AUIRFS4310Z
V
DSS
100V
R
DS(on)
typ.
4.8m
max.
6.0m
I
D (Silicon Limited)
127A
I
D (Package Limited)
120A
Absolute Maximum Ratings
Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress
ratings only; and functional operation of the device at these or any other condition beyond those indicated in the specifications is not
implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability. The thermal resistance
and power dissipation ratings are measured under board mounted and still air conditions. Ambient temperature (TA) is 25°C, unless
Features
Advanced Process Technology
Ultra Low On-Resistance
Dynamic dv/dt Rating
175°C Operating Temperature
Fast Switching
Repetitive Avalanche Allowed up to Tjmax
Lead-Free, RoHS Compliant
Automotive Qualified *
Description
Specifically designed for Automotive applications, this HEXFET®
Power MOSFET utilizes the latest processing techniques to achieve
extremely low on-resistance per silicon area. Additional features of
this design are 175°C junction operating temperature, fast switching
speed and improved repetitive avalanche rating. These features
combine to make this design an extremely efficient and reliable
device for use in Automotive applications and a wide variety of other
applications.
1
2017-10-12
HEXFET® is a registered trademark of Infineon.
*Qualification standards can be found at
www.infineon.com
AUTOMOTIVE GRADE
Symbol Parameter
Max.
Units
I
D
@ T
C
= 25°C
Continuous Drain Current, V
GS
@ 10V (Silicon Limited)
127
A
I
D
@ T
C
= 100°C
Continuous Drain Current, V
GS
@ 10V (Silicon Limited)
90
I
D
@ T
C
= 25°C
Continuous Drain Current, V
GS
@ 10V (Wire Bond Limited)
120
I
DM
Pulsed Drain Current 560
P
D
@T
C
= 25°C
Maximum Power Dissipation
250
W
Linear Derating Factor
1.7
W/°C
V
GS
Gate-to-Source Voltage
± 20
V
E
AS
Single Pulse Avalanche Energy (Thermally Limited) 130
mJ
I
AR
Avalanche Current
See Fig.14,15, 22a, 22b
A
E
AR
Repetitive Avalanche Energy
mJ
dv/dt Peak
Diode
Recovery
18
V/ns
T
J
Operating Junction and
-55 to + 175
T
STG
Storage Temperature Range
°C
Soldering Temperature, for 10 seconds (1.6mm from case)
300
Thermal Resistance
Symbol Parameter
Typ.
Max.
Units
R
JC
Junction-to-Case –––
0.6
°C/W
R
JA
Junction-to-Ambient (PCB Mount), D
2
Pak –––
40
D
2
-Pak
AUIRFS4310Z
S
D
G
Base part number
Package Type
Standard Pack
Orderable Part Number
Form
Quantity
AUIRFS4310Z
D
2
-Pak
Tube
50
AUIRFS4310Z
Tape and Reel Left
800
AUIRFS4310ZTRL
G D S
Gate Drain
Source
HEXFET
®
Power MOSFET
AUIRFS4310Z
2
2017-10-12
Notes:
Calculated continuous current based on maximum allowable junction temperature. Bond wire current limit is 120A. Note that
current limitations arising from heating of the device leads may occur with some lead mounting arrangements.
Repetitive rating; pulse width limited by max. junction temperature.
Limited by T
Jmax,
starting T
J
= 25°C, L = 0.047mH, R
G
= 25
, I
AS
= 75A, V
GS
=10V. Part not recommended for use above this value.
I
SD
75A, di/dt 600A/µs, V
DD
V
(BR)DSS
, T
J
175°C.
Pulse width
400µs; duty cycle 2%.
C
oss
eff. (TR) is a fixed capacitance that gives the same charging time as C
oss
while V
DS
is rising from 0 to 80% V
DSS
.
C
oss
eff. (ER) is a fixed capacitance that gives the same energy as C
oss
while V
DS
is rising from 0 to 80% V
DSS
.
When mounted on 1" square PCB (FR-4 or G-10 Material). For recommended footprint and soldering techniques refer to
application note #AN-994
R
is measured at T
J
approximately 90°C.
Static @ T
J
= 25°C (unless otherwise specified)
Parameter Min.
Typ.
Max.
Units
Conditions
V
(BR)DSS
Drain-to-Source Breakdown Voltage
100
––– –––
V V
GS
= 0V, I
D
= 250µA
V
(BR)DSS
/
T
J
Breakdown Voltage Temp. Coefficient
––– 0.11 ––– V/°C Reference to 25°C, I
D
= 5mA
R
DS(on)
Static Drain-to-Source On-Resistance
–––
4.8
6.0
m
V
GS
= 10V, I
D
= 75A
V
GS(th)
Gate Threshold Voltage
2.0
–––
4.0
V V
DS
= V
GS
, I
D
= 150µA
gfs
Forward Trans conductance
150
––– –––
S V
DS
= 50V, I
D
= 75A
R
G
Gate Resistance
–––
0.7
–––
I
DSS
Drain-to-Source Leakage Current
––– ––– 20
µA
V
DS
= 100V, V
GS
= 0V
––– ––– 250
V
DS
= 80V,V
GS
= 0V,T
J
=125°C
I
GSS
Gate-to-Source Forward Leakage
–––
––– 100
nA
V
GS
= 20V
Gate-to-Source Reverse Leakage
–––
––– -100
V
GS
= -20V
Dynamic Electrical Characteristics @ T
J
= 25°C (unless otherwise specified)
Q
g
Total Gate Charge
–––
120 170
nC
I
D
= 75A
Q
gs
Gate-to-Source Charge
–––
29
–––
V
DS
= 50V
Q
gd
Gate-to-Drain Charge
–––
35
–––
V
GS
= 10V
Q
sync
Total Gate Charge Sync. (Q
g
- Q
gd
) –––
85
–––
t
d(on)
Turn-On Delay Time
–––
20
–––
ns
V
DD
= 65V
t
r
Rise Time
–––
60
–––
I
D
= 75A
t
d(off)
Turn-Off Delay Time
–––
55
–––
R
G
= 2.7
t
f
Fall Time
–––
57
–––
V
GS
= 10V
C
iss
Input Capacitance
––– 6860 –––
pF
V
GS
= 0V
C
oss
Output Capacitance
–––
490 –––
V
DS
= 50V
C
rss
Reverse Transfer Capacitance
–––
220 –––
ƒ = 1.0MHz, See Fig. 5
C
oss eff.(ER)
Effective Output Capacitance (Energy Related) –––
570 –––
V
GS
= 0V, V
DS
= 0V to 80V
C
oss eff.(TR)
Effective Output Capacitance (Time Related)
–––
920 –––
V
GS
= 0V, V
DS
= 0V to 80V
Diode Characteristics
Parameter
Min. Typ. Max. Units
Conditions
I
S
Continuous Source Current
––– ––– 127
A
MOSFET symbol
(Body Diode)
showing the
I
SM
Pulsed Source Current
––– ––– 560
integral reverse
(Body Diode)
p-n junction diode.
V
SD
Diode Forward Voltage
–––
–––
1.3
V T
J
= 25°C,I
S
= 75A,V
GS
= 0V
t
rr
Reverse Recovery Time
––– 40 –––
ns
T
J
= 25°C V
DD
= 85V
––– 49 –––
T
J
= 125°C I
F
= 75A,
Q
rr
Reverse Recovery Charge
––– 58 –––
nC
T
J
= 25°C di/dt = 100A/µs
––– 89 –––
T
J
= 125°C
I
RRM
Reverse Recovery Current
–––
2.5
–––
A T
J
= 25°C
t
on
Forward Turn-On Time
Intrinsic turn-on time is negligible (turn-on is dominated by L
S
+L
D
)
AUIRFS4310Z
3
2017-10-12
Fig. 2 Typical Output Characteristics
Fig. 3
Typical Transfer Characteristics
Fig. 1 Typical Output Characteristics
Fig 5. Typical Capacitance vs. Drain-to-Source Voltage
Fig 6. Typical Gate Charge vs. Gate-to-Source Voltage
0.1
1
10
100
VDS, Drain-to-Source Voltage (V)
1
10
100
1000
I D
, D
ra
in
-t
o-
S
ou
rc
e
C
ur
re
nt
(
A
)
60µs PULSE WIDTH
Tj = 25°C
4.5V
VGS
TOP 15V
10V
8.0V
6.0V
5.5V
5.0V
4.8V
BOTTOM
4.5V
0.1
1
10
100
VDS, Drain-to-Source Voltage (V)
10
100
1000
I D
, D
ra
in
-t
o-
S
ou
rc
e
C
ur
re
nt
(
A
)
60µs PULSE WIDTH
Tj = 175°C
4.5V
VGS
TOP 15V
10V
8.0V
6.0V
5.5V
5.0V
4.8V
BOTTOM
4.5V
2.0
3.0
4.0
5.0
6.0
7.0
8.0
VGS, Gate-to-Source Voltage (V)
0.1
1
10
100
1000
I D
, D
ra
in
-t
o-
S
ou
rc
e
C
ur
re
nt
)
VDS = 50V
60µs PULSE WIDTH
TJ = 25°C
TJ = 175°C
-60 -40 -20 0
20 40 60 80 100 120 140 160 180
TJ , Junction Temperature (°C)
0.5
1.0
1.5
2.0
2.5
R
D
S
(o
n)
,
D
ra
in
-t
o-
S
ou
rc
e
O
n
R
es
is
ta
nc
e
(
N
or
m
al
iz
ed
)
ID = 75A
VGS = 10V
1
10
100
VDS, Drain-to-Source Voltage (V)
0
2000
4000
6000
8000
10000
12000
C
, C
ap
ac
ita
nc
e
(p
F
)
Coss
Crss
Ciss
VGS = 0V, f = 1 MHZ
Ciss = Cgs + Cgd, Cds SHORTED
Crss = Cgd
Coss = Cds + Cgd
0
40
80
120
160
200
QG Total Gate Charge (nC)
0
4
8
12
16
20
V
G
S
, G
at
e-
to
-S
ou
rc
e
V
ol
ta
ge
(
V
)
VDS= 80V
VDS= 50V
VDS= 20V
ID= 75A
Fig. 4
Normalized On-Resistance vs. Temperature
AUIRFS4310Z
4
2017-10-12
Fig 8. Maximum Safe Operating Area
Fig 10. Drain-to-Source Breakdown Voltage
Fig 11. Typical C
OSS
Stored Energy
Fig 12. Maximum Avalanche Energy vs. Drain Current
Fig 9. Maximum Drain Current vs. Case Temperature
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6
1.8
2.0
VSD, Source-to-Drain Voltage (V)
0.1
1
10
100
1000
I S
D
,
R
ev
er
se
D
ra
in
C
ur
re
nt
(
A
)
TJ = 25°C
TJ = 175°C
VGS = 0V
0.1
1
10
100
VDS, Drain-toSource Voltage (V)
0.1
1
10
100
1000
10000
I D
,
D
ra
in
-t
o-
S
ou
rc
e
C
ur
re
nt
(
A
)
Tc = 25°C
Tj = 175°C
Single Pulse
1msec
10msec
OPERATION IN THIS AREA
LIMITED BY R DS(on)
100µsec
DC
25
50
75
100
125
150
175
TC, Case Temperature (°C)
0
20
40
60
80
100
120
140
I D
,
D
ra
in
C
ur
re
nt
(
A
)
LIMITED BY PACKAGE
Fig. 7 Typical Source-to-Drain Diode
Forward Voltage
-60 -40 -20 0
20 40 60 80 100 120 140 160 180
TJ , Junction Temperature (°C)
90
100
110
120
130
V
(B
R
)D
S
S
,
D
ra
in
-t
o-
S
ou
rc
e
B
re
ak
do
w
n
V
ol
ta
ge
ID = 5mA
0
20
40
60
80
100
VDS, Drain-to-Source Voltage (V)
0.0
0.5
1.0
1.5
2.0
2.5
3.0
E
ne
rg
y
(µ
J)
25
50
75
100
125
150
175
Starting TJ, Junction Temperature (°C)
0
100
200
300
400
500
600
E
A
S
,
S
in
gl
e
P
ul
se
A
va
la
nc
he
E
ne
rg
y
(m
J)
ID
TOP
11A
19A
BOTTOM
75A
AUIRFS4310Z
5
2017-10-12
Fig 14. Avalanche Current vs. Pulse width
Fig 13. Maximum Effective Transient Thermal Impedance, Junction-to-Case
Fig 15. Maximum Avalanche Energy vs. Temperature
Notes on Repetitive Avalanche Curves , Figures 14, 15:
(For further info, see AN-1005 at www.infineon.com)
1. Avalanche failures assumption:
Purely a thermal phenomenon and failure occurs at a temperature far in
excess of T
jmax
. This is validated for every part type.
2. Safe operation in Avalanche is allowed as long as T
jmax
is not exceeded.
3. Equation below based on circuit and waveforms shown in Figures 22a, 22b.
4. P
D (ave)
= Average power dissipation per single avalanche pulse.
5. BV = Rated breakdown voltage (1.3 factor accounts for voltage increase
during
avalanche).
6. I
av
= Allowable avalanche current.
7.
T
=
Allowable rise in junction temperature, not to exceed
T
jmax
(assumed as
25°C in Figure 13, 14).
t
av =
Average time in avalanche.
D = Duty cycle in avalanche = t
av
·f
Z
thJC
(D, t
av
) = Transient thermal resistance, see Figures 13)
P
D (ave)
= 1/2 ( 1.3·BV·I
av
) =
T/ Z
thJC
I
av
= 2
T/ [1.3·BV·Z
th
]
E
AS (AR)
= P
D (ave)
·t
av
1E-006
1E-005
0.0001
0.001
0.01
0.1
t1 , Rectangular Pulse Duration (sec)
0.001
0.01
0.1
1
T
he
rm
al
R
es
po
ns
e
(
Z
th
JC
)
0.20
0.10
D = 0.50
0.02
0.01
0.05
SINGLE PULSE
( THERMAL RESPONSE )
Notes:
1. Duty Factor D = t1/t2
2. Peak Tj = P dm x Zthjc + Tc
J
J
1
1
2
2
3
3
R
1
R
1
R
2
R
2
R
3
R
3
Ci=
iRi
Ci=
iRi
C
C
4
4
R
4
R
4
Ri (°C/W)
I (sec)
0.018756
0.000007
0.101282
0.011735
0.159425
0.000117
0.320725
0.001817
1.0E-06
1.0E-05
1.0E-04
1.0E-03
1.0E-02
1.0E-01
tav (sec)
0.1
1
10
100
A
va
la
nc
he
C
ur
re
nt
(
A
)
0.05
Duty Cycle = Single Pulse
0.10
Allowed avalanche Current vs avalanche
pulsewidth, tav, assuming
j = 25°C and
Tstart = 150°C.
0.01
Allowed avalanche Current vs avalanche
pulsewidth, tav, assuming
Tj = 150°C and
Tstart =25°C (Single Pulse)
25
50
75
100
125
150
175
Starting TJ , Junction Temperature (°C)
0
20
40
60
80
100
120
140
E
A
R
,
A
va
la
nc
he
E
ne
rg
y
(m
J)
TOP Single Pulse
BOTTOM 1% Duty Cycle
ID = 75A
AUIRFS4310Z
6
2017-10-12
Fig 16. Threshold Voltage vs. Temperature
Fig. 18 - Typical Recovery Current vs. di
f
/dt
Fig. 20 - Typical Stored Charge vs. di
f
/dt
Fig. 17 - Typical Recovery Current vs. di
f
/dt
Fig. 19 - Typical Stored Charge vs. di
f
/dt
-75 -50 -25
0
25
50
75 100 125 150 175
TJ , Temperature ( °C )
1.0
1.5
2.0
2.5
3.0
3.5
4.0
4.5
V
G
S
(t
h)
G
at
e
th
re
sh
ol
d
V
ol
ta
ge
(
V
)
ID = 1.0A
ID = 1.0mA
ID = 250µA
ID = 150µA
100 200 300 400 500 600 700 800 900 1000
dif / dt - (A / µs)
0
4
8
12
16
20
24
I R
R
M
-
(
A
)
IF = 30A
VR = 85V
TJ = 125°C
TJ = 25°C
100 200 300 400 500 600 700 800 900 1000
dif / dt - (A / µs)
0
4
8
12
16
20
24
I R
R
M
-
(
A
)
IF = 45A
VR = 85V
TJ = 125°C
TJ = 25°C
100 200 300 400 500 600 700 800 900 1000
dif / dt - (A / µs)
0
100
200
300
400
500
600
Q
R
R
-
(
nC
)
IF = 30A
VR = 85V
TJ = 125°C
TJ = 25°C
100 200 300 400 500 600 700 800 900 1000
dif / dt - (A / µs)
0
100
200
300
400
500
600
Q
R
R
-
(
nC
)
IF = 45A
VR = 85V
TJ = 125°C
TJ = 25°C
AUIRFS4310Z
7
2017-10-12
Fig 21. Peak Diode Recovery dv/dt Test Circuit for N-Channel HEXFET® Power MOSFETs
Fig 22a. Unclamped Inductive Test Circuit
Fig 22b. Unclamped Inductive Waveforms
Fig 23a. Switching Time Test Circuit
Fig 24a. Gate Charge Test Circuit
Fig 24b. Gate Charge Waveform
R G
IAS
0.01
tp
D.U.T
L
VDS
+
- VDD
DRIVER
A
15V
20V
tp
V
(BR)DSS
I
AS
Fig 23b. Switching Time Waveforms
Vds
Vgs
Id
Vgs(th)
Qgs1 Qgs2
Qgd
Qgodr
AUIRFS4310Z
8
2017-10-12
D
2
-Pak (TO-263AB) Part Marking Information
YWWA
XX
XX
Date Code
Y= Year
WW= Work Week
AUIRFS4310Z
Lot Code
Part Number
IR Logo
D
2
-Pak (TO-263AB) Package Outline (Dimensions are shown in millimeters (inches))
AUIRFS4310Z
9
2017-10-12
D
2
-Pak (TO-263AB) Tape & Reel Information (Dimensions are shown in millimeters (inches))
3
4
4
TRR
FEED DIRECTION
1.85 (.073)
1.65 (.065)
1.60 (.063)
1.50 (.059)
4.10 (.161)
3.90 (.153)
TRL
FEED DIRECTION
10.90 (.429)
10.70 (.421)
16.10 (.634)
15.90 (.626)
1.75 (.069)
1.25 (.049)
11.60 (.457)
11.40 (.449)
15.42 (.609)
15.22 (.601)
4.72 (.136)
4.52 (.178)
24.30 (.957)
23.90 (.941)
0.368 (.0145)
0.342 (.0135)
1.60 (.063)
1.50 (.059)
13.50 (.532)
12.80 (.504)
330.00
(14.173)
MAX.
27.40 (1.079)
23.90 (.941)
60.00 (2.362)
MIN.
30.40 (1.197)
MAX.
26.40 (1.039)
24.40 (.961)
NOTES :
1. COMFORMS TO EIA-418.
2. CONTROLLING DIMENSION: MILLIMETER.
3. DIMENSION MEASURED @ HUB.
4. INCLUDES FLANGE DISTORTION @ OUTER EDGE.
AUIRFS4310Z
10
2017-10-12
† Highest passing voltage.
Published by
Infineon Technologies AG
81726 München, Germany
©
Infineon Technologies AG 2015
All Rights Reserved.
IMPORTANT NOTICE
The information given in this document shall in no event be regarded as a guarantee of conditions or characteristics
(“Beschaffenheitsgarantie”). With respect to any examples, hints or any typical values stated herein and/or any
information regarding the application of the product, Infineon Technologies hereby disclaims any and all warranties and
liabilities of any kind, including without limitation warranties of non-infringement of intellectual property rights of any third
party.
In addition, any information given in this document is subject to customer’s compliance with its obligations stated in this
document and any applicable legal requirements, norms and standards concerning customer’s products and any use of
the product of Infineon Technologies in customer’s applications.
The data contained in this document is exclusively intended for technically trained staff. It is the responsibility of
customer’s technical departments to evaluate the suitability of the product for the intended application and the
completeness of the product information given in this document with respect to such application.
For further information on the product, technology, delivery terms and conditions and prices please contact your nearest
Infineon Technologies office (
www.infineon.com
).
WARNINGS
Due to technical requirements products may contain dangerous substances. For information on the types in question
please contact your nearest Infineon Technologies office.
Except as otherwise explicitly approved by Infineon Technologies in a written document signed by authorized
representatives of Infineon Technologies, Infineon Technologies’ products may not be used in any applications where a
failure of the product or any consequences of the use thereof can reasonably be expected to result in personal injury.
Qualification Information
Qualification Level
Automotive
(per AEC-Q101)
Comments: This part number(s) passed Automotive qualification. Infineon’s
Industrial and Consumer qualification level is granted by extension of the higher
Automotive level.
Moisture Sensitivity Level
D
2
-Pak
MSL1
ESD
Machine Model
Class M4 (+/- 800V)
†
AEC-Q101-002
Human Body Model
Class H2 (+/- 4000V)
†
AEC-Q101-001
Charged Device Model
Class C5 (+/- 2000V)
†
AEC-Q101-005
RoHS Compliant
Yes
Revision History
Date Comments
12/04/2015
Updated datasheet with corporate template
Corrected ordering table on page 1.
10/12/2017
Corrected typo error on part marking on page 8.