AUIRLL024Z Product Datasheet

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/auirll024z-html.html
background image

 

AUIRLL024Z 

V

DSS 

55V 

R

DS(on)

   typ. 

48m



I

D  

5.0A 

              max. 

60m



Description 
Specifically designed for Automotive applications, this HEXFET® 
Power MOSFET utilizes the latest processing techniques to 
achieve extremely low on-resistance per silicon area.  Additional 
features of this design  are a junction operating temperature, fast 
switching speed and improved repetitive avalanche rating . These 
features combine to make this design an extremely efficient and 
reliable device for use in Automotive applications and a wide 
variety of other applications. 

Features 

  Advanced Process Technology 

  Ultra Low On-Resistance 

  Logic Level Gate Drive 

  150°C Operating Temperature 
 Fast Switching 

  Repetitive Avalanche Allowed up to Tjmax 

  Lead-Free, RoHS Compliant 

  Automotive Qualified *  

 

2015-10-29 

HEXFET® is a registered trademark of Infineon. 
*Qualification standards can be found at 

www.infineon.com

 

 

AUTOMOTIVE GRADE 

Symbol Parameter 

Max. 

Units 

I

D

 @ T

A

 = 25°C 

Continuous Drain Current, V

GS

 @ 10V  5.0 

 

I

D

 @ T

A

 = 70°C 

Continuous Drain Current, V

GS

 @ 10V  4.0 

I

DM 

Pulsed Drain Current  40 

P

D

 @T

A

 = 25°C 

Maximum Power Dissipation (PCB Mount)   2.8 

W  

P

D

 @T

A

 = 25°C 

Maximum Power Dissipation (PCB Mount)     1.0 

  

Linear Derating Factor (PCB Mount)   0.02 

W/°C 

V

GS 

Gate-to-Source Voltage 

 ± 16 

E

AS  

Single Pulse Avalanche Energy (Thermally Limited)  21 

E

AS (Tested) 

Single Pulse Avalanche Energy (Tested Value)  38 

I

AR 

Avalanche Current  

See Fig. 12a, 12b, 15, 16 

E

AR 

Repetitive Avalanche Energy  

 

mJ  

T

J  

Operating Junction and 

-55  to + 150 

°C 

T

STG 

Storage Temperature Range 

  

mJ   

Absolute Maximum Ratings 

Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device.   These are stress 
ratings only; and functional operation of the device at these or any other condition beyond those indicated in the specifications is not 
implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability. The thermal resistance 
and power dissipation ratings are measured under board mounted and still air conditions. Ambient temperature (TA) is 25°C, unless 
otherwise specified. 

Thermal Resistance  

Symbol Parameter 

Typ. 

Max. 

Units 

°C/W   

R

JA

 

Junction-to-Ambient (PCB Mount, steady state)  

––– 

45 

R

JA

  

Junction-to-Ambient (PCB Mount, steady state)  

––– 

120 

SOT-223 

AUIRLL024Z 

Base part number 

Package Type 

Standard Pack 

Orderable Part Number   

Form 

Quantity 

AUIRLL024Z 

SOT-223 

Tape and Reel  

2500 

AUIRLL024ZTR 

G D S 

Gate Drain Source 

HEXFET

® 

Power MOSFET 

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/auirll024z-html.html
background image

 

AUIRLL024Z 

 

2015-10-29 

Notes:

 Repetitive rating;  pulse width limited by max. junction temperature. (See fig. 11) 

  Limited by T

Jmax

, Starting T

J

 = 25°C, L = 4.8mH, R

G

 = 25

, I

AS

 = 3.A. V

GS

 = 10V.Part not recommended for use above this value. 

 Pulse width 

1.0ms; duty cycle  2%. 

  C

oss eff

. is a fixed capacitance that gives the same charging time as C

oss

 while V

DS

 is rising from 0 to 80% V

DSS

  Limited by T

Jmax

 , see Fig.12a, 12b, 15, 16 for typical repetitive avalanche performance.   

  This value determined from sample failure population, starting T

J

 = 25°C, L = 4.8mH, R

G

 = 25

, I

AS

 = 3.0A, V

GS

 =10V. 



When mounted on 1 inch square copper board. 

  When mounted on FR-4 board using minimum recommended footprint. 

Static @ T

J

 = 25°C (unless otherwise specified) 

  

Parameter Min. 

Typ. 

Max. 

Units 

Conditions 

V

(BR)DSS 

Drain-to-Source Breakdown Voltage 

55 

–––  ––– 

V  V

GS

 = 0V, I

D

 = 250µA 

V

(BR)DSS

/

T

J  

Breakdown Voltage Temp. Coefficient 

–––  0.049  –––  V/°C  Reference to 25°C, I

D

 = 1mA  

R

DS(on) 

    

Static Drain-to-Source On-Resistance     

––– 48  60 

V

GS

 = 10V, I

D

 = 3.0A  

––– –––  80 

V

GS

 = 5.0V, I

D

 = 3.0A  

––– ––– 100 

V

GS

 = 4.5V, I

D

 = 3.0A  

V

GS(th) 

Gate Threshold Voltage 

1.0 

––– 

3.0 

V  V

DS

 = V

GS

, I

D

 = 250µA 

gfs 

Forward Trans conductance 

7.5 

–––  ––– 

S  V

DS

 = 25V, I

D

 = 3.0A 

I

DSS 

  

Drain-to-Source Leakage Current   

––– –––  20 

µA 

V

DS

 = 55V, V

GS

 = 0V 

––– ––– 250 

V

DS

 = 55V,V

GS

 = 0V,T

J

 = 125°C 

I

GSS 

  

Gate-to-Source Forward Leakage 

––– 

–––  200 

nA 

V

GS

 = 16V 

Gate-to-Source Reverse Leakage 

––– 

–––  -200 

V

GS

 = -16V 

Dynamic  Electrical Characteristics @ T

J

 = 25°C (unless otherwise specified) 

Q

Total Gate Charge  

––– 

7.0 

11 

nC  

I

D

 = 3.0A 

Q

gs 

Gate-to-Source Charge 

––– 

1.5 

––– 

V

DS

 = 44V 

Q

gd 

Gate-to-Drain Charge 

––– 

4.0 

––– 

V

GS

 = 5.0V  

t

d(on) 

Turn-On Delay Time 

––– 

8.6 

––– 

ns 

V

DD

 = 28V 

t

Rise Time 

––– 

33 

––– 

I

D

 = 3.0A 

t

d(off) 

Turn-Off Delay Time 

––– 

20 

––– 

R

= 56



t

Fall Time 

––– 

15 

––– 

V

GS

 = 5.0V  

C

iss 

Input Capacitance 

––– 

380  ––– 

pF   

V

GS

 = 0V 

C

oss 

Output Capacitance 

––– 

66 

––– 

V

DS

 = 25V 

C

rss 

Reverse Transfer Capacitance 

––– 

36 

––– 

ƒ = 1.0MHz 

Diode Characteristics  

  

        Parameter 

Min.  Typ.  Max.  Units 

Conditions 

I

  

Continuous Source Current  

––– ––– 5.0 

MOSFET symbol 

(Body Diode) 

showing  the 

I

SM 

  

Pulsed Source Current 

––– –––  40 

integral reverse 

(Body Diode)

p-n junction diode. 

V

SD 

Diode Forward Voltage 

––– 

––– 

1.3 

V  T

J

 = 25°C,I

= 3.0A,V

GS

 = 0V 

t

rr  

Reverse Recovery Time  

––– 

15 

23 

ns   T

J

 = 25°C ,I

F

 = 3.0A, V

DD

 = 28V 

Q

rr  

Reverse Recovery Charge  

––– 

9.1 

14 

nC    di/dt = 100A/µs 

t

on 

Forward Turn-On Time 

Intrinsic turn-on time is negligible (turn-on is dominated by LS+LD) 

m



C

oss 

Output Capacitance 

––– 

220  ––– 

V

GS

 = 0V, V

DS

 = 1.0V,ƒ = 1.0MHz 

C

oss 

Output Capacitance 

––– 

53 

––– 

V

GS

 = 0V, V

DS

 = 44V,ƒ = 1.0MHz 

C

oss eff. 

Effective Output Capacitance 

––– 

93 

––– 

V

GS

 = 0V, V

DS

 = 0V to 44V  

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/auirll024z-html.html
background image

 

AUIRLL024Z 

 

2015-10-29 

Fig. 2 Typical Output Characteristics 

Fig. 3 

Typical Transfer Characteristics

 

 

Fig. 4 

Typical Forward Trans conductance 

vs. Drain Current 

Fig. 1 Typical Output Characteristics 

0.1

1

10

100

VDS, Drain-to-Source Voltage (V)

0.1

1

10

100

I D

, D

ra

in

-t

o

-S

ou

rc

e

 C

u

rr

en

(A

)

VGS

TOP           10V

9.0V

7.0V

5.0V

4.5V

4.0V

3.5V

BOTTOM

3.0V

60µs PULSE WIDTH

Tj = 25°C

3.0V

0.1

1

10

100

VDS, Drain-to-Source Voltage (V)

0.1

1

10

100

I D

, D

ra

in

-t

o-

S

ou

rc

C

u

rr

en

t (

A

)

3.0V

60µs PULSE WIDTH

Tj = 150°C

VGS

TOP           10V

9.0V

7.0V

5.0V

4.5V

4.0V

3.5V

BOTTOM

3.0V

0

2

4

6

8

10

VGS, Gate-to-Source Voltage (V)

0.1

1

10

100

I D

, D

ra

in

-t

o-

S

ou

rc

C

ur

re

nt

 



)

TJ = 25°C

TJ = 150°C

VDS = 10V

60µs PULSE WIDTH

0

2

4

6

8

10

12

ID,Drain-to-Source Current (A)

0

2

4

6

8

10

G

fs

, F

or

w

ar

T

ra

ns

co

nd

uc

ta

nc

(S

)

TJ = 25°C

TJ = 150°C

VDS = 10V 
300µs PULSE WIDTH

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/auirll024z-html.html
background image

 

AUIRLL024Z 

 

2015-10-29 

Fig 5.  Typical Capacitance vs.  
 

      Drain-to-Source Voltage

 

Fig 6.  Typical Gate Charge vs. 
 

      Gate-to-Source Voltage

 

 

 

Fig 8.  Maximum Safe Operating Area  

Fig. 7 Typical Source-to-Drain Diode 

 Forward Voltage 

1

10

100

VDS, Drain-to-Source Voltage (V)

10

100

1000

10000

C

, C

ap

ac

ita

nc

e(

pF

)

VGS   = 0V,       f = 1 MHZ

Ciss    = Cgs + Cgd,  C ds SHORTED
Crss    = Cgd 
Coss   = Cds + Cgd

Coss

Crss

Ciss

0

1

2

3

4

5

6

7

8

 QG  Total Gate Charge (nC)

0.0

1.0

2.0

3.0

4.0

5.0

6.0

V

G

S

, G

at

e-

to

-S

ou

rc

V

ol

ta

ge

 (

V

)

VDS= 44V

VDS= 28V

VDS= 11V

ID= 3.0A

0.0

0.5

1.0

1.5

2.0

2.5

3.0

VSD, Source-to-Drain Voltage (V)

0

1

10

100

I S

D

, R

ev

er

se

 D

ra

in

 C

ur

re

nt

 (

A

)

TJ = 25°C

TJ = 150°C

VGS = 0V

0.1

1.0

10

100

1000.0

VDS, Drain-to-Source Voltage (V)

0.0001

0.001

0.01

0.1

1

10

100

1000

I D

,  

D

ra

in

-t

o-

S

ou

rc

C

ur

re

nt

 (

A

)

1msec

10msec

OPERATION IN THIS AREA 

LIMITED BY R DS(on)

100µsec

TA = 25°C

Tj = 150°C

Single Pulse

DC

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/auirll024z-html.html
background image

 

AUIRLL024Z 

 

2015-10-29 

Fig 11.  Maximum Effective Transient Thermal Impedance, Junction-to-Ambient 

Fig 9.  Maximum Drain Current Vs. 
           Ambient Temperature 

Fig 10.  Normalized On-Resistance 
             vs. Temperature 

25

50

75

100

125

150

 TA , Ambient Temperature (°C)

0

1

2

3

4

5

I D

,   

D

ra

in

 C

ur

re

nt

 (

A

)

-60 -40 -20 0

20 40 60 80 100 120 140 160

TJ , Junction Temperature (°C)

0.5

1.0

1.5

2.0

R

D

S

(o

n)

 ,

 D

ra

in

-t

o-

S

ou

rc

O

R

es

is

ta

nc

   

   

   

   

   

   

   

 (

N

or

m

al

iz

ed

)

ID = 3.0A

VGS = 10V

1E-006

1E-005

0.0001

0.001

0.01

0.1

1

10

100

t1 , Rectangular Pulse Duration (sec)

0.0001

0.001

0.01

0.1

1

10

100

T

he

rm

al

 R

es

po

ns

Z

 th

JA

 )

0.20

0.10

D = 0.50

0.02

0.01

0.05

SINGLE PULSE

( THERMAL RESPONSE )

Notes:

1. Duty Factor D = t1/t2

2. Peak Tj = P dm x Zthja + Tc

Ri (°C/W) 

i (sec)

5.3396 

0.000805 

19.771 

20.80000 

19.881 

0.706300 

J

J

1

1

2

2

3

3

R

1

R

1

R

2

R

2

R

3

R

3

C

C

Ci= 

iRi

Ci= 

iRi

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/auirll024z-html.html
background image

 

AUIRLL024Z 

 

2015-10-29 

Fig 12a. 

Unclamped Inductive Test Circuit

 

Fig 12c.  Maximum Avalanche Energy 

Vs. Drain Current 

Fig 12b.  Unclamped Inductive Waveforms 

tp

V

(BR)DSS

I

AS

RG

IAS

0.01

tp

D.U.T

L

VDS

+

- VDD

DRIVER

A

15V

20V

Fig 13b.  Gate Charge Test Circuit 

Vds

Vgs

Id

Vgs(th)

Qgs1 Qgs2

Qgd

Qgodr

Fig 13a.  Basic Gate Charge Waveform 

Fig 14.  

Threshold Voltage vs. Temperature 

25

50

75

100

125

150

Starting TJ , Junction Temperature (°C)

0

20

40

60

80

100

E

A

S

 , 

S

in

gl

P

ul

se

 A

va

la

nc

he

 E

ne

rg

(m

J)

ID

TOP         3.0A

0.80A

BOTTOM 0.69A

-75

-50

-25

0

25

50

75

100 125 150

TJ , Temperature ( °C )

1.0

1.5

2.0

2.5

V

G

S

(t

h)

 G

at

th

re

sh

ol

V

ol

ta

ge

 (

V

)

ID = 250µA

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/auirll024z-html.html
background image

 

AUIRLL024Z 

 

2015-10-29 

Fig 15.  Typical Avalanche Current vs. Pulse width  

Fig 16.  Maximum Avalanche Energy 

vs. Temperature 

Notes on Repetitive Avalanche Curves , Figures 15, 16: 
(For further info, see AN-1005 at www.infineon.com)
 
1.  Avalanche failures assumption:  
 

Purely a thermal phenomenon and failure occurs at a temperature far in  

 

excess of T

jmax

. This is validated for every part type. 

2.  Safe operation in Avalanche is allowed as long as T

jmax

 is not exceeded. 

3.   Equation below based on circuit and waveforms shown in Figures 12a, 12b. 
4.   P

D (ave) 

= Average power dissipation per single avalanche pulse. 

5.   BV = Rated breakdown voltage (1.3 factor accounts for voltage increase  
 during 

avalanche). 

6.   I

av 

= Allowable avalanche current. 

7. 

T

 = 

Allowable rise in junction temperature, not to exceed

 

T

jmax 

(assumed as  

 

25°C in Figure 14, 15).  

 

t

av = 

Average time in avalanche. 

 

D = Duty cycle in avalanche =  t

av 

·f 

 

Z

thJC

(D, t

av

) = Transient thermal resistance, see Figures 13) 

 

P

D (ave)

 = 1/2 ( 1.3·BV·I

av

) = 

T/ Z

thJC

 

I

av

 = 2

T/ [1.3·BV·Z

th

E

AS (AR) 

= P

D (ave)

·t

av

 

1.0E-05

1.0E-04

1.0E-03

1.0E-02

1.0E-01

1.0E+00

1.0E+01

tav (sec)

0.01

0.1

1

10

100

A

va

la

nc

he

 C

ur

re

nt

 (

A

)

0.05

Duty Cycle = Single Pulse

0.10

Allowed avalanche Current vs 
avalanche pulsewidth, tav 
assuming   Tj = 25°C due to 

avalanche losses

0.01

25

50

75

100

125

150

Starting TJ , Junction Temperature (°C)

0

5

10

15

20

25

E

A

R

 , 

A

va

la

nc

he

 E

ne

rg

(m

J)

TOP          Single Pulse                
BOTTOM   1% Duty Cycle
ID = 3.0A

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/auirll024z-html.html
background image

 

AUIRLL024Z 

 

2015-10-29 

Fig 18a.  Switching Time Test Circuit 

Fig 18b.  Switching Time Waveforms 

Fig 17. Peak Diode Recovery dv/dt Test Circuit for N-Channel HEXFET

®

 Power MOSFETs 

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/auirll024z-html.html
background image

 

AUIRLL024Z 

 

2015-10-29 

 

 

SOT-223(TO-261AA) Part Marking Information 

SOT-223 (TO-261AA) Package Outline 

(Dimensions are shown in millimeters (inches)

 

Note: For the most current drawing please refer to IR website at 

http://www.irf.com/package/

 

LL024Z

Date Code
Y= Year
WW= Work Week
A= Automotive, Lead Free

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/auirll024z-html.html
background image

 

AUIRLL024Z 

10 

 

2015-10-29 

SOT-223(TO-261AA) Tape and Reel  (

Dimensions are shown in millimeters (inches)

 

4.10 (.161)
3.90 (.154)

1.85 (.072)
1.65 (.065)

2.05 (.080)
1.95 (.077)

12.10 (.475)
11.90 (.469)

7.10 (.279)
6.90 (.272)

1.60 (.062)
1.50 (.059)
      TYP.

7.55 (.297)
7.45 (.294)

7.60 (.299)
7.40 (.292)

2.30 (.090)
2.10 (.083)

16.30 (.641)
15.70 (.619)

0.35 (.013)
0.25 (.010)

FEED DIRECTION

TR

13.20 (.519)
12.80 (.504)

50.00 (1.969)
      MIN.

330.00
(13.000)
  MAX.

NOTES :
1. CONTROLLING DIMENSION: MILLIMETER.
2. OUTLINE CONFORMS TO EIA-481 & EIA-541.
3. EACH O330.00 (13.00) REEL CONTAINS 2,500 DEVICES.

3

NOTES :
1.   OUTLINE COMFORMS TO EIA-418-1.
2.   CONTROLLING DIMENSION: MILLIMETER..
3.   DIMENSION MEASURED @ HUB.
4.   INCLUDES FLANGE DISTORTION @ OUTER EDGE.

15.40 (.607)
11.90 (.469)

18.40 (.724)
      MAX.

14.40 (.566)
12.40 (.488)

4

4

Note: For the most current drawing please refer to IR website at 

http://www.irf.com/package/

 

Maker
Infineon Technologies