AUIRFS/SL6535 Product Datasheet

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/auirfs6535-html.html
background image

 

AUIRFS6535 

AUIRFSL6535 

V

DSS 

300V 

R

DS(on)

   typ. 

148m



I

D  

19A 

              max. 

185m



Features 

  Advanced Process Technology 

 Low 

On-Resistance 

  175°C Operating Temperature 

 Fast Switching 
  Repetitive Avalanche Allowed up to Tjmax 

  Lead-Free, RoHS Compliant 

  Automotive Qualified *  

Description 
Specifically designed for Automotive applications, this 
HEXFET® Power MOSFET utilizes the latest processing 
techniques to achieve extremely low on-resistance per silicon 
area.  Additional features of this design  are a 175°C junction 
operating temperature, fast switching speed and improved 
repetitive avalanche rating . These features combine to make 
this design an extremely efficient and reliable device for use in 
Automotive applications and a wide variety of other 
applications. 

 

2015-12-4 

HEXFET® is a registered trademark of Infineon. 
*Qualification standards can be found at 

www.infineon.com

 

 

AUTOMOTIVE GRADE 

Symbol Parameter 

Max. 

Units 

I

D

 @ T

C

 = 25°C 

Continuous Drain Current, V

GS

 @ 10V  

19 

I

D

 @ T

C

 = 100°C 

Continuous Drain Current, V

GS

 @ 10V  

13 

I

DM 

Pulsed Drain Current  100 

P

D

 @T

C

 = 25°C 

Maximum Power Dissipation   

210 

  

Linear Derating Factor 

1.4 

W/°C 

V

GS 

Gate-to-Source Voltage 

 ± 20 

E

AS  

Single Pulse Avalanche Energy (Thermally Limited)  216 

mJ  

E

AS 

(tested)

 

Single Pulse Avalanche Energy Tested Value  310 

I

AR 

Avalanche Current  

See Fig.15,16, 12a, 12b   

E

AR 

Repetitive Avalanche Energy  

 

mJ 

T

J  

Operating Junction and 

-55  to + 175 

 

T

STG 

Storage Temperature Range 

  

°C 

  

Soldering Temperature, for 10 seconds (1.6mm from case) 

300 

 

Absolute Maximum Ratings 

Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device.   These are stress 
ratings only; and functional operation of the device at these or any other condition beyond those indicated in the specifications is not 
implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability. The thermal resistance 
and power dissipation ratings are measured under board mounted and still air conditions. Ambient temperature (TA) is 25°C, unless 
otherwise specified. 

Thermal Resistance  

Symbol Parameter 

Typ. 

Max. 

Units 

R

JC

  

Junction-to-Case  ––– 

0.71 

°C/W   

R

JA

  

Junction-to-Ambient ( PCB Mount, steady state)   

40 

D

2

Pak 

AUIRFS6535 

TO-262 

AUIRFSL6535 

Base part number 

Package Type 

Standard Pack 

Form 

Quantity 

AUIRFSL6535 

TO-262  

Tube  

50 

AUIRFSL6535 

AUIRFS6535  

D

2

-Pak    

Tube  

50 

AUIRFS6535 

Tape and Reel Left  

800 

AUIRFS6535TRL 

Orderable Part Number   

G D  S 

Gate Drain Source 

HEXFET

® 

Power MOSFET 

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/auirfs6535-html.html
background image

 

AUIRFS/L6535 

 

2015-12-4 

Notes:

 Repetitive rating;  pulse width limited by max. junction temperature. (See fig. 11) 

  Limited by T

Jmax, 

starting  T

J

 = 25°C, L = 3.6mH, R

G

 = 50

, I

AS

 = 11A, V

GS

 =10V. Part not recommended for use above this value.  

 Pulse width 

1.0ms; duty cycle  2%. 

  C

oss

 eff.  is a fixed capacitance that gives the same charging time as C

oss

 while V

DS

 is rising from 0 to 80% V

DSS

   Limited by T

Jmax

 , see Fig.12a, 12b, 15, 16 for typical repetitive avalanche performance.  

  This value determined from sample failure population, starting T

J

 = 25°C, L = 3.6mH, R

G

 = 50

, I

AS

 = 11A, V

GS

 =10V.  

  This is applied to D

2

Pak When mounted on 1" square PCB (FR-4 or G-10 Material). For recommended footprint and  

 

soldering techniques refer to application note #AN-994  

   R

 

is measured at T

J  

approximately 90°C. 

 

Static @ T

J

 = 25°C (unless otherwise specified) 

  

Parameter Min. 

Typ. 

Max. 

Units 

Conditions 

V

(BR)DSS 

Drain-to-Source Breakdown Voltage 

300 

–––  ––– 

V  V

GS

 = 0V, I

D

 = 250µA 

V

(BR)DSS

/

T

J  

Breakdown Voltage Temp. Coefficient 

–––  0.39  –––  V/°C  Reference to 25°C, I

D

 = 5.0mA  

R

DS(on) 

  

Static Drain-to-Source On-Resistance   

––– 

148  185  m

 V

GS

 = 10V, I

D

 = 11A  

V

GS(th) 

Gate Threshold Voltage 

3.0 

––– 

5.0 

V  V

DS

 = V

GS

, I

D

 = 150µA 

gfs 

Forward Trans conductance 

15 

–––  ––– 

S  V

DS

 = 50V, I

D

 = 11A 

I

DSS 

  

Drain-to-Source Leakage Current   

––– –––  20 

µA 

V

DS

 = 300V, V

GS

 = 0V 

––– ––– 250 

V

DS

 = 300V,V

GS

 = 0V,T

J

 =125°C 

I

GSS 

  

Gate-to-Source Forward Leakage 

––– 

–––  100 

nA 

V

GS

 = 20V 

Gate-to-Source Reverse Leakage 

––– 

–––  -100 

V

GS

 = -20V 

Dynamic  Electrical Characteristics @ T

J

 = 25°C (unless otherwise specified) 

Q

Total Gate Charge  

––– 

38 

57 

nC  

I

D

 = 11A 

Q

gs 

Gate-to-Source Charge 

––– 

12 

––– 

V

DS

 = 150V 

Q

gd 

Gate-to-Drain Charge 

––– 

13 

––– 

V

GS

 = 10V 

t

d(on) 

Turn-On Delay Time 

––– 

15 

––– 

ns 

V

DD

 = 300V 

t

Rise Time 

––– 

16 

––– 

I

D

 = 11A 

t

d(off) 

Turn-Off Delay Time 

––– 

22 

––– 

R

G

= 5.0



t

Fall Time 

––– 

10 

––– 

V

GS

 = 10V  

L

D

 

Internal Drain Inductance 

––– 

4.5 

––– 

 nH  

Between lead, 
6mm (0.25in.) 

L

S

 

Internal Source Inductance 

––– 

7.5 

––– 

from package 
and center of die contact 

C

iss 

Input Capacitance 

–––  2340  ––– 

pF  

V

GS

 = 0V 

C

oss 

Output Capacitance 

––– 

195  ––– 

V

DS

 = 25V 

C

rss 

Reverse Transfer Capacitance 

––– 

40 

––– 

ƒ = 1.0MHz 

C

oss 

Output Capacitance 

–––  1750  ––– 

V

GS

 = 0V, V

DS

 = 1.0V ƒ = 1.0MHz 

C

oss 

Output Capacitance 

––– 

66 

––– 

V

GS

 = 0V, V

DS

 = 240V ƒ = 1.0MHz 

C

oss eff. 

Effective Output Capacitance  

––– 130 ––– 

V

GS

 = 0V, V

DS

 = 0V to 240V  

Diode Characteristics  

  

        Parameter 

Min.  Typ.  Max.  Units 

Conditions 

I

  

Continuous Source Current  

––– –––  19 

MOSFET symbol 

(Body Diode) 

showing  the 

I

SM 

  

Pulsed Source Current 

––– ––– 100 

integral reverse 

(Body Diode)

p-n junction diode. 

V

SD 

Diode Forward Voltage 

––– 

––– 

1.3 

V  T

J

 = 25°C,I

= 11A,V

GS

 = 0V 

t

rr  

Reverse Recovery Time  

––– 

190  285 

ns   T

J

 = 25°C ,I

F

 = 11A, V

DD

 = 150V 

Q

rr  

Reverse Recovery Charge  

––– 

990  1485  nC    di/dt = 100A/µs 

t

on 

Forward Turn-On Time 

Intrinsic turn-on time is negligible (turn-on is dominated by L

S

+L

D

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/auirfs6535-html.html
background image

 

AUIRFS/L6535 

 

2015-12-4 

Fig. 2 Typical Output Characteristics 

Fig. 3 

Typical Transfer Characteristics

 

 

Fig. 4 Typical Forward Trans conductance 

vs. Drain Current 

Fig. 1 Typical Output Characteristics 

0.1

1

10

100

VDS, Drain-to-Source Voltage (V)

0.01

0.1

1

10

100

I D

, D

ra

in

-t

o-

S

ou

rc

C

u

rr

en

t (

A

)

VGS

TOP           15V

10V

8.0V

7.0V

6.5V

6.0V

5.5V

BOTTOM

5.0V

60µs PULSE WIDTH

Tj = 25°C

5.0V

0.1

1

10

100

VDS, Drain-to-Source Voltage (V)

0.1

1

10

100

I D

, D

ra

in

-t

o-

S

o

ur

ce

 C

u

rr

en

t (

A

)

5.0V

60µs PULSE WIDTH

Tj = 175°C

VGS

TOP           15V

10V

8.0V

7.0V

6.5V

6.0V

5.5V

BOTTOM

5.0V

3

4

5

6

7

8

9

VGS, Gate-to-Source Voltage (V)

1.0

10

100

I D

, D

ra

in

-t

o-

S

ou

rc

C

ur

re

nt

 

(A

)

TJ = 25°C

TJ = 175°C

VDS = 50V

60µs PULSE WIDTH

0

1

2

3

4

5

6

ID,Drain-to-Source Current (A)

0

5

10

15

20

G

fs

, F

or

w

ar

T

ra

ns

co

nd

uc

ta

nc

(S

)

TJ = 25°C

TJ = 175°C

VDS = 5.0V 
380µs PULSE WIDTH

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/auirfs6535-html.html
background image

 

AUIRFS/L6535 

 

2015-12-4 

Fig 5.  Typical Capacitance vs.  
 

      Drain-to-Source Voltage

 

Fig 6.  Typical Gate Charge vs. 
 

      Gate-to-Source Voltage

 

 

 

Fig 8.  Maximum Safe Operating Area  

Fig. 7 Typical Source-to-Drain Diode 

 Forward Voltage 

1

10

100

1000

VDS, Drain-to-Source Voltage (V)

10

100

1000

10000

100000

C

, C

ap

ac

ita

nc

(p

F

)

VGS   = 0V,       f = 1 MHZ

Ciss    = Cgs + Cgd,  C ds SHORTED
Crss    = Cgd 
Coss   = Cds + Cgd

Coss

Crss

Ciss

0

5

10 15 20 25 30 35 40 45 50

 QG,  Total Gate Charge (nC)

0.0

2.0

4.0

6.0

8.0

10.0

12.0

14.0

V

G

S

, G

at

e-

to

-S

ou

rc

V

ol

ta

ge

 (

V

)

VDS= 240V

VDS= 150V

VDS= 60V

ID= 11A

0.2

0.4

0.6

0.8

1.0

1.2

VSD, Source-to-Drain Voltage (V)

1.0

10

100

I S

D

, R

ev

er

se

 D

ra

in

 C

ur

re

nt

 (

A

)

TJ = 25°C

TJ = 175°C

VGS = 0V

1

10

100

1000

VDS, Drain-to-Source Voltage (V)

0.01

0.1

1

10

100

1000

I D

,  

D

ra

in

-t

o-

S

ou

rc

C

ur

re

nt

 (

A

)

Tc = 25°C

Tj = 175°C

Single Pulse

1msec

10msec

OPERATION IN THIS AREA 

LIMITED BY R DS(on)

100µsec

DC

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/auirfs6535-html.html
background image

 

AUIRFS/L6535 

 

2015-12-4 

Fig 10.   Normalized On-Resistance 

vs. Temperature 

Fig 11.  Maximum Effective Transient Thermal Impedance, Junction-to-Case  

Fig 9.  Maximum Drain Current vs. Case Temperature 

25

50

75

100

125

150

175

 TC , Case Temperature (°C)

0

5

10

15

20

I D

,   

D

ra

in

 C

ur

re

nt

 (

A

)

-60 -40 -20 0 20 40 60 80 100120140160180

TJ , Junction Temperature (°C)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

R

D

S

(o

n)

 ,

 D

ra

in

-t

o-

S

ou

rc

O

R

es

is

ta

nc

   

   

   

   

   

   

   

 (

N

or

m

al

iz

ed

)

ID = 19A

VGS = 10V

1E-006

1E-005

0.0001

0.001

0.01

0.1

1

t1 , Rectangular Pulse Duration (sec)

0.001

0.01

0.1

1

T

he

rm

al

 R

es

po

ns

Z

 th

JC

 )

 °

C

/W

0.20

0.10

D = 0.50

0.02

0.01

0.05

SINGLE PULSE

( THERMAL RESPONSE )

Notes:

1. Duty Factor D = t1/t2

2. Peak Tj = P dm x Zthjc + Tc

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/auirfs6535-html.html
background image

 

AUIRFS/L6535 

 

2015-12-4 

 

Fig 14.   

Threshold Voltage vs. Temperature 

Fig 12c. Maximum Avalanche Energy 

 vs. Drain Current 

Fig 12a.  Unclamped Inductive Test Circuit 

Fig 12b.  Unclamped Inductive Waveforms 

R G

IAS

0.01

tp

D.U.T

L

VDS

+

- VDD

DRIVER

A

15V

20V

tp

V

(BR)DSS

I

AS

Fig 13b.  Gate Charge Test Circuit 

Fig 13a.   Gate Charge Waveform 

Vds

Vgs

Id

Vgs(th)

Qgs1 Qgs2

Qgd

Qgodr

25

50

75

100

125

150

175

Starting TJ , Junction Temperature (°C)

0

100

200

300

400

500

600

700

800

900

E

A

S

 , 

S

in

gl

P

ul

se

 A

va

la

nc

he

 E

ne

rg

(m

J)

ID

TOP         1.5A

3.0A

BOTTOM 11A

-75 -50 -25 0

25 50 75 100 125 150 175

TJ , Temperature ( °C )

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

5.5

6.0

V

G

S

(t

h)

,  G

at

th

re

sh

ol

V

ol

ta

ge

 (

V

)

ID = 150µA

ID = 250µA

ID = 1.0mA

ID = 1.0A

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/auirfs6535-html.html
background image

 

AUIRFS/L6535 

 

2015-12-4 

 

Fig 15.  Typical Avalanche Current vs. Pulse width  

Notes on Repetitive Avalanche Curves , Figures 15, 16: 
(For further info, see AN-1005 at 

www.infineon.com

 
1.  Avalanche failures assumption:  
 

Purely a thermal phenomenon and failure occurs at a temperature far in  

 

excess of T

jmax

. This is validated for every part type. 

2.  Safe operation in Avalanche is allowed as long as T

jmax

 is not exceeded. 

3.   Equation below based on circuit and waveforms shown in Figures 12a, 12b. 
4.   P

D (ave) 

= Average power dissipation per single avalanche pulse. 

5.   BV = Rated breakdown voltage (1.3 factor accounts for voltage increase  
 during 

avalanche). 

6.   I

av 

= Allowable avalanche current. 

7. 

T

 = 

Allowable rise in junction temperature, not to exceed

 

T

jmax 

(assumed as  

 

25°C in Figure 15, 16).  

 

t

av = 

Average time in avalanche. 

 

D = Duty cycle in avalanche =  t

av 

·f 

 

Z

thJC

(D, t

av

) = Transient thermal resistance, see Figures 13) 

 

P

D (ave)

 = 1/2 ( 1.3·BV·I

av

) = 

T/ Z

thJC

 

I

av

 = 2

T/ [1.3·BV·Z

th

E

AS (AR) 

= P

D (ave)

·t

av

 

Fig 16.  Maximum Avalanche Energy  

vs. Temperature 

1.0E-06

1.0E-05

1.0E-04

1.0E-03

1.0E-02

1.0E-01

tav (sec)

0.1

1

10

100

A

va

la

nc

he

 C

ur

re

nt

 (

A

)

0.05

Duty Cycle = Single Pulse

0.10

Allowed avalanche Current vs avalanche 
pulsewidth, tav, assuming  j = 25°C and 

Tstart = 150°C.

0.01

Allowed avalanche Current vs avalanche 
pulsewidth, tav, assuming Tj = 150°C and 

Tstart =25°C (Single Pulse)

25

50

75

100

125

150

175

Starting TJ , Junction Temperature (°C)

0

50

100

150

200

250

E

A

R

 , 

A

va

la

nc

he

 E

ne

rg

(m

J)

TOP          Single Pulse                
BOTTOM   1.0% Duty Cycle
ID = 11A

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/auirfs6535-html.html
background image

 

AUIRFS/L6535 

 

2015-12-4 

 

Fig 17. Peak Diode Recovery dv/dt Test Circuit for N-Channel HEXFET® Power MOSFETs 

Fig 18a.  Switching Time Test Circuit 

Fig 18b.  Switching Time Waveforms 

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/auirfs6535-html.html
background image

 

AUIRFS/L6535 

 

2015-12-4 

D

2

Pak (TO-263AB) Package Outline (Dimensions are shown in millimeters (inches)) 

YWWA 

XX    

    XX 

Date Code 

Y= Year 

WW= Work Week 

AUIRFS6535 

Lot Code 

Part Number 

IR Logo 

D

2

Pak (TO-263AB) Part Marking Information 

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/auirfs6535-html.html
background image

 

AUIRFS/L6535 

10 

 

2015-12-4 

 

 

TO-262 Part Marking Information 

YWWA 

XX    

    XX 

Date Code 

Y= Year 

WW= Work Week 

AUFSL6535 

Lot Code 

Part Number 

IR Logo 

TO-262 Package Outline (Dimensions are shown in millimeters (inches) 

Maker
Infineon Technologies