0

10

20

30

40

50

Vcc-Vin, supply voltage (V) 

Iccoff, supply current (µA) 

2

4

 
 
 
 
 
 
 
 

0.01

0.10

1.00

10.00

100.00

1.E-

05

1.E-

04

1.E-

03

1.E-

02

1.E-

01

1.E+0

0

1.E+0

1

1.E+0

2

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 5 – Icc off(µA) Vs Vcc-Vin (V) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/auips7121-html.html
background image

AUIPS7121R 

www.irf.com 

10

 

 

 
 
 
 

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

0

2

4

6

8

25°C

150°C

1

10

100

1.E+01

1.E+02

1.E+03

1.E+04

 
 
 

Ifb, current feedback current (mA) 

 
 

Max. output current (A) 

 
 
 
 
 
 

 

 
 
 
 
 
 

10

 

Inductance (µH) 

Iout, output current (A) 

 
 
 

Fig

H)  

ure 9 – Max. Iout (A) Vs inductance (µ

Figure 10 – Ifb (mA) Vs Iout (A) 

 
 
 
 
 

Figure 11 – Tsd (s) Vs I out (A) 

SMD with 6cm² 

T

s

d

ti

m

e

 t

o

 s

h

u

td

o

w

n

(s

0.0001

0.001

0.01

0.1

1

10

100

0

10

20

30

40

 
 
 
 
 
 
 
 
 
 
 

'-40°C

'+25°C

'+125°C

 
 
 
 
 

50

 

Iout, output current (A) 

 
 
 
 
 
 
 

Maker
Infineon Technologies
Datasheet PDF Download