AUIRFS6535
AUIRFSL6535
V
DSS
300V
R
DS(on)
typ.
148m
I
D
19A
max.
185m
Features
Advanced Process Technology
Low
On-Resistance
175°C Operating Temperature
Fast Switching
Repetitive Avalanche Allowed up to Tjmax
Lead-Free, RoHS Compliant
Automotive Qualified *
Description
Specifically designed for Automotive applications, this
HEXFET® Power MOSFET utilizes the latest processing
techniques to achieve extremely low on-resistance per silicon
area. Additional features of this design are a 175°C junction
operating temperature, fast switching speed and improved
repetitive avalanche rating . These features combine to make
this design an extremely efficient and reliable device for use in
Automotive applications and a wide variety of other
applications.
1
2015-12-4
HEXFET® is a registered trademark of Infineon.
*Qualification standards can be found at
www.infineon.com
AUTOMOTIVE GRADE
Symbol Parameter
Max.
Units
I
D
@ T
C
= 25°C
Continuous Drain Current, V
GS
@ 10V
19
A
I
D
@ T
C
= 100°C
Continuous Drain Current, V
GS
@ 10V
13
I
DM
Pulsed Drain Current 100
P
D
@T
C
= 25°C
Maximum Power Dissipation
210
W
Linear Derating Factor
1.4
W/°C
V
GS
Gate-to-Source Voltage
± 20
V
E
AS
Single Pulse Avalanche Energy (Thermally Limited) 216
mJ
E
AS
(tested)
Single Pulse Avalanche Energy Tested Value 310
I
AR
Avalanche Current
See Fig.15,16, 12a, 12b
A
E
AR
Repetitive Avalanche Energy
mJ
T
J
Operating Junction and
-55 to + 175
T
STG
Storage Temperature Range
°C
Soldering Temperature, for 10 seconds (1.6mm from case)
300
Absolute Maximum Ratings
Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress
ratings only; and functional operation of the device at these or any other condition beyond those indicated in the specifications is not
implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability. The thermal resistance
and power dissipation ratings are measured under board mounted and still air conditions. Ambient temperature (TA) is 25°C, unless
otherwise specified.
Thermal Resistance
Symbol Parameter
Typ.
Max.
Units
R
JC
Junction-to-Case –––
0.71
°C/W
R
JA
Junction-to-Ambient ( PCB Mount, steady state)
40
D
2
Pak
AUIRFS6535
TO-262
AUIRFSL6535
S
D
G
S
D
G
D
Base part number
Package Type
Standard Pack
Form
Quantity
AUIRFSL6535
TO-262
Tube
50
AUIRFSL6535
AUIRFS6535
D
2
-Pak
Tube
50
AUIRFS6535
Tape and Reel Left
800
AUIRFS6535TRL
Orderable Part Number
G D S
Gate Drain Source
HEXFET
®
Power MOSFET
AUIRFS/L6535
2
2015-12-4
Notes:
Repetitive rating; pulse width limited by max. junction temperature. (See fig. 11)
Limited by T
Jmax,
starting T
J
= 25°C, L = 3.6mH, R
G
= 50
, I
AS
= 11A, V
GS
=10V. Part not recommended for use above this value.
Pulse width
1.0ms; duty cycle 2%.
C
oss
eff. is a fixed capacitance that gives the same charging time as C
oss
while V
DS
is rising from 0 to 80% V
DSS
.
Limited by T
Jmax
, see Fig.12a, 12b, 15, 16 for typical repetitive avalanche performance.
This value determined from sample failure population, starting T
J
= 25°C, L = 3.6mH, R
G
= 50
, I
AS
= 11A, V
GS
=10V.
This is applied to D
2
Pak When mounted on 1" square PCB (FR-4 or G-10 Material). For recommended footprint and
soldering techniques refer to application note #AN-994
R
is measured at T
J
approximately 90°C.
Static @ T
J
= 25°C (unless otherwise specified)
Parameter Min.
Typ.
Max.
Units
Conditions
V
(BR)DSS
Drain-to-Source Breakdown Voltage
300
––– –––
V V
GS
= 0V, I
D
= 250µA
V
(BR)DSS
/
T
J
Breakdown Voltage Temp. Coefficient
––– 0.39 ––– V/°C Reference to 25°C, I
D
= 5.0mA
R
DS(on)
Static Drain-to-Source On-Resistance
–––
148 185 m
V
GS
= 10V, I
D
= 11A
V
GS(th)
Gate Threshold Voltage
3.0
–––
5.0
V V
DS
= V
GS
, I
D
= 150µA
gfs
Forward Trans conductance
15
––– –––
S V
DS
= 50V, I
D
= 11A
I
DSS
Drain-to-Source Leakage Current
––– ––– 20
µA
V
DS
= 300V, V
GS
= 0V
––– ––– 250
V
DS
= 300V,V
GS
= 0V,T
J
=125°C
I
GSS
Gate-to-Source Forward Leakage
–––
––– 100
nA
V
GS
= 20V
Gate-to-Source Reverse Leakage
–––
––– -100
V
GS
= -20V
Dynamic Electrical Characteristics @ T
J
= 25°C (unless otherwise specified)
Q
g
Total Gate Charge
–––
38
57
nC
I
D
= 11A
Q
gs
Gate-to-Source Charge
–––
12
–––
V
DS
= 150V
Q
gd
Gate-to-Drain Charge
–––
13
–––
V
GS
= 10V
t
d(on)
Turn-On Delay Time
–––
15
–––
ns
V
DD
= 300V
t
r
Rise Time
–––
16
–––
I
D
= 11A
t
d(off)
Turn-Off Delay Time
–––
22
–––
R
G
= 5.0
t
f
Fall Time
–––
10
–––
V
GS
= 10V
L
D
Internal Drain Inductance
–––
4.5
–––
nH
Between lead,
6mm (0.25in.)
L
S
Internal Source Inductance
–––
7.5
–––
from package
and center of die contact
C
iss
Input Capacitance
––– 2340 –––
pF
V
GS
= 0V
C
oss
Output Capacitance
–––
195 –––
V
DS
= 25V
C
rss
Reverse Transfer Capacitance
–––
40
–––
ƒ = 1.0MHz
C
oss
Output Capacitance
––– 1750 –––
V
GS
= 0V, V
DS
= 1.0V ƒ = 1.0MHz
C
oss
Output Capacitance
–––
66
–––
V
GS
= 0V, V
DS
= 240V ƒ = 1.0MHz
C
oss eff.
Effective Output Capacitance
––– 130 –––
V
GS
= 0V, V
DS
= 0V to 240V
Diode Characteristics
Parameter
Min. Typ. Max. Units
Conditions
I
S
Continuous Source Current
––– ––– 19
A
MOSFET symbol
(Body Diode)
showing the
I
SM
Pulsed Source Current
––– ––– 100
integral reverse
(Body Diode)
p-n junction diode.
V
SD
Diode Forward Voltage
–––
–––
1.3
V T
J
= 25°C,I
S
= 11A,V
GS
= 0V
t
rr
Reverse Recovery Time
–––
190 285
ns T
J
= 25°C ,I
F
= 11A, V
DD
= 150V
Q
rr
Reverse Recovery Charge
–––
990 1485 nC di/dt = 100A/µs
t
on
Forward Turn-On Time
Intrinsic turn-on time is negligible (turn-on is dominated by L
S
+L
D
)
AUIRFS/L6535
3
2015-12-4
Fig. 2 Typical Output Characteristics
Fig. 3
Typical Transfer Characteristics
Fig. 4 Typical Forward Trans conductance
vs. Drain Current
Fig. 1 Typical Output Characteristics
0.1
1
10
100
VDS, Drain-to-Source Voltage (V)
0.01
0.1
1
10
100
I D
, D
ra
in
-t
o-
S
ou
rc
e
C
u
rr
en
t (
A
)
VGS
TOP 15V
10V
8.0V
7.0V
6.5V
6.0V
5.5V
BOTTOM
5.0V
60µs PULSE WIDTH
Tj = 25°C
5.0V
0.1
1
10
100
VDS, Drain-to-Source Voltage (V)
0.1
1
10
100
I D
, D
ra
in
-t
o-
S
o
ur
ce
C
u
rr
en
t (
A
)
5.0V
60µs PULSE WIDTH
Tj = 175°C
VGS
TOP 15V
10V
8.0V
7.0V
6.5V
6.0V
5.5V
BOTTOM
5.0V
3
4
5
6
7
8
9
VGS, Gate-to-Source Voltage (V)
1.0
10
100
I D
, D
ra
in
-t
o-
S
ou
rc
e
C
ur
re
nt
(A
)
TJ = 25°C
TJ = 175°C
VDS = 50V
60µs PULSE WIDTH
0
1
2
3
4
5
6
ID,Drain-to-Source Current (A)
0
5
10
15
20
G
fs
, F
or
w
ar
d
T
ra
ns
co
nd
uc
ta
nc
e
(S
)
TJ = 25°C
TJ = 175°C
VDS = 5.0V
380µs PULSE WIDTH
AUIRFS/L6535
4
2015-12-4
Fig 5. Typical Capacitance vs.
Drain-to-Source Voltage
Fig 6. Typical Gate Charge vs.
Gate-to-Source Voltage
Fig 8. Maximum Safe Operating Area
Fig. 7 Typical Source-to-Drain Diode
Forward Voltage
1
10
100
1000
VDS, Drain-to-Source Voltage (V)
10
100
1000
10000
100000
C
, C
ap
ac
ita
nc
e
(p
F
)
VGS = 0V, f = 1 MHZ
Ciss = Cgs + Cgd, C ds SHORTED
Crss = Cgd
Coss = Cds + Cgd
Coss
Crss
Ciss
0
5
10 15 20 25 30 35 40 45 50
QG, Total Gate Charge (nC)
0.0
2.0
4.0
6.0
8.0
10.0
12.0
14.0
V
G
S
, G
at
e-
to
-S
ou
rc
e
V
ol
ta
ge
(
V
)
VDS= 240V
VDS= 150V
VDS= 60V
ID= 11A
0.2
0.4
0.6
0.8
1.0
1.2
VSD, Source-to-Drain Voltage (V)
1.0
10
100
I S
D
, R
ev
er
se
D
ra
in
C
ur
re
nt
(
A
)
TJ = 25°C
TJ = 175°C
VGS = 0V
1
10
100
1000
VDS, Drain-to-Source Voltage (V)
0.01
0.1
1
10
100
1000
I D
,
D
ra
in
-t
o-
S
ou
rc
e
C
ur
re
nt
(
A
)
Tc = 25°C
Tj = 175°C
Single Pulse
1msec
10msec
OPERATION IN THIS AREA
LIMITED BY R DS(on)
100µsec
DC
AUIRFS/L6535
5
2015-12-4
Fig 10. Normalized On-Resistance
vs. Temperature
Fig 11. Maximum Effective Transient Thermal Impedance, Junction-to-Case
Fig 9. Maximum Drain Current vs. Case Temperature
25
50
75
100
125
150
175
TC , Case Temperature (°C)
0
5
10
15
20
I D
,
D
ra
in
C
ur
re
nt
(
A
)
-60 -40 -20 0 20 40 60 80 100120140160180
TJ , Junction Temperature (°C)
0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
R
D
S
(o
n)
,
D
ra
in
-t
o-
S
ou
rc
e
O
n
R
es
is
ta
nc
e
(
N
or
m
al
iz
ed
)
ID = 19A
VGS = 10V
1E-006
1E-005
0.0001
0.001
0.01
0.1
1
t1 , Rectangular Pulse Duration (sec)
0.001
0.01
0.1
1
T
he
rm
al
R
es
po
ns
e
(
Z
th
JC
)
°
C
/W
0.20
0.10
D = 0.50
0.02
0.01
0.05
SINGLE PULSE
( THERMAL RESPONSE )
Notes:
1. Duty Factor D = t1/t2
2. Peak Tj = P dm x Zthjc + Tc
AUIRFS/L6535
6
2015-12-4
Fig 14.
Threshold Voltage vs. Temperature
Fig 12c. Maximum Avalanche Energy
vs. Drain Current
Fig 12a. Unclamped Inductive Test Circuit
Fig 12b. Unclamped Inductive Waveforms
R G
IAS
0.01
tp
D.U.T
L
VDS
+
- VDD
DRIVER
A
15V
20V
tp
V
(BR)DSS
I
AS
Fig 13b. Gate Charge Test Circuit
Fig 13a. Gate Charge Waveform
Vds
Vgs
Id
Vgs(th)
Qgs1 Qgs2
Qgd
Qgodr
25
50
75
100
125
150
175
Starting TJ , Junction Temperature (°C)
0
100
200
300
400
500
600
700
800
900
E
A
S
,
S
in
gl
e
P
ul
se
A
va
la
nc
he
E
ne
rg
y
(m
J)
ID
TOP 1.5A
3.0A
BOTTOM 11A
-75 -50 -25 0
25 50 75 100 125 150 175
TJ , Temperature ( °C )
1.5
2.0
2.5
3.0
3.5
4.0
4.5
5.0
5.5
6.0
V
G
S
(t
h)
, G
at
e
th
re
sh
ol
d
V
ol
ta
ge
(
V
)
ID = 150µA
ID = 250µA
ID = 1.0mA
ID = 1.0A
AUIRFS/L6535
7
2015-12-4
Fig 15. Typical Avalanche Current vs. Pulse width
Notes on Repetitive Avalanche Curves , Figures 15, 16:
(For further info, see AN-1005 at
www.infineon.com
)
1. Avalanche failures assumption:
Purely a thermal phenomenon and failure occurs at a temperature far in
excess of T
jmax
. This is validated for every part type.
2. Safe operation in Avalanche is allowed as long as T
jmax
is not exceeded.
3. Equation below based on circuit and waveforms shown in Figures 12a, 12b.
4. P
D (ave)
= Average power dissipation per single avalanche pulse.
5. BV = Rated breakdown voltage (1.3 factor accounts for voltage increase
during
avalanche).
6. I
av
= Allowable avalanche current.
7.
T
=
Allowable rise in junction temperature, not to exceed
T
jmax
(assumed as
25°C in Figure 15, 16).
t
av =
Average time in avalanche.
D = Duty cycle in avalanche = t
av
·f
Z
thJC
(D, t
av
) = Transient thermal resistance, see Figures 13)
P
D (ave)
= 1/2 ( 1.3·BV·I
av
) =
T/ Z
thJC
I
av
= 2
T/ [1.3·BV·Z
th
]
E
AS (AR)
= P
D (ave)
·t
av
Fig 16. Maximum Avalanche Energy
vs. Temperature
1.0E-06
1.0E-05
1.0E-04
1.0E-03
1.0E-02
1.0E-01
tav (sec)
0.1
1
10
100
A
va
la
nc
he
C
ur
re
nt
(
A
)
0.05
Duty Cycle = Single Pulse
0.10
Allowed avalanche Current vs avalanche
pulsewidth, tav, assuming j = 25°C and
Tstart = 150°C.
0.01
Allowed avalanche Current vs avalanche
pulsewidth, tav, assuming Tj = 150°C and
Tstart =25°C (Single Pulse)
25
50
75
100
125
150
175
Starting TJ , Junction Temperature (°C)
0
50
100
150
200
250
E
A
R
,
A
va
la
nc
he
E
ne
rg
y
(m
J)
TOP Single Pulse
BOTTOM 1.0% Duty Cycle
ID = 11A
AUIRFS/L6535
8
2015-12-4
Fig 17. Peak Diode Recovery dv/dt Test Circuit for N-Channel HEXFET® Power MOSFETs
Fig 18a. Switching Time Test Circuit
Fig 18b. Switching Time Waveforms
AUIRFS/L6535
9
2015-12-4
D
2
Pak (TO-263AB) Package Outline (Dimensions are shown in millimeters (inches))
YWWA
XX
XX
Date Code
Y= Year
WW= Work Week
AUIRFS6535
Lot Code
Part Number
IR Logo
D
2
Pak (TO-263AB) Part Marking Information
AUIRFS/L6535
10
2015-12-4
TO-262 Part Marking Information
YWWA
XX
XX
Date Code
Y= Year
WW= Work Week
AUFSL6535
Lot Code
Part Number
IR Logo
TO-262 Package Outline (Dimensions are shown in millimeters (inches)