AUIRLS3036-7P Product Datasheet

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/auirls3036-7p-html.html
background image

 

AUIRLS3036-7P 

G D S 

Gate Drain 

Source 

Base Part Number 

Package Type  

Standard Pack 

Orderable Part Number 

Form Quantity 

AUIRLS3036-7P  

Tube 

50 

AUIRLS3036-7P 

Tape and Reel Left 

800 

AUIRLS3036-7TRL 

D

2

Pak 7 Pin  

V

DSS 

60V 

R

DS(on)

   typ. 

1.5m

 

              max. 

1.9m

 

I

D (Silicon Limited) 

300A 

I

D (Package Limited) 

240A  

Absolute Maximum Ratings 

Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device.   These are stress 
ratings only; and functional operation of the device at these or any other condition beyond those indicated in the specifications is not 
implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability. The thermal resistance 
and power dissipation ratings are measured under board mounted and still air conditions. Ambient temperature (TA) is 25°C, unless 
otherwise specified. 

Features 

  Advanced Process Technology 

  Ultra Low On-Resistance 

  Logic Level Gate Drive 

  Dynamic dv/dt Rating 
  175°C Operating Temperature 

 Fast Switching 

  Repetitive Avalanche Allowed up to Tjmax 

  Lead-Free, RoHS Compliant 

  Automotive Qualified *  

Description 
Specifically designed for Automotive applications, this HEXFET® 
Power MOSFET utilizes the latest processing techniques to achieve 
extremely low on-resistance per silicon area.  Additional features of 
this design  are a 175°C junction operating temperature, fast 
switching speed and improved repetitive avalanche rating . These 
features combine to make this design an extremely efficient and 
reliable device for use in Automotive applications and a wide variety 
of other applications. 

 

2015-11-4 

 

HEXFET® is a registered trademark of Infineon. 
*Qualification standards can be found at 

www.infineon.com

 

 

AUTOMOTIVE GRADE 

Symbol Parameter 

Max. 

Units 

I

D

 @ T

C

 = 25°C 

Continuous Drain Current, V

GS

 @ 10V (Silicon Limited) 

300 

I

D

 @ T

C

 = 100°C 

Continuous Drain Current, V

GS

 @ 10V (Silicon Limited) 

210 

I

D

 @ T

C

 = 25°C 

Continuous Drain Current, V

GS

 @ 10V (Package Limited) 

240 

I

DM 

Pulsed Drain Current  1000 

P

D

 @T

C

 = 25°C 

Maximum Power Dissipation   

380 

  

Linear Derating Factor 

2.5 

W/°C 

V

GS 

Gate-to-Source Voltage 

 ± 16 

E

AS  

Single Pulse Avalanche Energy (Thermally Limited)  300 

mJ 

I

AR 

Avalanche Current  

See Fig.14,15, 22a, 22b   

E

AR 

Repetitive Avalanche Energy  

 

mJ 

dv/dt Peak 

Diode 

Recovery 

 8.1 

V/ns 

T

J  

Operating Junction and 

-55  to + 175 

 

T

STG 

Storage Temperature Range 

  

°C 

  

Soldering Temperature, for 10 seconds (1.6mm from case) 

300 

 

Thermal Resistance  

Symbol Parameter 

Typ. 

Max. 

Units 

R

JC

  

Junction-to-Case  ––– 

0.40 

°C/W   

R

JA

  

Junction-to-Ambient  ––– 

40 

D

2

Pak 7 Pin 

AUIRLS3036-7P 

HEXFET

® 

Power MOSFET 

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/auirls3036-7p-html.html
background image

 

AUIRLS3036-7P 

 

2015-11-4 

Notes:

  Calculated continuous current based on maximum allowable junction temperature. Bond wire current limit is 240A. Note that 

 

current limitations arising from heating of the device leads may occur with some lead mounting arrangements. 

  Repetitive rating;  pulse width limited by max. junction temperature. 

  Limited by T

Jmax, 

starting  T

J

 = 25°C, L = 0.018mH, R

G

 = 25

, I

AS

 = 180A, V

GS

 =10V. Part not recommended for use above this value.  

  I

SD

 

180A, di/dt 1070A/µs, V

DD

 

V

(BR)DSS

, T

J

 

 175°C. 

 Pulse width 

400µs; duty cycle  2%. 

  C

oss

 eff. (TR) is a fixed capacitance that gives the same charging time as C

oss

 while V

DS

 is rising from 0 to 80% V

DSS

  C

oss 

eff. (ER) is a fixed capacitance that gives the same energy as C

oss

 while V

DS

 is rising from 0 to 80% V

DSS

  When mounted on 1" square PCB (FR-4 or G-10 Material). For recommended footprint and soldering techniques refer to  

 

application note #AN-994  

  R

 is measured at T

J

 approximately 90°C. 



R

JC

 value shown is at time zero. 

Static @ T

J

 = 25°C (unless otherwise specified) 

  

Parameter Min. 

Typ. 

Max. 

Units 

Conditions 

V

(BR)DSS 

Drain-to-Source Breakdown Voltage 

60 

–––  ––– 

V  V

GS

 = 0V, I

D

 = 250µA 

V

(BR)DSS

/

T

J  

Breakdown Voltage Temp. Coefficient 

–––  0.059  –––  V/°C  Reference to 25°C, I

D

 = 5mA  

R

DS(on) 

   

Static Drain-to-Source On-Resistance    

––– 1.5 1.9 

V

GS

 = 10V, I

D

 = 180A 

––– 1.7 2.2 

V

GS

 = 4.5V, I

D

 = 150A 

V

GS(th) 

Gate Threshold Voltage 

1.0 

––– 

2.5 

V  V

DS

 = V

GS

, I

D

 = 250µA 

gfs 

Forward Trans conductance 

390 

–––  ––– 

S  V

DS

 = 10V, I

D

 = 180A 

R

Gate Resistance 

––– 

1.9 

––– 

       

I

DSS 

  

Drain-to-Source Leakage Current   

––– –––  20 

µA 

V

DS

 = 60V, V

GS

 = 0V 

––– ––– 250 

V

DS

 = 60V,V

GS

 = 0V,T

J

 =125°C 

I

GSS 

  

Gate-to-Source Forward Leakage 

––– 

–––  100 

nA 

V

GS

 = 16V 

Gate-to-Source Reverse Leakage 

––– 

–––  -100 

V

GS

 = -16V 

Dynamic  Electrical Characteristics @ T

J

 = 25°C (unless otherwise specified) 

Q

Total Gate Charge  

––– 

110  160 

nC  

I

D

 = 180A 

Q

gs 

Gate-to-Source Charge 

––– 

33 

––– 

V

DS

 = 30V 

Q

gd 

Gate-to-Drain Charge 

––– 

53 

––– 

V

GS

 = 4.5V 

Q

sync 

Total Gate Charge Sync. (Q

- Q

gd

) ––– 

57 

––– 

 

t

d(on) 

Turn-On Delay Time 

––– 

81 

––– 

ns 

V

DD

 = 39V 

t

Rise Time 

––– 

540  ––– 

I

D

 = 180A 

t

d(off) 

Turn-Off Delay Time 

––– 

89 

––– 

R

G

= 2.1



t

Fall Time 

––– 

170  ––– 

V

GS

 = 4.5V 

C

iss 

Input Capacitance 

–––  11270  ––– 

pF  

V

GS

 = 0V 

C

oss 

Output Capacitance 

–––  1025  ––– 

V

DS

 = 50V 

C

rss 

Reverse Transfer Capacitance 

––– 

520  ––– 

ƒ = 1.0MHz 

C

oss eff.(ER) 

Effective Output Capacitance (Energy Related)  –––  1460  ––– 

V

GS

 = 0V, V

DS

 = 0V to 48V  

C

oss eff.(TR) 

Effective Output Capacitance (Time Related) 

–––  1630  ––– 

V

GS

 = 0V, V

DS

 = 0V to 48V  

Diode Characteristics  

  

        Parameter 

Min.  Typ.  Max.  Units 

Conditions 

I

  

Continuous Source Current  

––– ––– 300 

MOSFET symbol 

(Body Diode) 

showing  the 

I

SM 

  

Pulsed Source Current 

––– ––– 1000 

integral reverse 

(Body Diode)

p-n junction diode. 

V

SD 

Diode Forward Voltage 

––– 

––– 

1.3 

V  T

J

 = 25°C,I

= 180A,V

GS

 = 0V 

t

rr  

Reverse Recovery Time  

––– 57 ––– 

ns  

T

J

 = 25°C          V

DD

 = 51V 

––– 60 ––– 

T

J

 = 125°C         I

F

 = 180A,  

Q

rr  

Reverse Recovery Charge  

––– 140 ––– 

nC  

 T

J

 = 25°C     di/dt = 100A/µs 

––– 160 ––– 

T

J

 = 125°C          

I

RRM 

Reverse Recovery Current 

––– 

4.6 

––– 

A  T

J

 = 25°C     

t

on 

Forward Turn-On Time 

Intrinsic turn-on time is negligible (turn-on is dominated by L

S

+L

D

m



/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/auirls3036-7p-html.html
background image

 

AUIRLS3036-7P 

 

2015-11-4 

Fig. 2 Typical Output Characteristics 

Fig. 3 

Typical Transfer Characteristics

 

 

Fig. 1 Typical Output Characteristics 

Fig 5.  Typical Capacitance vs. Drain-to-Source Voltage

 

Fig 6.  Typical Gate Charge vs. Gate-to-Source Voltage

 

 

0.1

1

10

100

VDS, Drain-to-Source Voltage (V)

0.1

1

10

100

1000

I D

, D

ra

in

-t

o-

S

ou

rc

C

ur

re

nt

 (

A

)

 60µs PULSE WIDTH

Tj = 25°C

2.7V

VGS

TOP           15V

10V

4.5V

4.0V

3.5V

3.3V

3.0V

BOTTOM

2.7V

0.1

1

10

100

VDS, Drain-to-Source Voltage (V)

10

100

1000

I D

, D

ra

in

-t

o-

S

ou

rc

C

ur

re

nt

 (

A

)

 60µs PULSE WIDTH

Tj = 175°C

2.7V

VGS

TOP           15V

10V

4.5V

4.0V

3.5V

3.3V

3.0V

BOTTOM

2.7V

2.0

3.0

4.0

5.0

VGS, Gate-to-Source Voltage (V)

1

10

100

1000

I D

, D

ra

in

-t

o-

S

ou

rc

C

ur

re

nt

 

)

VDS = 25V

 60µs PULSE WIDTH

TJ = 25°C

TJ = 175°C

-60 -40 -20 0

20 40 60 80 100 120 140 160 180

TJ , Junction Temperature (°C)

0.5

1.0

1.5

2.0

2.5

R

D

S

(o

n)

 , 

D

ra

in

-t

o-

S

ou

rc

O

R

es

is

ta

nc

   

   

   

   

   

   

   

 (

N

or

m

al

iz

ed

)

ID = 180A

VGS = 10V

1

10

100

VDS, Drain-to-Source Voltage (V)

0

5000

10000

15000

20000

C

, C

ap

ac

ita

nc

(p

F

)

Coss

Crss

Ciss

VGS   = 0V,       f = 100 kHz

Ciss   = Cgs + Cgd,  Cds SHORTED
Crss   = Cgd 
Coss  = Cds + Cgd

0

20

40

60

80

100

120

140

 QG  Total Gate Charge (nC)

0

1

2

3

4

5

V

G

S

, G

at

e-

to

-S

ou

rc

V

ol

ta

ge

 (

V

)

VDS= 48V

VDS= 30V

ID= 180A

Fig. 4 

Normalized On-Resistance vs. Temperature

 

 

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/auirls3036-7p-html.html
background image

 

AUIRLS3036-7P 

 

2015-11-4 

 

Fig 8.  Maximum Safe Operating Area  

Fig 10.  Drain-to-Source Breakdown Voltage 

Fig 11.  Typical C

OSS

 Stored Energy 

Fig 12. Maximum Avalanche Energy vs. Drain Current 

Fig 9.  Maximum Drain Current vs. Case Temperature 

Fig. 7 Typical Source-to-Drain Diode 

 Forward Voltage 

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

VSD, Source-to-Drain Voltage (V)

0.1

1

10

100

1000

I S

D

R

ev

er

se

 D

ra

in

 C

ur

re

nt

 (

A

)

TJ = 25°C

TJ = 175°C

VGS = 0V

0.1

1

10

100

VDS, Drain-toSource Voltage (V)

0.1

1

10

100

1000

10000

I D

,  

D

ra

in

-t

o-

S

ou

rc

C

ur

re

nt

 (

A

)

Tc = 25°C

Tj = 175°C

Single Pulse

1msec

10msec

OPERATION IN THIS AREA 

LIMITED BY R DS(on)

100µsec

DC

LIMITED BY PACKAGE

25

50

75

100

125

150

175

 TC , Case Temperature (°C)

0

50

100

150

200

250

300

I D

 ,

 D

ra

in

 C

ur

re

nt

 (

A

)

LIMITED BY PACKAGE

-60 -40 -20 0

20 40 60 80 100 120 140 160 180

TJ , Junction Temperature (°C)

50

60

70

80

V

(B

R

)D

S

S

 ,

 D

ra

in

-t

o-

S

ou

rc

B

re

ak

do

w

V

ol

ta

ge

ID = 5mA

0

10

20

30

40

50

60

70

VDS, Drain-to-Source Voltage (V)

0.0

1.0

2.0

3.0

4.0

E

ne

rg

J)

25

50

75

100

125

150

175

Starting TJ, Junction Temperature (°C)

0

200

400

600

800

1000

1200

E

A

S

S

in

gl

P

ul

se

 A

va

la

nc

he

 E

ne

rg

(m

J)

                 ID

TOP  

        22A

                37A

BOTTOM 

  180A

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/auirls3036-7p-html.html
background image

 

AUIRLS3036-7P 

 

2015-11-4 

 

Fig 14.   Avalanche Current vs. Pulse width  

Fig 13.  Maximum Effective Transient Thermal Impedance, Junction-to-Case  

Fig 15.  Maximum Avalanche Energy vs. Temperature 

Notes on Repetitive Avalanche Curves , Figures 14, 15: 
(For further info, see AN-1005 at www.infineon.com)
 
1.  Avalanche failures assumption:  
 

Purely a thermal phenomenon and failure occurs at a temperature far in  

 

excess of T

jmax

. This is validated for every part type. 

2.  Safe operation in Avalanche is allowed as long as T

jmax

 is not exceeded. 

3.   Equation below based on circuit and waveforms shown in Figures 22a, 22b. 
4.   P

D (ave) 

= Average power dissipation per single avalanche pulse. 

5.   BV = Rated breakdown voltage (1.3 factor accounts for voltage increase  
 during 

avalanche). 

6.   I

av 

= Allowable avalanche current. 

7. 

T

 = 

Allowable rise in junction temperature, not to exceed

 

T

jmax 

(assumed as  

 

25°C in Figure 13, 14).  

 

t

av = 

Average time in avalanche. 

 

D = Duty cycle in avalanche =  t

av 

·f 

 

Z

thJC

(D, t

av

) = Transient thermal resistance, see Figures 13) 

 

P

D (ave)

 = 1/2 ( 1.3·BV·I

av

) = 

T/ Z

thJC

 

I

av

 = 2

T/ [1.3·BV·Z

th

E

AS (AR) 

= P

D (ave)

·t

av

 

1E-006

1E-005

0.0001

0.001

0.01

0.1

t1 , Rectangular Pulse Duration (sec)

0.0001

0.001

0.01

0.1

1

T

he

rm

al

 R

es

po

ns

Z  

th

JC

 )

0.20

0.10

D = 0.50

0.02

0.01

0.05

SINGLE PULSE

( THERMAL RESPONSE )

Notes:

1. Duty Factor D = t1/t2

2. Peak Tj = P dm x Zthjc + Tc

Ri (°C/W) 

I (sec)

0.103731 

0.000184 

0.196542 

0.001587 

0.098271 

0.006721 

J

J

1

1

2

2

3

3

R

1

R

1

R

2

R

2

R

3

R

3

C

Ci= 

iRi

Ci= 

iRi

1.0E-06

1.0E-05

1.0E-04

1.0E-03

1.0E-02

1.0E-01

tav (sec)

1

10

100

1000

A

va

la

nc

he

 C

ur

re

nt

 (

A

)

0.05

Duty Cycle = Single Pulse

0.10

Allowed avalanche Current vs avalanche 
pulsewidth, tav, assuming 

 j = 25°C and 

Tstart = 150°C.

0.01

Allowed avalanche Current vs avalanche 
pulsewidth, tav, assuming 

Tj = 150°C and 

Tstart =25°C (Single Pulse)

25

50

75

100

125

150

175

Starting TJ , Junction Temperature (°C)

0

50

100

150

200

250

300

E

A

R

 ,

 A

va

la

nc

he

 E

ne

rg

(m

J)

TOP          Single Pulse                
BOTTOM   1% Duty Cycle
ID = 180A

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/auirls3036-7p-html.html
background image

 

AUIRLS3036-7P 

 

2015-11-4 

 

Fig 16.  Threshold Voltage vs. Temperature 

Fig. 18 - Typical Recovery Current vs. di

f

/dt  

Fig. 20 - Typical Stored Charge vs. di

f

/dt  

Fig. 17 - Typical Recovery Current vs. di

f

/dt  

-75 -50 -25

0

25

50

75 100 125 150 175

TJ , Temperature ( °C )

1.0

1.5

2.0

2.5

3.0

V

G

S

(t

h)

 G

at

th

re

sh

ol

V

ol

ta

ge

 (

V

)

ID = 1.0A

ID = 1.0mA

ID = 250µA

100

200

300

400

500

600

700

800

900

dif / dt - (A / µs)

0

6

12

18

24

I R

R

M

 -

 (

A

)

IF = 120A
VR = 51V
TJ = 125°C   
TJ =  25°C  

100

200

300

400

500

600

700

800

900

dif / dt - (A / µs)

0

6

12

18

24

I R

R

M

 -

 (

A

)

IF = 180A
VR = 51V
TJ = 125°C   
TJ =  25°C  

100

200

300

400

500

600

700

800

900

dif / dt - (A / µs)

0

200

400

600

800

1000

Q

R

R

 -

 (

nC

)

IF = 120A
VR = 51V
TJ = 125°C   
TJ =  25°C  

100

200

300

400

500

600

700

800

900

dif / dt - (A / µs)

0

200

400

600

800

1000

Q

R

R

 -

 (

nC

)

IF = 180A
VR = 51V
TJ = 125°C   
TJ =  25°C  

Fig. 19 - Typical Stored Charge vs. di

f

/dt  

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/auirls3036-7p-html.html
background image

 

AUIRLS3036-7P 

 

2015-11-4 

 

Fig 21. Peak Diode Recovery dv/dt Test Circuit for N-Channel HEXFET® Power MOSFETs 

Fig 22a.  Unclamped Inductive Test Circuit 

Fig 22b.  Unclamped Inductive Waveforms 

Fig 23a.  Switching Time Test Circuit 

Fig 24a.  Gate Charge Test Circuit 

Fig 24b.   Gate Charge Waveform 

R G

IAS

0.01

tp

D.U.T

L

VDS

+

- VDD

DRIVER

A

15V

20V

tp

V

(BR)DSS

I

AS

Fig 23b.  Switching Time Waveforms 

Vds

Vgs

Id

Vgs(th)

Qgs1 Qgs2

Qgd

Qgodr

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/auirls3036-7p-html.html
background image

 

AUIRLS3036-7P 

 

2015-11-4 

 

D

2

Pak - 7 Pin Package Outline (Dimensions are shown in millimeters (inches)) 

Note: For the most current drawing please refer to IR website at 

http://www.irf.com/package/

 

D

2

Pak - 7 Pin Part Marking Information 

YWWA 

XX    

    XX 

Date Code 

Y= Year 

WW= Work Week 

AULS3036-7P 

Lot Code 

Part Number 

IR Logo 

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/auirls3036-7p-html.html
background image

 

AUIRLS3036-7P 

 

2015-11-4 

D

2

Pak - 7 Pin Tape and Reel 

Note: For the most current drawing please refer to IR website at 

http://www.irf.com/package/

 

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/auirls3036-7p-html.html
background image

 

AUIRLS3036-7P 

10 

 

2015-11-4 

 

†  Highest passing voltage. 

Published by 
Infineon Technologies AG 
81726 München, Germany 

© 

Infineon Technologies AG 2015 

All Rights Reserved. 
 
IMPORTANT NOTICE
 
The information given in this document shall in no event be regarded as a guarantee of conditions or characteristics 
(“Beschaffenheitsgarantie”). With respect to any examples, hints or any typical values stated herein and/or any 
information regarding the application of the product, Infineon Technologies hereby disclaims any and all warranties and 
liabilities of any kind, including without limitation warranties of non-infringement of intellectual property rights of any third 
party.  
In addition, any information given in this document is subject to customer’s compliance with its obligations stated in this 
document and any applicable legal requirements, norms and standards concerning customer’s products and any use of 
the product of Infineon Technologies in customer’s applications.  
The data contained in this document is exclusively intended for technically trained staff. It is the responsibility of 
customer’s technical departments to evaluate the suitability of the product for the intended application and the 
completeness of the product information given in this document with respect to such application.   
For further information on the product, technology, delivery terms and conditions and prices please contact your nearest 
Infineon Technologies office (

www.infineon.com

). 

WARNINGS 
Due to technical requirements products may contain dangerous substances. For information on the types in question 
please contact your nearest Infineon Technologies office. 
Except as otherwise explicitly approved by Infineon Technologies in a written document signed by authorized 
representatives of Infineon Technologies, Infineon Technologies’ products may not be used in any applications where a 
failure of the product or any consequences of the use thereof can reasonably be expected to result in personal injury.  

Qualification Information  

Qualification Level 

Automotive 

(per AEC-Q101)  

Comments: This part number(s) passed Automotive qualification. Infineon’s  
Industrial and Consumer qualification level is granted by extension of the higher 
Automotive level. 

D

2

-Pak 7 Pin 

MSL1  

ESD 

Machine Model  

Class M4 (+/- 800V)

 

 

AEC-Q101-002 

Human Body Model  

Class H3A (+/- 6000V)

 

 

AEC-Q101-001 

Charged Device Model 

Class C5 (+/- 2000V)

 

 

AEC-Q101-005 

RoHS Compliant 

Yes 

 Moisture Sensitivity Level    

Revision History  

Date Comments 

11/4/2015 



Updated datasheet with corporate template 



Corrected ordering table on page 1. 

4/2/2014 



Added  "Logic Level Gate Drive" bullet in the features section on page 1 



Updated  part marking  on page 8 



Updated typo on the fig.19 and fig.20, unit of y-axis from "A" to "nC" on page 6. 



Updated data sheet with new IR corporate template 

Maker
Infineon Technologies