AUIRL7766M2TR
Base Part Number
Package Type
Standard Pack
Form Quantity
AUIRL7766M2
DirectFET Medium Can
Tape and Reel
4800
AUIRL7766M2TR
Orderable Part Number
AUTOMOTIVE GRADE
V
(BR)DSS
100V
R
DS(on)
typ.
8.0m
I
D (Silicon Limited)
51A
max.
10m
Q
g (typical)
44nC
DirectFET
®
ISOMETRIC
M4
Automotive DirectFET
®
Power MOSFET
Applicable DirectFET
®
Outline and Substrate Outline
SB
SC
M2
M4
L4
L6
L8
Description
The AUIRL7766M2 combines the latest Automotive HEXFET® Power MOSFET Silicon technology with the advanced DirectFET® packaging
technology to achieve exceptional performance in a package that has the footprint of an SO-8 or 5X6mm PQFN and only 0.7mm profile. The
DirectFET® package is compatible with existing layout geometries used in power applications, PCB assembly equipment and vapor phase, infra-red or
convection soldering techniques, when application note AN-1035 is followed regarding the manufacturing methods and processes. The DirectFET®
package allows dual sided cooling to maximize thermal transfer in automotive power systems.
This HEXFET® Power MOSFET is designed for applications where efficiency and power density are of value. The advanced DirectFET® packaging
platform coupled with the latest silicon technology allows the AUIRL7766M2 to offer substantial system level savings and performance improvement
specifically in high frequency DC-DC and other heavy load applications on ICE, HEV and EV platforms. This MOSFET utilizes the latest processing
techniques to achieve low on-resistance and low Qg per silicon area. Additional features of this MOSFET are 175°C operating junction temperature
and high repetitive peak current capability. These features combine to make this MOSFET a highly efficient, robust and reliable device for high current
automotive applications.
Absolute Maximum Ratings
Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only; and
functional operation of the device at these or any other condition beyond those indicated in the specifications is not implied. Exposure to absolute-
maximum-rated conditions for extended periods may affect device reliability. The thermal resistance and power dissipation ratings are measured under
board mounted and still air conditions. Ambient temperature (TA) is 25°C, unless otherwise specified.
Parameter Max.
Units
V
DS
Drain-to-Source Voltage
100
V
V
GS
Gate-to-Source Voltage
±16
I
D
@ T
C
= 25°C
Continuous Drain Current, V
GS
@ 10V (Silicon Limited) 51
A
I
D
@ T
C
= 100°C
Continuous Drain Current, V
GS
@ 10V (Silicon Limited) 36
I
D
@ T
A
= 25°C
Continuous Drain Current, V
GS
@ 10V (Silicon Limited) 10
I
DM
Pulsed Drain Current 204
P
D
@T
C
= 25°C
Power Dissipation 62.5
W
P
D
@T
A
= 25°C
Power Dissipation 2.5
E
AS
Single Pulse Avalanche Energy (Thermally Limited) 61
mJ
E
AS
(Tested)
Single Pulse Avalanche Energy 237
I
AR
Avalanche Current
See Fig. 16, 17, 18a, 18b
A
E
AR
Repetitive Avalanche Energy
mJ
T
P
Peak Soldering Temperature
270
°C
T
J
Operating Junction and
-55 to + 175
T
STG
Storage Temperature Range
1
2015-12-11
HEXFET® is a registered trademark of Infineon.
*Qualification standards can be found at
www.infineon.com
Advanced Process Technology
Optimized for Automotive DC-DC and
other Heavy Load Applications
Logic Level Gate Drive
Exceptionally Small Footprint and Low Profile
High Power Density
Low Parasitic Parameters
Dual Sided Cooling
175°C Operating Temperature
Repetitive Avalanche Capability for Robustness and Reliability
Lead free, RoHS and Halogen free
Automotive Qualified *
D
D
G
S
S
S
S
AUIRL7766M2TR
2
2015-12-11
Thermal Resistance
Symbol Parameter
Typ.
Max.
Units
R
JA
Junction-to-Ambient
–––
60
R
JA
Junction-to-Ambient
12.5
–––
R
JA
Junction-to-Ambient
20
–––
R
J-Can
Junction-to-Can –––
2.4
R
J-PCB
Junction-to-PCB Mounted
1.0
–––
Linear Derating Factor 0.42
W/°C
°C/W
Static Electrical Characteristics @ T
J
= 25°C (unless otherwise specified)
Symbol Parameter
Min.
Typ.
Max.
Units
Conditions
V
(BR)DSS
Drain-to-Source Breakdown Voltage
100
–––
–––
V
V
GS
= 0V, I
D
= 250µA
V
(BR)DSS
/
T
J
Breakdown Voltage Temp. Coefficient
––– 0.067 –––
V/°C Reference to 25°C, I
D
= 5.0mA
R
DS(on)
Static Drain-to-Source On-Resistance
––– 8.0 10
V
GS
= 10V, I
D
= 31A
––– 8.7 10.5
V
GS
= 4.5V, I
D
= 26A
V
GS(th)
Gate Threshold Voltage
1.0
–––
2.5
V
V
DS
= V
GS
, I
D
= 150µA
V
GS(th)
/
T
J
Gate Threshold Voltage Coefficient
–––
-7.3
––– mV/°C
gfs Forward
Transconductance
110
–––
–––
S
V
DS
= 25V, I
D
= 31A
R
G
Internal Gate Resistance
––– 0.88
–––
I
DSS
Drain-to-Source Leakage Current
––– ––– 5.0
µA
V
DS
= 100V, V
GS
= 0V
––– ––– 250
V
DS
= 100V, V
GS
= 0V, T
J
= 125°C
I
GSS
Gate-to-Source Forward Leakage
–––
–––
100
nA
V
GS
= 16V
Gate-to-Source Reverse Leakage
–––
––– -100
V
GS
= -16V
Dynamic Electrical Characteristics @ T
J
= 25°C (unless otherwise specified)
Symbol Parameter
Min.
Typ.
Max.
Units
Conditions
Q
g
Total Gate Charge
–––
44
66
nC
V
DS
= 50V
Q
gs1
Gate-to-Source Charge
–––
9.6
–––
V
GS
= 4.5V
Q
gs2
Gate-to-Source Charge
–––
4.5
–––
I
D
= 31A
Q
gd
Gate-to-Drain ("Miller") Charge
––– 19 –––
See Fig. 11
Q
godr
Gate Charge Overdrive
––– 10.9
–––
Q
sw
Switch Charge (Q
gs2
+ Q
gd
) –––
23.5
–––
Q
oss
Output Charge
–––
35
–––
nC V
DS
= 16V, V
GS
= 0V
t
d(on)
Turn-On Delay Time
–––
16
–––
ns
V
DD
= 50V
t
r
Rise Time
–––
24
–––
I
D
= 31A
t
d(off)
Turn-Off Delay Time
–––
120
–––
R
G
= 6.8
t
f
Fall Time
–––
49
–––
V
GS
= 10V
C
iss
Input Capacitance
––– 5305 –––
pF
V
GS
= 0V
C
oss
Output Capacitance
–––
460
–––
V
DS
= 25V
C
rss
Reverse Transfer Capacitance
–––
195
–––
ƒ = 1.0 MHz
C
oss
Output Capacitance
––– 2735 –––
V
GS
= 0V, V
DS
= 1.0V, ƒ = 1.0 MHz
C
oss
Output Capacitance
–––
270
–––
V
GS
= 0V, V
DS
= 80V, ƒ = 1.0 MHz
C
oss
eff.
Effective Output Capacitance
–––
370
–––
V
GS
= 0V, V
DS
= 0V to 80V
m
Notes through are on page 3
AUIRL7766M2TR
3
2015-12-11
Diode Characteristics
Symbol
Parameter
Min. Typ. Max. Units
Conditions
I
S
Continuous Source Current
––– –––
51
A
MOSFET symbol
(Body Diode)
showing the
I
SM
Pulsed Source Current
––– –––
integral reverse
(Body Diode)
p-n junction diode.
V
SD
Diode Forward Voltage
–––
–––
1.3
V
T
J
= 25°C, I
S
= 31A, V
GS
= 0V
t
rr
Reverse Recovery Time
––– 45 68 ns T
J
= 25°C, I
F
= 31A, V
DD
= 25V
Q
rr
Reverse Recovery Charge
––– 83 125 nC dv/dt = 100A/µs
204
Surface mounted on 1 in.
square Cu board (still air).
Mounted on minimum
footprint full size board with
metalized back and with small
clip heatsink (still air).
Mounted to a PCB with
small clip heatsink (still air)
Click on this section to link to the appropriate technical paper.
Click on this section to link to the DirectFET
®
Website.
Surface mounted on 1 in. square Cu board, steady state.
T
C
measured with thermocouple mounted to top (Drain) of part.
Repetitive rating; pulse width limited by max. junction temperature.
Starting T
J
= 25°C, L = 0.13mH, R
G
= 50
, I
AS
= 31A, V
GS
= 20V.
Pulse width
400µs; duty cycle 2%.
Used double sided cooling, mounting pad with large heatsink.
Mounted on minimum footprint full size board with metalized back and with small clip heat sink.
R
is measured at T
J
of approximately 90°C.
D
S
G
AUIRL7766M2TR
4
2015-12-11
Fig. 3
Typical On-Resistance vs. Gate Voltage
Fig. 1 Typical Output Characteristics
Fig 5. Transfer Characteristics
Fig 6. Normalized On-Resistance vs. Temperature
Fig. 2 Typical Output Characteristics
0.1
1
10
100
1000
VDS, Drain-to-Source Voltage (V)
0.1
1
10
100
1000
I D
, D
ra
in
-t
o
-S
ou
rc
e
C
u
rr
en
t
(A
)
VGS
TOP 15V
10V
7.0V
4.5V
3.5V
3.0V
2.8V
BOTTOM
2.5V
60µs PULSE WIDTH
Tj = 25°C
2.5V
0.1
1
10
100
1000
VDS, Drain-to-Source Voltage (V)
1
10
100
1000
I D
, D
ra
in
-t
o-
S
ou
rc
e
C
u
rr
en
t (
A
)
2.5V
60µs PULSE WIDTH
Tj = 175°C
VGS
TOP 15V
10V
7.0V
4.5V
3.5V
3.0V
2.8V
BOTTOM
2.5V
2
4
6
8
10
12
14
16
VGS, Gate -to -Source Voltage (V)
0
5
10
15
20
25
R
D
S
(o
n)
,
D
ra
in
-t
o
-S
ou
rc
e
O
n
R
es
is
ta
nc
e
(m
)
ID = 31A
TJ = 125°C
TJ = 25°C
0
25
50
75
100 125 150 175 200
ID, Drain Current (A)
0
10
20
30
40
R
D
S
(o
n)
,
D
ra
in
-t
o
-S
ou
rc
e
O
n
R
es
is
ta
nc
e
(m
)
TJ = 25°C
TJ = 125°C
Vgs = 10V
1
2
3
4
5
VGS, Gate-to-Source Voltage (V)
0.1
1
10
100
1000
I D
, D
ra
in
-t
o-
S
ou
rc
e
C
ur
re
nt
(A
)
TJ = -40°C
TJ = 25°C
TJ = 175°C
VDS = 50V
60µs PULSE WIDTH
-60 -40 -20 0 20 40 60 80 100120140160180
TJ , Junction Temperature (°C)
0.5
1.0
1.5
2.0
2.5
R
D
S
(o
n)
,
D
ra
in
-t
o-
S
ou
rc
e
O
n
R
es
is
ta
nc
e
(
N
or
m
al
iz
ed
)
ID = 31A
VGS = 10V
Fig. 4
Typical On-Resistance vs. Drain Current
AUIRL7766M2TR
5
2015-12-11
Fig 8. Typical Source-Drain Diode Forward Voltage
Fig 9. Typical Forward Trans conductance vs. Drain Current
Fig 10. Typical Capacitance vs. Drain-to-Source Voltage
-75 -50 -25 0
25 50 75 100 125 150 175
TJ , Temperature ( °C )
0.5
1.0
1.5
2.0
2.5
3.0
V
G
S
(t
h)
, G
at
e
th
re
sh
ol
d
V
ol
ta
ge
(
V
)
ID = 150µA
ID = 250µA
ID = 1.0mA
ID = 1.0A
0.0
0.2
0.4
0.6
0.8
1.0
1.2
VSD, Source-to-Drain Voltage (V)
1.0
10
100
1000
I S
D
, R
ev
er
se
D
ra
in
C
ur
re
nt
(
A
)
TJ = -40°C
TJ = 25°C
TJ = 175°C
VGS = 0V
0
20
40
60
80
100
120
ID,Drain-to-Source Current (A)
0
50
100
150
200
250
G
fs
, F
or
w
ar
d
T
ra
ns
co
nd
uc
ta
nc
e
(S
)
TJ = 25°C
TJ = 175°C
VDS = 5.0V
380µs PULSE WIDTH
Fig. 7 Typical Threshold Voltage vs.
Junction Temperature
1
10
100
VDS, Drain-to-Source Voltage (V)
100
1000
10000
100000
C
, C
ap
ac
ita
nc
e
(p
F
)
VGS = 0V, f = 1 MHZ
Ciss = Cgs + Cgd, C ds SHORTED
Crss = Cgd
Coss = Cds + Cgd
Coss
Crss
Ciss
0
20
40
60
80
100
120
QG, Total Gate Charge (nC)
0.0
2.0
4.0
6.0
8.0
10.0
12.0
14.0
V
G
S
, G
at
e-
to
-S
ou
rc
e
V
ol
ta
ge
(
V
)
VDS= 80V
VDS= 50V
VDS= 20V
ID= 31A
Fig 11. Typical Gate Charge vs.
Gate-to-Source Voltage
25
50
75
100
125
150
175
TC , Case Temperature (°C)
0
10
20
30
40
50
60
I D
,
D
ra
in
C
ur
re
nt
(
A
)
Fig 12. Maximum Drain Current vs. Case Temperature
AUIRL7766M2TR
6
2015-12-11
Fig 16. Typical Avalanche Current vs. Pulse Width
Fig 15. Maximum Effective Transient Thermal Impedance, Junction-to-Case
0
1
10
100
1000
VDS, Drain-to-Source Voltage (V)
0.1
1
10
100
1000
I D
,
D
ra
in
-t
o-
S
ou
rc
e
C
ur
re
nt
(
A
)
OPERATION IN THIS AREA
LIMITED BY R DS(on)
Tc = 25°C
Tj = 175°C
Single Pulse
100µsec
1msec
10msec
DC
25
50
75
100
125
150
175
Starting TJ , Junction Temperature (°C)
0
50
100
150
200
250
E
A
S
,
S
in
gl
e
P
ul
se
A
va
la
nc
he
E
ne
rg
y
(m
J)
ID
TOP 6.7A
17A
BOTTOM 31A
Fig 14. Maximum Avalanche Energy vs. Temperature
1E-006
1E-005
0.0001
0.001
0.01
0.1
1
t1 , Rectangular Pulse Duration (sec)
0.001
0.01
0.1
1
10
T
he
rm
al
R
es
po
ns
e
(
Z
th
JC
)
°
C
/W
0.20
0.10
D = 0.50
0.02
0.01
0.05
SINGLE PULSE
( THERMAL RESPONSE )
Notes:
1. Duty Factor D = t1/t2
2. Peak Tj = P dm x Zthjc + Tc
J
J
1
1
2
2
3
3
R
1
R
1
R
2
R
2
R
3
R
3
Ci=
iRi
Ci=
iRi
C
C
4
4
R
4
R
4
0.07641
0.000021
0.36635
0.000737
0.94890
0.0391496
1.00767
0.0073206
Ri (°C/W)
i (sec)
Fig 13. Maximum Safe Operating Area
1.0E-06
1.0E-05
1.0E-04
1.0E-03
1.0E-02
1.0E-01
tav (sec)
0.01
0.1
1
10
100
1000
A
va
la
nc
he
C
ur
re
nt
(
A
)
0.05
Duty Cycle = Single Pulse
0.10
Allowed avalanche Current vs avalanche
pulsewidth, tav, assuming j = 25°C and
Tstart = 150°C.
0.01
Allowed avalanche Current vs avalanche
pulsewidth, tav, assuming Tj = 150°C and
Tstart =25°C (Single Pulse)
AUIRL7766M2TR
7
2015-12-11
Notes on Repetitive Avalanche Curves , Figures 16, 17:
(For further info, see AN-1005 at www.infineon.com)
1. Avalanche failures assumption:
Purely a thermal phenomenon and failure occurs at a temperature far in
excess of T
jmax
. This is validated for every part type.
2. Safe operation in Avalanche is allowed as long as T
jmax
is not exceeded.
3. Equation below based on circuit and waveforms shown in Figures 18a, 18b.
4. P
D (ave)
= Average power dissipation per single avalanche pulse.
5. BV = Rated breakdown voltage (1.3 factor accounts for voltage increase
during
avalanche).
6. I
av
= Allowable avalanche current.
7.
T
=
Allowable rise in junction temperature, not to exceed
T
jmax
(assumed as
25°C in Figure 16, 17).
t
av =
Average time in avalanche.
D = Duty cycle in avalanche = t
av
·f
Z
thJC
(D, t
av
) = Transient thermal resistance, see Figures 15)
P
D (ave)
= 1/2 ( 1.3·BV·I
av
) =
T/ Z
thJC
I
av
= 2
T/ [1.3·BV·Z
th
]
E
AS (AR)
= P
D (ave)
·t
av
Fig 17. Maximum Avalanche Energy vs. Temperature
Fig 18a. Unclamped Inductive Test Circuit
Fig 18b. Unclamped Inductive Waveforms
Fig 19a. Gate Charge Test Circuit
Fig 19b. Gate Charge Waveform
VDD
Fig 20a. Switching Time Test Circuit
Fig 20b. Switching Time Waveforms
25
50
75
100
125
150
175
Starting TJ , Junction Temperature (°C)
0
10
20
30
40
50
60
70
E
A
R
,
A
va
la
nc
he
E
ne
rg
y
(m
J)
TOP Single Pulse
BOTTOM 1.0% Duty Cycle
ID = 31A
AUIRL7766M2TR
8
2015-12-11
DirectFET
®
Board Footprint, M4 (Medium Size Can).
Please see DirectFET
®
application note AN-1035 for all details regarding the assembly of DirectFET
®
.
This includes all recommendations for stencil and substrate designs.
G
D
S
D
D
D
S
S
S
G = GATE
D = DRAIN
S = SOURCE
Note: For the most current drawing please refer to IR website at
http://www.irf.com/package/
AUIRL7766M2TR
9
2015-12-11
DirectFET
®
Outline Dimension, M4 Outline (Medium Size Can).
Please see DirectFET
®
application note AN-1035 for all details regarding the assembly of DirectFET
®
. This includes
all recommendations for stencil and substrate designs.
DirectFET
®
Part Marking
Note: For the most current drawing please refer to IR website at
http://www.irf.com/package/
0.032
0.78
0.82
0.031
0.015
0.017
0.38
0.42
R
0.003
0.02
0.08
0.001
M
P
0.029
0.007
0.68
0.09
0.74
0.17
0.027
0.003
L1
0.142
3.50
3.60
0.138
CODE
A
B
C
D
E
F
G
H
J
K
L
0.047
0.094
0.156
0.032
0.018
0.024
MAX
0.250
0.201
1.10
2.30
3.85
0.78
0.35
0.58
MIN
6.25
4.80
1.20
2.40
3.95
0.82
0.45
0.62
MAX
6.35
5.05
0.090
0.043
0.152
0.031
0.023
0.014
MIN
0.189
0.246
METRIC
IMPERIAL
DIMENSIONS
0.78
0.82
0.032
0.031
PART NUMBER
LOGO
BATCH NUMBER
DATE CODE
Line above the last character of
the date code indicates "Lead-Free"
"AU" = GATE AND
AUTOMOTIVE MARKING
AUIRL7766M2TR
10
2015-12-11
DirectFET
®
Tape & Reel Dimension (Showing component orientation)
Note: For the most current drawing please refer to IR website at
http://www.irf.com/package/
REEL DIMENSIONS
NOTE: Controlling dimensions in mm
Std reel quantity is 4800 parts, ordered as AUIRL7766M2TR.
B
C
MAX
N.C
N.C
0.520
N.C
N.C
0.724
0.567
0.606
IMPERIAL
H
MIN
330.0
20.2
12.8
1.5
100.0
N.C
12.4
11.9
STANDARD OPTION (QTY 4800)
CODE
A
B
C
D
E
F
G
H
MAX
N.C
N.C
13.2
N.C
N.C
18.4
14.4
15.4
MIN
12.992
0.795
0.504
0.059
3.937
N.C
0.488
0.469
METRIC
G
E
F
A
D
LOADED TAPE FEED DIRECTION
A
E
NOTE: CONTROLLING
DIMENSIONS IN MM
CODE
A
B
C
D
E
F
G
H
F
B
C
IMPERIAL
MIN
0.311
0.154
0.469
0.215
0.201
0.256
0.059
0.059
MAX
8.10
4.10
12.30
5.55
5.30
6.70
N.C
1.60
MIN
7.90
3.90
11.90
5.45
5.10
6.50
1.50
1.50
METRIC
DIMENSIONS
MAX
0.319
0.161
0.484
0.219
0.209
0.264
N.C
0.063
D
H
G