AUIRL3705Z
AUIRL3705ZS
AUIRL3705ZL
Absolute Maximum Ratings
Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress
ratings only; and functional operation of the device at these or any other condition beyond those indicated in the specifications is not
implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability. The thermal resistance
and power dissipation ratings are measured under board mounted and still air conditions. Ambient temperature (TA) is 25°C, unless
otherwise specified.
Features
Logic
Level
Advanced Process Technology
Ultra Low On-Resistance
175°C Operating Temperature
Fast
Switching
Repetitive Avalanche Allowed up to Tjmax
Lead-Free, RoHS Compliant
Automotive Qualified *
Description
Specifically designed for Automotive applications, this HEXFET® Power
MOSFET utilizes the latest processing techniques to achieve extremely low
on-resistance per silicon area. Additional features of this design are a 175°C
junction operating temperature, fast switching speed and improved repetitive
avalanche rating . These features combine to make this design an extremely
efficient and reliable device for use in Automotive applications and a wide
variety of other applications.
1
2015-10-29
HEXFET® is a registered trademark of Infineon.
*Qualification standards can be found at
www.infineon.com
AUTOMOTIVE GRADE
HEXFET
®
Power MOSFET
V
DSS
55V
R
DS(on)
typ.
6.5m
max.
8.0m
I
D (Silicon Limited)
86A
I
D (Package Limited)
75A
TO-220AB
AUIRL3705Z
D
2
Pak
AUIRL3705ZS
TO-262
AUIRL3705ZL
S
D
G
S
D
G
S
D
G
D
G D S
Gate Drain Source
Base part number
Package Type
Standard Pack
Form
Quantity
AUIRL3705Z
TO-220
Tube
50
AUIRL3705Z
AUIRL3705ZL
TO-262
Tube
50
AUIRL3705ZL
AUIRL3705ZS
D
2
-Pak
Tube
50
AUIRL3705ZS
Tape and Reel Left
800
AUIRL3705ZSTRL
Orderable Part Number
Symbol Parameter
Max.
Units
I
D
@ T
C
= 25°C
Continuous Drain Current, V
GS
@ 10V (Silicon Limited)
86
A
I
D
@ T
C
= 100°C
Continuous Drain Current, V
GS
@ 10V (Silicon Limited)
61
I
D
@ T
C
= 25°C
Continuous Drain Current, V
GS
@ 10V (Package Limited)
75
I
DM
Pulsed Drain Current 340
P
D
@T
C
= 25°C
Maximum Power Dissipation
130
W
Linear Derating Factor
0.88
W/°C
V
GS
Gate-to-Source Voltage
± 16
V
E
AS
Single Pulse Avalanche Energy (Thermally Limited) 120
mJ
E
AS
(tested)
Single Pulse Avalanche Energy Tested Value 180
I
AR
Avalanche Current
See Fig.15,16, 12a, 12b
A
E
AR
Repetitive Avalanche Energy
mJ
T
J
Operating Junction and
-55 to + 175
T
STG
Storage Temperature Range
°C
Soldering Temperature, for 10 seconds (1.6mm from case)
300
Mounting torque, 6-32 or M3 screw
10 lbf•in (1.1N•m)
Thermal Resistance
Symbol Parameter
Typ.
Max.
Units
R
JC
Junction-to-Case
–––
1.14
°C/W
R
CS
Case-to-Sink, Flat, Greased Surface 0.50
–––
R
JA
Junction-to-Ambient –––
62
R
JA
Junction-to-Ambient ( PCB Mount, steady state)
40
AUIRL3705Z/S/L
2
2015-10-29
Notes:
Repetitive rating; pulse width limited by max. junction temperature. (See fig.11)
Limited by T
Jmax,
starting T
J
= 25°C, L = 0.09mH, R
G
= 25
, I
AS
= 52A, V
GS
=10V. Part not recommended for use above this value.
Pulse width
1.0ms; duty cycle 2%.
C
oss
eff. is a fixed capacitance that gives the same charging time as C
oss
while V
DS
is rising from 0 to 80% V
DSS
.
Limited by T
Jmax
, see Fig.12a, 12b, 15, 16 for typical repetitive avalanche performance.
This value determined from sample failure population 100% tested to this value in production.
This is only applied to TO-220AB package.
This is applied to D
2
Pak, When mounted on 1" square PCB (FR-4 or G-10 Material). For recommended footprint and soldering
techniques refer to application note #AN-994
R
is measured at T
J
of approximately 90°C
Calculated continuous current based on maximum allowable junction temperature. Bond wire current limit is 75A. Note that current
limitations arising from heating of the device leads may occur with some lead mounting arrangements.
Static @ T
J
= 25°C (unless otherwise specified)
Parameter Min.
Typ.
Max.
Units
Conditions
V
(BR)DSS
Drain-to-Source Breakdown Voltage
55
––– –––
V V
GS
= 0V, I
D
= 250µA
V
(BR)DSS
/
T
J
Breakdown Voltage Temp. Coefficient
––– 0.055 ––– V/°C Reference to 25°C, I
D
= 1mA
R
DS(on)
Static Drain-to-Source On-Resistance
––– 6.5 8.0
m
V
GS
= 10V, I
D
= 52A
––– ––– 11
V
GS
= 5.0V, I
D
= 43A
V
GS(th)
Gate Threshold Voltage
1.0 –––
3.0
V V
DS
= V
GS
, I
D
= 250µA
gfs
Forward Trans conductance
150 ––– –––
S V
DS
= 25V, I
D
= 52A
I
DSS
Drain-to-Source Leakage Current
––– ––– 20
µA
V
DS
= 55V, V
GS
= 0V
––– ––– 250
V
DS
= 55V,V
GS
= 0V,T
J
=125°C
I
GSS
Gate-to-Source Forward Leakage
––– ––– 200
nA
V
GS
= 16V
Gate-to-Source Reverse Leakage
––– ––– -200
V
GS
= -16V
Dynamic Electrical Characteristics @ T
J
= 25°C (unless otherwise specified)
Q
g
Total Gate Charge
–––
40
60
nC
I
D
= 43A
Q
gs
Gate-to-Source Charge
–––
12
–––
V
DS
= 44V
Q
gd
Gate-to-Drain Charge
–––
21
–––
V
GS
= 5.0V
t
d(on)
Turn-On Delay Time
–––
17
–––
ns
V
DD
= 28V
t
r
Rise Time
––– 240 –––
I
D
= 43A
t
d(off)
Turn-Off Delay Time
–––
26
–––
R
G
= 4.3
t
f
Fall Time
–––
83
–––
V
GS
= 5.0V
L
D
Internal Drain Inductance
––– 4.5
–––
Between lead,
6mm (0.25in.)
L
S
Internal Source Inductance
––– 7.5
–––
from package
and center of die contact
C
iss
Input Capacitance
––– 2880 –––
pF
V
GS
= 0V
C
oss
Output Capacitance
––– 420 –––
V
DS
= 25V
C
rss
Reverse Transfer Capacitance
––– 220 –––
ƒ = 1.0MHz
C
oss
Output Capacitance
––– 1500 –––
V
GS
= 0V, V
DS
= 1.0V ƒ = 1.0MHz
C
oss
Output Capacitance
––– 330 –––
V
GS
= 0V, V
DS
= 44V ƒ = 1.0MHz
C
oss eff.
Effective Output Capacitance
––– 510 –––
V
GS
= 0V, V
DS
= 0V to 44V
Diode Characteristics
Parameter
Min. Typ. Max. Units
Conditions
I
S
Continuous Source Current
––– ––– 75
A
MOSFET symbol
(Body Diode)
showing the
I
SM
Pulsed Source Current
––– ––– 340
integral reverse
(Body Diode)
p-n junction diode.
V
SD
Diode Forward Voltage
––– –––
1.3
V T
J
= 25°C,I
S
= 52A,V
GS
= 0V
t
rr
Reverse Recovery Time
–––
16
24
ns T
J
= 25°C ,I
F
= 43A , V
DD
= 28V
Q
rr
Reverse Recovery Charge
––– 7.4
11
nC di/dt = 100A/µs
t
on
Forward Turn-On Time
Intrinsic turn-on time is negligible (turn-on is dominated by L
S
+L
D
)
nH
––– –––
12
VGS = 4.5V, ID = 30A
AUIRL3705Z/S/L
3
2015-10-29
Fig. 2 Typical Output Characteristics
Fig. 3
Typical Transfer Characteristics
Fig. 1 Typical Output Characteristics
Fig. 4
Typical Forward Transconductance
vs. Drain Current
0.1
1
10
100
1000
VDS, Drain-to-Source Voltage (V)
0.01
0.1
1
10
100
1000
I D
,
D
ra
in
-t
o-
S
o
u
rc
e
C
ur
re
n
t (
A
)
VGS
TOP 12V
10V
8.0V
5.0V
4.5V
3.5V
3.0V
BOTTOM
2.8V
60µs PULSE WIDTH
Tj = 25°C
2.8V
0.1
1
10
100
1000
VDS, Drain-to-Source Voltage (V)
1
10
100
1000
I D
, D
ra
in
-t
o-
S
ou
rc
e
C
u
rr
en
t (
A
)
2.8V
60µs PULSE WIDTH
Tj = 175°C
VGS
TOP 12V
10V
8.0V
5.0V
4.5V
3.5V
3.0V
BOTTOM
2.8V
0
2
4
6
8
10
12
14
16
VGS, Gate-to-Source Voltage (V)
0.1
1
10
100
1000
I D
, D
ra
in
-t
o-
S
ou
rc
e
C
ur
re
nt
)
TJ = 25°C
TJ = 175°C
VDS = 15V
60µs PULSE WIDTH
0
20
40
60
80
100
120
ID,Drain-to-Source Current (A)
0
20
40
60
80
100
120
G
fs
, F
or
w
ar
d
T
ra
ns
co
nd
uc
ta
nc
e
(S
)
TJ = 25°C
TJ = 175°C
VDS = 8.0V
AUIRL3705Z/S/L
4
2015-10-29
Fig 5. Typical Capacitance vs. Drain-to-Source Voltage
Fig 8. Maximum Safe Operating Area
Fig 6. Typical Gate Charge vs. Gate-to-Source Voltage
Fig. 7 Typical Source-to-Drain Diode
Forward Voltage
1
10
100
VDS, Drain-to-Source Voltage (V)
100
1000
10000
100000
C
, C
ap
ac
ita
nc
e(
pF
)
VGS = 0V, f = 1 MHZ
Ciss = Cgs + Cgd, C ds SHORTED
Crss = Cgd
Coss = Cds + Cgd
Coss
Crss
Ciss
0
10
20
30
40
QG Total Gate Charge (nC)
0.0
1.0
2.0
3.0
4.0
5.0
6.0
V
G
S
, G
at
e-
to
-S
ou
rc
e
V
ol
ta
ge
(
V
)
VDS= 44V
VDS= 28V
VDS= 11V
ID= 52A
0.0
0.5
1.0
1.5
2.0
VSD, Source-to-Drain Voltage (V)
1.00
10.00
100.00
1000.00
I S
D
, R
ev
er
se
D
ra
in
C
ur
re
nt
(
A
)
TJ = 25°C
TJ = 175°C
VGS = 0V
1
10
100
1000
VDS, Drain-to-Source Voltage (V)
1
10
100
1000
I D
,
D
ra
in
-t
o-
S
ou
rc
e
C
ur
re
nt
(
A
)
1msec
10msec
OPERATION IN THIS AREA
LIMITED BY R DS(on)
100µsec
Tc = 25°C
Tj = 175°C
Single Pulse
AUIRL3705Z/S/L
5
2015-10-29
Fig 11. Maximum Effective Transient Thermal Impedance, Junction-to-Case
Fig 9. Maximum Drain Current vs.
Case Temperature
Fig 10. Normalized On-Resistance
vs. Temperature
25
50
75
100
125
150
175
TC , Case Temperature (°C)
0
10
20
30
40
50
60
70
80
90
100
I D
,
D
ra
in
C
ur
re
nt
(
A
)
Limited By Package
-60 -40 -20 0 20 40 60 80 100 120 140 160 180
TJ , Junction Temperature (°C)
0.5
1.0
1.5
2.0
R
D
S
(o
n)
,
D
ra
in
-t
o-
S
ou
rc
e
O
n
R
es
is
ta
nc
e
(
N
or
m
al
iz
ed
)
ID = 43A
VGS = 5.0V
1E-006
1E-005
0.0001
0.001
0.01
0.1
t1 , Rectangular Pulse Duration (sec)
0.001
0.01
0.1
1
10
T
he
rm
al
R
es
po
ns
e
(
Z
th
JC
)
0.20
0.10
D = 0.50
0.02
0.01
0.05
SINGLE PULSE
( THERMAL RESPONSE )
Notes:
1. Duty Factor D = t1/t2
2. Peak Tj = P dm x Zthjc + Tc
Ri (°C/W)
i (sec)
0.5413
0.000384
0.5985
0.002778
J
J
1
1
2
2
R
1
R
1
R
2
R
2
C
C
Ci=
iRi
Ci=
iRi
AUIRL3705Z/S/L
6
2015-10-29
Fig 12c. Maximum Avalanche Energy vs. Drain Current
R G
IAS
0.01
tp
D.U.T
L
VDS
+
- VDD
DRIVER
A
15V
20V
Fig 12a. Unclamped Inductive Test Circuit
tp
V
(BR)DSS
I
AS
Fig 12b. Unclamped Inductive Waveforms
Fig 13a. Gate Charge Test Circuit
Vds
Vgs
Id
Vgs(th)
Qgs1 Qgs2
Qgd
Qgodr
Fig 13b. Gate Charge Waveform
Fig 14. Threshold Voltage vs. Temperature
25
50
75
100
125
150
175
Starting TJ , Junction Temperature (°C)
0
100
200
300
400
500
E
A
S
,
S
in
gl
e
P
ul
se
A
va
la
nc
he
E
ne
rg
y
(m
J)
ID
TOP 5.7A
8.5A
BOTTOM 52A
-75 -50 -25
0
25 50 75 100 125 150 175 200
TJ , Temperature ( °C )
0.5
1.0
1.5
2.0
2.5
3.0
V
G
S
(t
h)
G
at
e
th
re
sh
ol
d
V
ol
ta
ge
(
V
)
ID = 250µA
AUIRL3705Z/S/L
7
2015-10-29
Fig 15. Avalanche Current vs. Pulse width
Fig 16. Maximum Avalanche Energy vs. Temperature
Notes on Repetitive Avalanche Curves , Figures 15, 16:
(For further info, see AN-1005 at www.infineon.com)
1. Avalanche failures assumption:
Purely a thermal phenomenon and failure occurs at a temperature far in
excess of T
jmax
. This is validated for every part type.
2. Safe operation in Avalanche is allowed as long as T
jmax
is not exceeded.
3. Equation below based on circuit and waveforms shown in Figures 12a, 12b.
4. P
D (ave)
= Average power dissipation per single avalanche pulse.
5. BV = Rated breakdown voltage (1.3 factor accounts for voltage increase
during
avalanche).
6. I
av
= Allowable avalanche current.
7.
T
=
Allowable rise in junction temperature, not to exceed
T
jmax
(assumed as
25°C in Figure 14, 15).
t
av =
Average time in avalanche.
D = Duty cycle in avalanche = t
av
·f
Z
thJC
(D, t
av
) = Transient thermal resistance, see Figures 13)
P
D (ave)
= 1/2 ( 1.3·BV·I
av
) =
T/ Z
thJC
I
av
= 2
T/ [1.3·BV·Z
th
]
E
AS (AR)
= P
D (ave)
·t
av
1.0E-05
1.0E-04
1.0E-03
1.0E-02
1.0E-01
tav (sec)
0.1
1
10
100
A
va
la
nc
he
C
ur
re
nt
(
A
)
0.05
Duty Cycle = Single Pulse
0.10
Allowed avalanche Current vs
avalanche pulsewidth, tav
assuming Tj = 25°C due to
avalanche losses
0.01
25
50
75
100
125
150
175
Starting TJ , Junction Temperature (°C)
0
25
50
75
100
125
150
E
A
R
,
A
va
la
nc
he
E
ne
rg
y
(m
J)
TOP Single Pulse
BOTTOM 1% Duty Cycle
ID = 52A
AUIRL3705Z/S/L
8
2015-10-29
Fig 17. Peak Diode Recovery dv/dt Test Circuit for N-Channel HEXFET® Power MOSFETs
Fig 18a. Switching Time Test Circuit
Fig 18b. Switching Time Waveforms
AUIRL3705Z/S/L
9
2015-10-29
TO-220AB Part Marking Information
TO-220AB Package Outline (Dimensions are shown in millimeters (inches))
Note: For the most current drawing please refer to IR website at
http://www.irf.com/package/
YWWA
XX
XX
Date Code
Y= Year
WW= Work Week
AUL3705Z
Lot Code
Part Number
IR Logo
AUIRL3705Z/S/L
10
2015-10-29
Note: For the most current drawing please refer to IR website at
http://www.irf.com/package/
D
2
Pak (TO-263AB) Part Marking Information
YWWA
XX
XX
Date Code
Y= Year
WW= Work Week
AUL3705ZS
Lot Code
Part Number
IR Logo
D
2
Pak (TO-263AB) Package Outline (Dimensions are shown in millimeters (inches))