CURRENT SENSE HIGH SIDE SWITCH

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/auips7111s-html.html
background image

November, 29th 2009  

Automotive grade

 
 

AUIPS7111S 

 

CURRENT SENSE HIGH SIDE SWITCH 

 

Features 

 

Suitable for 24V systems

 

www.irf.com 

1

 

 

 

Over current shutdown

 

 

Over temperature shutdown

 

 Current 

sensing 

 Active 

clamp 

 Low 

current 

 

Reverse battery  

 ESD 

protection 

 

Optimized Turn On/Off for EMI 

Applications 

 

24V loads for trucks 

Description 

The AUIPS7111S is a fully protected four terminal high 
side switch. It features current sensing, over-current, over-
temperature, ESD protection and drain to source active 
clamp. When the input voltage Vcc - Vin is higher than the 
specified threshold, the output power Mosfet is turned on. 
When the Vcc - Vin is lower than the specified Vil 
threshold, the output Mosfet is turned off. The Ifb pin is 
used for current sensing. 
 

Product Summary 

 
Rds(on)              7.5 m

 

max. 

Vclamp                       65V 
Current shutdown   30A min. 
 
 

 
 

Package 

 

 

 
 

 
 

 
                                  D²Pak-5 leads         
 

 

 

 

Typical Connection 

 

Out

IPS 

IN 

Rifb 

Vcc

Load

Battery

Input 

Power

Ground

Ifb 

Logic 

Ground

Current feeback 

10k

On 

Off 

 

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/auips7111s-html.html
background image

AUIPS7111S 

Qualification Information

 

Automotive

 

(per AEC-Q100

††

Qualification Level 

Comments: This family of ICs has passed an Automotive qualification.  
IR’s Industrial and Consumer qualification level is granted by extension 
of the higher Automotive level. 

Moisture Sensitivity Level 

D2PAK-5L 

MSL1, 

 

260°C 

(per IPC/JEDEC J-STD-020) 

Machine Model 

Class M3 (300V) 

(per AEC-Q100-003) 

Human Body Model 

Class H2 (2,500 V) 

(per AEC-Q100-002) 

ESD 

Charged Device Model 

Class C4 (1000 V) 

(per AEC-Q100-011) 

IC Latch-Up Test 

Class II, Level A 

(per AEC-Q100-004) 

RoHS Compliant 

Yes 

†   Qualification standards can be found at International Rectifier’s web site 

http://www.irf.com/

 

†† Exceptions to AEC-Q100 requirements are noted in the qualification report. 

www.irf.com 

2

 

 

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/auips7111s-html.html
background image

AUIPS7111S 

Absolute Maximum Ratings 

Absolute maximum ratings indicate sustained limits beyond which damage to the device may occur. (Tj= -40°C..150°C, 
Vcc=8..50V unless otherwise specified). 

Symbol Parameter 

Min. 

Max. 

Units 

Vout 

Maximum output voltage  

Vcc-60  Vcc+0.3 

Vcc-Vin max.  Maximum Vcc voltage 

 

-32 60  V 

Ifb, max. 

Maximum feedback current 

-50 

10 

mA 

Maximum power dissipation (internally limited by thermal protection) 

 

 

Pd 

Tambient=25°C, Tj=150°C 

Rth=50°C/W D²Pack 6cm² footprint 

 

2.5 

Tj max. 

Max. storage & operating junction temperature 

-40 

150 

°C 

 

Thermal Characteristics 

Symbol Parameter 

Typ. 

Max. 

Units 

Rth1 

Thermal resistance junction to ambient D²Pak Std footprint 

60 

 

Rth2 

Thermal resistance junction to ambient D²pak 6cm² footprint 

40 

 

Rth3 

Thermal resistance junction to case D²pak  

0.8 

 

°C/W 

 

Recommended Operating Conditions 

These values are given for a quick design. 

Symbol Parameter 

Min. 

Max. 

Units 

Continuous output current, Tambient=85°C, Tj=125°C 

 

 

Iout 
 

 

Rth=40°C/W, D²pak 6cm² footprint 

 

10 

Rifb  

1.5 

 

k

 

www.irf.com 

3

 

 

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/auips7111s-html.html
background image

AUIPS7111S 

Static Electrical Characteristics 

Tj=-40..150°C, Vcc=8..50V (unless otherwise specified)  

Symbol Parameter 

Min. 

Typ. 

Max. 

Units 

Test 

Conditions 

Vcc op. 

Operating voltage range  

 

50 V 

 

ON state resistance Tj=25°C 

 

6 7.5 

Rds(on)  

ON state resistance Tj=150°C 

 

12 15 

m

 

Ids=10A 

Icc off 

Supply leakage current 

 

2 6 

Iout off 

Output leakage current 

 

2 6 

µA 

Vin=Vcc=28V,Vifb=Vgnd 
Vout=Vgnd, Tj=25°C 

V clamp1 

Vcc to Vout clamp voltage 1 

60 

65 

 

Id=10mA 

V clamp2 

Vcc to Vout clamp voltage 2 

 

66 

 

Id=10A see fig. 2 

Vih(2) 

High level Input threshold voltage 

 

5.5 6.8 

Id=10mA 

Vil(2) 

Low level Input threshold voltage 

3.5 

 

 

Reverse On state resistance Tj=25°C 

 

7 10 m

 

Rds(on) rev 

Reverse On state resistance Tj=150°C 

 

13 18   

Isd=10A, 
Vcc-Vin=7..32V 

Forward body diode voltage Tj=25°C 

 

0.75 0.8 

Vf 

Forward body diode voltage Tj=125°C 

 

0.6 0.65 

If=10A 

Rin 

Internal input resistor 

180 

250 

350 

 

Tj=-40°C..125°C 

(2) Input thresholds are measured directly between the input pin and the tab. See also page 6 

Switching Electrical Characteristics 

Vcc=28V, Resistive load=3

, Tj=25°C  

Symbol Parameter 

Min. 

Typ. 

Max. 

Units 

Test 

Conditions 

tdon 

Turn on delay time to 20% 

25 

35 

50 

tr 

Rise time from 20% to 80% of Vcc 

17 

25 

µs 

tdoff 

Turn off delay time 

50 

80 

120 

tf 

Fall time from 80% to 20% of Vcc 

13 

35 

µs 

See fig. 1 

 

Protection Characteristics 

Tj=-40..150°C, Vcc=8..50V (unless otherwise specified) 

Symbol Parameter 

Min. 

Typ. 

Max. 

Units 

Test 

Conditions 

Tsd 

Over temperature threshold 

150(3)

165 

 

°C 

See fig. 3 and fig. 10 

Isd 

Over-current shutdown 

30 

45 

60 

See fig. 3 and page 7 

I fault 

Ifb after an over-current or an over-
temperature (latched) 

2.4 4  6 

mA 

See fig. 3 

 

Current Sensing Characteristics 

Tj=-40..150°C, Vcc=8..50V (unless otherwise specified) 

Symbol Parameter 

Min. 

Typ. 

Max. 

Units 

Test 

Conditions 

Ratio 

I load / Ifb current ratio 

11000 13000

14500

 

Ratio_TC 

I load / Ifb variation over temperature 

-5% 

+5 

Iout=10A 

I offset 

Load current offset 

-0.25 

0.25 

Iout<10A 

Ifb leakage 

Ifb leakage current on 

15 

µA 

Iout=0A, Tj=25°C 

(3) Guaranteed by design 

www.irf.com 

4

 

 

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/auips7111s-html.html
background image

AUIPS7111S 

Lead Assignments 

 

1- In 
2- Ifb 
3- Vcc 
4- Out 
5- Out 

1 2    4 5 

D²Pak - 5 leads  

3- Vcc

 

 

Functional Block Diagram 

All values are typical 

 
 
 

Diag 

Charge

Pump 

Driver

Reverse 

Battery 

Protection

IFB OUT 

VCC 

75V 

250

 

Tj > 165°C

Iout > 45A 

58V 

75V 

75V 

3mA

IN 

Set 

Reset 

Latch

 

www.irf.com 

5

 

 

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/auips7111s-html.html
background image

AUIPS7111S 

Truth Table 

Op. Conditions 

Input 

Output 

Ifb pin voltage 

Normal mode 

0V 

Normal mode 

I load x Rfb / Ratio  

Open load 

0V 

Open load 

Ifb leakage x Rifb 

Short circuit to GND 

0V 

Short circuit to GND 

I fault x Rifb (latched) 

Over temperature 

0V 

Over temperature 

 I fault x Rifb (latched) 

 

Operating voltage 

Maximum Vcc voltage : this is the maximum voltage before the breakdown of the IC process. 
Operating voltage : This is the Vcc range in which the functionality of the part is guaranteed. The AEC-Q100 qualification 
is run at the maximum operating voltage specified in the datasheet. 
 

Reverse battery 

During the reverse battery the Mosfet is turned on if the input pin is powered with a diode in parallel of the input transistor. 
Power dissipation in the IPS : P = Rdson rev * I load² + Vcc² / 250 ( internal input resistor ). 
If the power dissipation I too hight in Rifb, a diode in serial can be added to block the current. 
 

Active clamp 

The purpose of the active clamp is to limit the voltage across the MOSFET to a value below the body diode break down 
voltage to reduce the amount of stress on the device during switching. 
The temperature increase during active clamp can be estimated as follows: 

)

t

(

Z

P

CLAMP

TH

CL

Tj

  

Where:

 is the thermal impedance at t

CLAMP 

and can be read from the thermal impedance curves given in the 

data sheets. 

)

t

(

Z

CLAMP

TH

CLavg

CL

CL

I

V

P

: Power dissipation during active clamp 

V

39

V

CL

: Typical V

CLAMP

 value  

2

I

I

CL

CLavg

: Average current during active clamp 

dt

di

I

t

CL

CL

: Active clamp duration 

L

V

V

dt

di

CL

Battery

: Demagnetization current 

 
 
Figure 9 gives the maximum inductance versus the load current in the worst case : the part switch off after an over 
temperature detection. If the load inductance exceed the curve, a free wheeling diode is required. 

 
 
 
 

www.irf.com 

6

 

 

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/auips7111s-html.html
background image

AUIPS7111S 

Input level VIH/VIL 

The input level are referenced to Vcc. When Vcc-Vin exceed VIH the part turns on and when Vcc-Vin goes below VIL the 
part turns off 
 

Current sensing accuracy 

 
 
 
 
 
 
 
 
 
 
 

Iout 

Ifb 

Ifb leakage 

Ifb2 

Ifb1 

Iout2 

Iout1 

I offset 

 

The current sensing is specified by measuring 3 points : 
- Ifb1 for Iout1 
- Ifb2 for Iout2 
- Ifb leakage for Iout=0 
 
The parameters in the datasheet are computed with the following formula : 
Ratio = ( Iout2 – Iout1 )/( Ifb2 – Ifb1) 
I offset = Ifb1 x Ratio – Iout1 
 
This allows the designer to evaluate the Ifb for any Iout value using : 
Ifb = ( Iout + I offset ) / Ratio if Ifb > Ifb leakage 
 
For some applications, a calibration is required. In that case, the accuracy of the system will depends on the variation of 
the I offset and the ratio over the temperature range. The ratio variation is given by Ratio_TC specified in page 4. 
The Ioffset variation depends directly of the Rdson : 
I offset@-40°C= I offset@25°C / 0.7 
I offset@150°C= I offset@25°C / 1.9 
 

Over-current protection 

The threshold of the over-current protection is set in order to guaranteed that the device is able to turn on a load with an 
inrush current lower than the minimum of Isd. Nevertheless for high current and high temperature the device may switch 
off for a lower current due to the over-temperature protection (see Figure 10). 
 

www.irf.com 

7

 

 

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/auips7111s-html.html
background image

AUIPS7111S 

www.irf.com 

8

 

 

 
 
 
 

 
 
 
 
 
 
 
 
 
 
 

Vds

Ids

Vcc-Vin

Vcc

Vds clamp 

T clamp 

See Application Notes to evaluate power dissipation 

 
 
 
 
 
 
 
 

Vout 

Vcc-Vin 

80% 

20% 

80% 

20% 

Td on 

Tr 

Td off

Tf 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2 – Active clamp waveforms 

 

Figure 1 – IN rise time & switching definitions 

 
 
 
 
 

0

5

10

15

20

25

30

-50

0

50

100

150

 

 
 
 
 
 
 
 
 

 
 

 

Tj 

Tsd 

165°C 

 

Icc off, supply le

akage current 

A) 

Ids 

Vin 

I shutdown 

Tshutdown 

Vifb 

 
 
 
 
 
 
 
 

 

 
 
 
 

V fault 

 
 
 

Tj, junction temperature (°C) 

 
 
 

Figure 3 – Protection timing diagram 

Figure 4 – Icc off (µA) Vs Tj (°C) 

 
 
 
 

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/auips7111s-html.html
background image

AUIPS7111S 

www.irf.com 

9

 

 

 
 
 
 

0

1

2

3

4

5

6

-50

-25

0

25

50

75

100

125

150

VIH

VIL

0.01

0.1

1

10

100

1E-4

1E-3

1E-2

1E-1

1E+0

1E+1

1E+2

Figure 8 – Transient thermal impedance (°C/W) 

Vs time (s) 

Zth, transient the

rmal impedance 

(°C/W) 

Time (s) 

50%

10

Rds(on), Drain-to

-Source On 

Resi

stance 

(Normalized) 

0%

150%

200%

-50

0

50

100

150

Figure 7 - Normalized Rds(on) (%) Vs Tj (°C) 

Tj, junction temperature (°C) 

Tj, junction temperature (°C) 

Vih and Vil (V) 

0

1

2

3

4

5

0

10

20

30

40

 
 
 
 
 

Icc, supply current (µA) 

 
 
 
 
 
 
 
 
 
 
 
 

50

 

Vcc-Vout, supply voltage (V) 

 
 
 

Figure 5 – Icc Off(µA) Vs Vcc-Vout (V) 

Figure 6 – Vih and Vil (V) Vs Tj (°C) 

 
 
 
 
 
 
 
 
 
 
 
 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/auips7111s-html.html
background image

AUIPS7111S 

www.irf.com 

10

 

 

 
 
 
 

1

10

100

1.E+00

1.E+01

1.E+02

1.E+03

1.E+04

0.1

1

10

100

0

10

20

30

 
 
 
 

Tsd, time to shut

down(s) 

 

Max. output curr

ent (A) 

 
 
 
 

 

 
 

40

'-40°C

'+25°C

'+125°C

 

 

 
 
 
 
 
 

Inductance (µH) 

Iout, output current (A) 

 
 
 

Figure 10 – Tsd (s) Vs I out (A) 

SMD with 6cm² 

Figure 9 – Max. Iout (A) Vs inductance (µH)  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Maker
Infineon Technologies
Datasheet PDF Download