AUIRFS3806
V
DSS
60V
R
DS(on)
typ.
12.6m
max.
15.8m
I
D
43A
Absolute Maximum Ratings
Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress
ratings only; and functional operation of the device at these or any other condition beyond those indicated in the specifications is not
implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability. The thermal resistance
and power dissipation ratings are measured under board mounted and still air conditions. Ambient temperature (TA) is 25°C, unless
Features
Advanced Process Technology
175°C Operating Temperature
Fast
Switching
Repetitive Avalanche Allowed up to Tjmax
Lead-Free, RoHS Compliant
Automotive Qualified *
Description
Specifically designed for Automotive applications, this HEXFET®
Power MOSFET utilizes the latest processing techniques to achieve
extremely low on-resistance per silicon area. Additional features of
this design are 175°C junction operating temperature, fast switching
speed and improved repetitive avalanche rating . These features
combine to make this design an extremely efficient and reliable
device for use in Automotive applications and a wide variety of other
applications.
1
2017-10-12
HEXFET® is a registered trademark of Infineon.
*Qualification standards can be found at
www.infineon.com
AUTOMOTIVE GRADE
Symbol Parameter
Max.
Units
I
D
@ T
C
= 25°C
Continuous Drain Current, V
GS
@ 10V
43
A
I
D
@ T
C
= 100°C
Continuous Drain Current, V
GS
@ 10V
31
I
DM
Pulsed Drain Current 170
P
D
@T
C
= 25°C
Maximum Power Dissipation
71
W
Linear Derating Factor
0.47
W/°C
V
GS
Gate-to-Source Voltage
± 20
V
E
AS
Single Pulse Avalanche Energy (Thermally Limited) 73
mJ
I
AR
Avalanche Current 25
A
E
AR
Repetitive Avalanche Energy 7.1
mJ
dv/dt Peak
Diode
Recovery
24
V/ns
T
J
Operating Junction and
-55 to + 175
T
STG
Storage Temperature Range
°C
Soldering Temperature, for 10 seconds (1.6mm from case)
300
Thermal Resistance
Symbol Parameter
Typ.
Max.
Units
R
JC
Junction-to-Case –––
2.12
°C/W
R
JA
Junction-to-Ambient (PCB Mount), D
2
Pak –––
40
D
2
-Pak
AUIRFS3806
S
D
G
Base part number
Package Type
Standard Pack
Orderable Part Number
Form
Quantity
AUIRFS3806
D
2
-Pak
Tube
50
AUIRFS3806
Tape and Reel Left
800
AUIRFS3806TRL
G D S
Gate Drain
Source
HEXFET
®
Power MOSFET
AUIRFS3806
2
2017-10-12
Notes:
Repetitive rating; pulse width limited by max. junction temperature.
Limited by T
Jmax,
starting T
J
= 25°C, L = 0.23mH, R
G
= 25
, I
AS
= 25A, V
GS
=10V. Part not recommended for use above this value.
I
SD
25A, di/dt 1580A/µs, V
DD
V
(BR)DSS
, T
J
175°C.
Pulse width
400µs; duty cycle 2%.
C
oss
eff. (TR) is a fixed capacitance that gives the same charging time as C
oss
while V
DS
is rising from 0 to 80% V
DSS
.
C
oss
eff. (ER) is a fixed capacitance that gives the same energy as C
oss
while V
DS
is rising from 0 to 80% V
DSS
.
When mounted on 1" square PCB (FR-4 or G-10 Material). For recommended footprint and soldering techniques refer to
application note #AN-994
R
is measured at T
J
approximately 90°C.
Static @ T
J
= 25°C (unless otherwise specified)
Parameter Min.
Typ.
Max.
Units
Conditions
V
(BR)DSS
Drain-to-Source Breakdown Voltage
60
––– –––
V V
GS
= 0V, I
D
= 250µA
V
(BR)DSS
/
T
J
Breakdown Voltage Temp. Coefficient
––– 0.075 ––– V/°C Reference to 25°C, I
D
= 5mA
R
DS(on)
Static Drain-to-Source On-Resistance
––– 12.6 15.8 m
V
GS
= 10V, I
D
= 25A
V
GS(th)
Gate Threshold Voltage
2.0
–––
4.0
V V
DS
= V
GS
, I
D
= 50µA
gfs
Forward Trans conductance
41
––– –––
S V
DS
= 10V, I
D
= 25A
R
G
Internal Gate Resistance
––– 0.79 –––
I
DSS
Drain-to-Source Leakage Current
––– ––– 20
µA
V
DS
= 60V, V
GS
= 0V
––– ––– 250
V
DS
= 48V,V
GS
= 0V,T
J
=125°C
I
GSS
Gate-to-Source Forward Leakage
–––
––– 100
nA
V
GS
= 20V
Gate-to-Source Reverse Leakage
–––
––– -100
V
GS
= -20V
Dynamic Electrical Characteristics @ T
J
= 25°C (unless otherwise specified)
Q
g
Total Gate Charge
–––
22
30
nC
I
D
= 25A
Q
gs
Gate-to-Source Charge
–––
5.0
–––
V
DS
= 30V
Q
gd
Gate-to-Drain Charge
–––
6.3
–––
V
GS
= 10V
Q
sync
Total Gate Charge Sync. (Q
g
- Q
gd
) –––
28.3
–––
t
d(on)
Turn-On Delay Time
–––
6.3
–––
ns
V
DD
= 39V
t
r
Rise Time
–––
40
–––
I
D
= 25A
t
d(off)
Turn-Off Delay Time
–––
49
–––
R
G
= 20
t
f
Fall Time
–––
47
–––
V
GS
= 10V
C
iss
Input Capacitance
––– 1150 –––
pF
V
GS
= 0V
C
oss
Output Capacitance
–––
130 –––
V
DS
= 50V
C
rss
Reverse Transfer Capacitance
–––
67
–––
ƒ = 1.0MHz, See Fig. 5
C
oss eff.(ER)
Effective Output Capacitance (Energy Related) –––
190 –––
V
GS
= 0V, V
DS
= 0V to 48V
C
oss eff.(TR)
Effective Output Capacitance (Time Related)
–––
230 –––
V
GS
= 0V, V
DS
= 0V to 48V
Diode Characteristics
Parameter
Min. Typ. Max. Units
Conditions
I
S
Continuous Source Current
––– ––– 43
A
MOSFET symbol
(Body Diode)
showing the
I
SM
Pulsed Source Current
––– ––– 170
integral reverse
(Body Diode)
p-n junction diode.
V
SD
Diode Forward Voltage
–––
–––
1.3
V T
J
= 25°C,I
S
= 25A,V
GS
= 0V
t
rr
Reverse Recovery Time
––– 22 33
ns
T
J
= 25°C
––– 26 39
T
J
= 125°C
Q
rr
Reverse Recovery Charge
––– 17 26
nC
T
J
= 25°C
––– 24 36
T
J
= 125°C
I
RRM
Reverse Recovery Current
–––
1.4
–––
A T
J
= 25°C
t
on
Forward Turn-On Time
Intrinsic turn-on time is negligible (turn-on is dominated by L
S
+L
D
)
V
DD
= 51V,
I
F
= 25A
di/dt = 100A/µs
AUIRFS3806
3
2017-10-12
Fig. 2 Typical Output Characteristics
Fig. 3
Typical Transfer Characteristics
Fig. 1 Typical Output Characteristics
Fig 5. Typical Capacitance vs. Drain-to-Source Voltage
Fig. 4
Normalized On-Resistance vs. Temperature
Fig 6. Typical Gate Charge vs. Gate-to-Source Voltage
0.1
1
10
100
VDS, Drain-to-Source Voltage (V)
1
10
100
1000
I D
, D
ra
in
-t
o
-S
ou
rc
e
C
u
rr
en
t
(A
)
VGS
TOP 15V
10V
8.0V
6.0V
5.5V
5.0V
4.8V
BOTTOM
4.5V
60µs PULSE WIDTH
Tj = 25°C
4.5V
0.1
1
10
100
VDS, Drain-to-Source Voltage (V)
1
10
100
1000
I D
, D
ra
in
-t
o-
S
ou
rc
e
C
u
rr
en
t (
A
)
4.5V
60µs PULSE WIDTH
Tj = 175°C
VGS
TOP 15V
10V
8.0V
6.0V
5.5V
5.0V
4.8V
BOTTOM
4.5V
2
3
4
5
6
7
8
9
VGS, Gate-to-Source Voltage (V)
0.1
1
10
100
1000
I D
, D
ra
in
-t
o-
S
ou
rc
e
C
ur
re
nt
(A
)
TJ = 25°C
TJ = 175°C
VDS = 25V
60µs PULSE WIDTH
-60 -40 -20 0 20 40 60 80 100120140160 180
TJ , Junction Temperature (°C)
0.5
1.0
1.5
2.0
2.5
R
D
S
(o
n)
,
D
ra
in
-t
o-
S
ou
rc
e
O
n
R
es
is
ta
nc
e
(
N
or
m
al
iz
ed
)
ID = 25A
VGS = 10V
1
10
100
VDS, Drain-to-Source Voltage (V)
10
100
1000
10000
C
, C
ap
ac
ita
nc
e
(p
F
)
VGS = 0V, f = 1 MHZ
Ciss = Cgs + Cgd, Cds SHORTED
Crss = Cgd
Coss = Cds + Cgd
Coss
Crss
Ciss
0
5
10
15
20
25
QG, Total Gate Charge (nC)
0.0
2.0
4.0
6.0
8.0
10.0
12.0
V
G
S
, G
at
e-
to
-S
ou
rc
e
V
ol
ta
ge
(
V
)
VDS= 48V
VDS= 30V
VDS= 12V
ID= 25A
AUIRFS3806
4
2017-10-12
Fig 8. Maximum Safe Operating Area
Fig 10. Drain-to-Source Breakdown Voltage
Fig 11. Typical C
OSS
Stored Energy
Fig 12. Maximum Avalanche Energy vs. Drain Current
Fg 9. Maximum Drain Current vs. Case Temperature
0.0
0.5
1.0
1.5
2.0
VSD, Source-to-Drain Voltage (V)
0.1
1
10
100
1000
I S
D
, R
ev
er
se
D
ra
in
C
ur
re
nt
(
A
)
TJ = 25°C
TJ = 175°C
VGS = 0V
1
10
100
VDS, Drain-to-Source Voltage (V)
0.1
1
10
100
1000
I D
,
D
ra
in
-t
o-
S
ou
rc
e
C
ur
re
nt
(
A
)
OPERATION IN THIS AREA
LIMITED BY R DS(on)
Tc = 25°C
Tj = 175°C
Single Pulse
100µsec
1msec
10msec
DC
25
50
75
100
125
150
175
TC , Case Temperature (°C)
0
5
10
15
20
25
30
35
40
45
I D
,
D
ra
in
C
ur
re
nt
(
A
)
Fig. 7 Typical Source-to-Drain Diode
Forward Voltage
-60 -40 -20 0 20 40 60 80 100 120140160180
TJ , Temperature ( °C )
60
65
70
75
80
V
(B
R
)D
S
S
, D
ra
in
-t
o-
S
ou
rc
e
B
re
ak
do
w
n
V
ol
ta
ge
(
V
)
Id = 5mA
-10
0
10
20
30
40
50
60
70
VDS, Drain-to-Source Voltage (V)
0.0
0.1
0.1
0.2
0.2
0.3
0.3
0.4
E
ne
rg
y
(µ
J)
25
50
75
100
125
150
175
Starting TJ , Junction Temperature (°C)
0
50
100
150
200
250
300
E
A
S
,
S
in
gl
e
P
ul
se
A
va
la
nc
he
E
ne
rg
y
(m
J)
ID
TOP 2.8A
5.1A
BOTTOM 25A
AUIRFS3806
5
2017-10-12
Fig 14. Avalanche Current vs. Pulse width
Fig 15. Maximum Avalanche Energy vs. Temperature
Notes on Repetitive Avalanche Curves , Figures 14, 15:
(For further info, see AN-1005 at www.infineon.com)
1. Avalanche failures assumption:
Purely a thermal phenomenon and failure occurs at a temperature far in
excess of T
jmax
. This is validated for every part type.
2. Safe operation in Avalanche is allowed as long as T
jmax
is not exceeded.
3. Equation below based on circuit and waveforms shown in Figures 22a, 22b.
4. P
D (ave)
= Average power dissipation per single avalanche pulse.
5. BV = Rated breakdown voltage (1.3 factor accounts for voltage increase
during
avalanche).
6. I
av
= Allowable avalanche current.
7.
T
=
Allowable rise in junction temperature, not to exceed
T
jmax
(assumed as
25°C in Figure 13, 14).
t
av =
Average time in avalanche.
D = Duty cycle in avalanche = t
av
·f
Z
thJC
(D, t
av
) = Transient thermal resistance, see Figures 13)
P
D (ave)
= 1/2 ( 1.3·BV·I
av
) =
T/ Z
thJC
I
av
= 2
T/ [1.3·BV·Z
th
]
E
AS (AR)
= P
D (ave)
·t
av
1E-006
1E-005
0.0001
0.001
0.01
0.1
t1 , Rectangular Pulse Duration (sec)
0.001
0.01
0.1
1
10
T
he
rm
al
R
es
po
ns
e
(
Z
th
JC
)
°
C
/W
0.20
0.10
D = 0.50
0.02
0.01
0.05
SINGLE PULSE
( THERMAL RESPONSE )
Notes:
1. Duty Factor D = t1/t2
2. Peak Tj = P dm x Zthjc + Tc
Fig 13. Maximum Effective Transient Thermal Impedance, Junction-to-Case
Ri (°C/W)
i (sec)
0.6086
0.00026
0.9926
0.001228
0.5203
0.00812
J
J
1
1
2
2
3
3
R
1
R
1
R
2
R
2
R
3
R
3
C
Ci=
iRi
Ci=
iRi
1.0E-06
1.0E-05
1.0E-04
1.0E-03
1.0E-02
1.0E-01
tav (sec)
0.1
1
10
100
A
va
la
nc
he
C
ur
re
nt
(
A
)
0.05
Duty Cycle = Single Pulse
0.10
Allowed avalanche Current vs avalanche
pulsewidth, tav, assuming
j = 25°C and
Tstart = 150°C.
0.01
Allowed avalanche Current vs avalanche
pulsewidth, tav, assuming
Tj = 150°C and
Tstart =25°C (Single Pulse)
25
50
75
100
125
150
175
Starting TJ , Junction Temperature (°C)
0
20
40
60
80
E
A
R
,
A
va
la
nc
he
E
ne
rg
y
(m
J)
TOP Single Pulse
BOTTOM 1.0% Duty Cycle
ID = 25A
AUIRFS3806
6
2017-10-12
Fig 16. Threshold Voltage vs. Temperature
Fig. 18 - Typical Recovery Current vs. di
f
/dt
Fig. 20 - Typical Stored Charge vs. di
f
/dt
Fig. 19 - Typical Stored Charge vs. di
f
/dt
-75 -50 -25 0 25 50 75 100 125 150 175 200
TJ , Temperature ( °C )
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0
4.5
V
G
S
(t
h)
,
G
at
e
th
re
sh
ol
d
V
ol
ta
ge
(
V
)
ID = 50µA
ID = 250µA
ID = 1.0mA
ID = 1.0A
0
200
400
600
800
1000
diF /dt (A/µs)
0
2
4
6
8
10
12
14
I R
R
(
A
)
IF = 17A
VR = 51V
TJ = 25°C
TJ = 125°C
0
200
400
600
800
1000
diF /dt (A/µs)
0
2
4
6
8
10
12
14
I R
R
(
A
)
IF = 25A
VR = 51V
TJ = 25°C
TJ = 125°C
0
200
400
600
800
1000
diF /dt (A/µs)
10
60
110
160
210
260
Q
R
R
(
nC
)
IF = 17A
VR = 51V
TJ = 25°C
TJ = 125°C
Fig. 17 - Typical Recovery Current vs. di
f
/dt
0
200
400
600
800
1000
diF /dt (A/µs)
10
60
110
160
210
260
Q
R
R
(
nC
)
IF = 25A
VR = 51V
TJ = 25°C
TJ = 125°C
AUIRFS3806
7
2017-10-12
Fig 21. Peak Diode Recovery dv/dt Test Circuit for N-Channel HEXFET® Power MOSFETs
Fig 22a. Unclamped Inductive Test Circuit
Fig 22b. Unclamped Inductive Waveforms
Fig 23a. Switching Time Test Circuit
Fig 24a. Gate Charge Test Circuit
Fig 24b. Gate Charge Waveform
R G
IAS
0.01
tp
D.U.T
L
VDS
+
- VDD
DRIVER
A
15V
20V
tp
V
(BR)DSS
I
AS
Fig 23b. Switching Time Waveforms
Vds
Vgs
Id
Vgs(th)
Qgs1 Qgs2
Qgd
Qgodr
AUIRFS3806
8
2017-10-12
D
2
-Pak (TO-263AB) Part Marking Information
YWWA
XX
XX
Date Code
Y= Year
WW= Work Week
AUIRFS3806
Lot Code
Part Number
IR Logo
D
2
-Pak (TO-263AB) Package Outline (Dimensions are shown in millimeters (inches))
AUIRFS3806
9
2017-10-12
D
2
-Pak (TO-263AB) Tape & Reel Information (Dimensions are shown in millimeters (inches))
3
4
4
TRR
FEED DIRECTION
1.85 (.073)
1.65 (.065)
1.60 (.063)
1.50 (.059)
4.10 (.161)
3.90 (.153)
TRL
FEED DIRECTION
10.90 (.429)
10.70 (.421)
16.10 (.634)
15.90 (.626)
1.75 (.069)
1.25 (.049)
11.60 (.457)
11.40 (.449)
15.42 (.609)
15.22 (.601)
4.72 (.136)
4.52 (.178)
24.30 (.957)
23.90 (.941)
0.368 (.0145)
0.342 (.0135)
1.60 (.063)
1.50 (.059)
13.50 (.532)
12.80 (.504)
330.00
(14.173)
MAX.
27.40 (1.079)
23.90 (.941)
60.00 (2.362)
MIN.
30.40 (1.197)
MAX.
26.40 (1.039)
24.40 (.961)
NOTES :
1. COMFORMS TO EIA-418.
2. CONTROLLING DIMENSION: MILLIMETER.
3. DIMENSION MEASURED @ HUB.
4. INCLUDES FLANGE DISTORTION @ OUTER EDGE.
AUIRFS3806
10
2017-10-12
† Highest passing voltage.
Published by
Infineon Technologies AG
81726 München, Germany
©
Infineon Technologies AG 2015
All Rights Reserved.
IMPORTANT NOTICE
The information given in this document shall in no event be regarded as a guarantee of conditions or characteristics
(“Beschaffenheitsgarantie”). With respect to any examples, hints or any typical values stated herein and/or any
information regarding the application of the product, Infineon Technologies hereby disclaims any and all warranties and
liabilities of any kind, including without limitation warranties of non-infringement of intellectual property rights of any third
party.
In addition, any information given in this document is subject to customer’s compliance with its obligations stated in this
document and any applicable legal requirements, norms and standards concerning customer’s products and any use of
the product of Infineon Technologies in customer’s applications.
The data contained in this document is exclusively intended for technically trained staff. It is the responsibility of
customer’s technical departments to evaluate the suitability of the product for the intended application and the
completeness of the product information given in this document with respect to such application.
For further information on the product, technology, delivery terms and conditions and prices please contact your nearest
Infineon Technologies office (
www.infineon.com
).
WARNINGS
Due to technical requirements products may contain dangerous substances. For information on the types in question
please contact your nearest Infineon Technologies office.
Except as otherwise explicitly approved by Infineon Technologies in a written document signed by authorized
representatives of Infineon Technologies, Infineon Technologies’ products may not be used in any applications where a
failure of the product or any consequences of the use thereof can reasonably be expected to result in personal injury.
Qualification Information
Qualification Level
Automotive
(per AEC-Q101)
Comments: This part number(s) passed Automotive qualification. Infineon’s
Industrial and Consumer qualification level is granted by extension of the higher
Automotive level.
Moisture Sensitivity Level
D
2
-Pak
MSL1
ESD
Machine Model
Class M2 (+/- 200V)
†
AEC-Q101-002
Human Body Model
Class H1B (+/- 700V)
†
AEC-Q101-001
Charged Device Model
Class C5 (+/- 2000V)
†
AEC-Q101-005
RoHS Compliant
Yes
Revision History
Date Comments
12/2/2015
Updated datasheet with corporate template
Corrected ordering table on page 1.
Updated typo on the fig.19 and fig.20, unit of y-axis from "A" to "nC" on page 7.
Corrected typo Coss eff test condition from “60V” to “48V” on page 2.
10/12/2017
Corrected typo error on part marking on page 8.