AUIRFS/SL3206 Product Datasheet

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/Infineon-AUIRFS3206-DS-v02_01-EN-html.html
background image

 

AUIRFS3206 

AUIRFSL3206 

V

DSS 

60V 

R

DS(on)

   typ. 

2.4m

 

              max. 

3.0m

 

I

D (Silicon Limited) 

210A 

I

D (Package Limited) 

120A  

Absolute Maximum Ratings 

Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device.   These are stress 
ratings only; and functional operation of the device at these or any other condition beyond those indicated in the specifications is not 
implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability. The thermal resistance 
and power dissipation ratings are measured under board mounted and still air conditions. Ambient temperature (TA) is 25°C, unless 
otherwise specified. 

Features 

  Advanced Process Technology 

  Ultra Low On-Resistance 

  Enhanced dV/dT and dI/dT capability 

  175°C Operating Temperature 
 Fast 

Switching 

  Repetitive Avalanche Allowed up to Tjmax 

  Lead-Free, RoHS Compliant 

  Automotive Qualified *  
Description 
Specifically designed for Automotive applications, this HEXFET

®

 

Power MOSFET utilizes the latest processing techniques to achieve 
extremely low on-resistance per silicon area.  Additional features of 
this design  are a 175°C junction operating temperature, fast 
switching speed and improved repetitive avalanche rating . These 
features combine to make this design an extremely efficient and 
reliable device for use in Automotive applications and a wide variety 
of other applications 

 

2015-10-27 

HEXFET® is a registered trademark of Infineon. 
*Qualification standards can be found at 

www.infineon.com

 

 

AUTOMOTIVE GRADE 

Symbol Parameter 

Max. 

Units 

I

D

 @ T

C

 = 25°C 

Continuous Drain Current, V

GS

 @ 10V (Silicon Limited) 

210 

I

D

 @ T

C

 = 100°C 

Continuous Drain Current, V

GS

 @ 10V (Silicon Limited) 

150 

I

D

 @ T

C

 = 25°C 

Continuous Drain Current, V

GS

 @ 10V (Package Limited) 

120 

I

DM 

Pulsed Drain Current  840 

P

D

 @T

C

 = 25°C 

Maximum Power Dissipation   

300 

  

Linear Derating Factor 

2.0 

W/°C 

V

GS 

Gate-to-Source Voltage 

 ± 20 

E

AS  

Single Pulse Avalanche Energy (Thermally Limited)  170 

mJ 

I

AR 

Avalanche Current  

See Fig.14,15, 22a, 22b   

E

AR 

Repetitive Avalanche Energy  

 

mJ 

dv/dt Peak 

Diode 

Recovery 

 5.0 

V/ns 

T

J  

Operating Junction and 

-55  to + 175 

 

T

STG 

Storage Temperature Range 

  

°C 

  

Soldering Temperature, for 10 seconds (1.6mm from case) 

300 

 

Thermal Resistance  

Symbol Parameter 

Typ. 

Max. 

Units 

R

JC

  

Junction-to-Case  ––– 

0.50 

°C/W   

R

JA

  

Junction-to-Ambient (PCB Mount), D

Pak ––– 

40 

D

2

Pak 

AUIRFS3206 

TO-262 

AUIRFSL3206 

Base part number 

Package Type 

Standard Pack 

Form 

Quantity 

AUIRFSL3206 

TO-262  

Tube  

50 

AUIRFSL3206 

AUIRFS3206  

D

2

-Pak    

Tube  

50 

AUIRFS3206 

Tape and Reel Left  

800 

AUIRFS3206TRL 

Orderable Part Number   

G D S 

Gate Drain 

Source 

HEXFET

® 

Power MOSFET 

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/Infineon-AUIRFS3206-DS-v02_01-EN-html.html
background image

 

AUIRFS/SL3206 

 

2015-10-27 

Notes:

  Calculated continuous current based on maximum allowable junction temperature. Bond wire current limit is 120A. Note that 

 

current limitations arising from heating of the device leads may occur with some lead mounting arrangements. 

  Repetitive rating;  pulse width limited by max. junction temperature. 

  Limited by T

Jmax, 

starting  T

J

 = 25°C, L = 0.023mH, R

G

 = 25

, I

AS

 = 120A, V

GS

 =10V. Part not recommended for use above this value.  

  I

SD

 

75A, di/dt 360A/µs, V

DD

 

V

(BR)DSS

, T

J

 

 175°C. 

 Pulse width 

400µs; duty cycle  2%. 

  C

oss

 eff. (TR) is a fixed capacitance that gives the same charging time as C

oss

 while V

DS

 is rising from 0 to 80% V

DSS

  C

oss 

eff. (ER) is a fixed capacitance that gives the same energy as C

oss

 while V

DS

 is rising from 0 to 80% V

DSS

  When mounted on 1" square PCB (FR-4 or G-10 Material). For recommended footprint and soldering techniques refer to  

 

application note #AN-994  

  R

 is measured at T

J

 approximately 90°C. 

Static @ T

J

 = 25°C (unless otherwise specified) 

  

Parameter Min. 

Typ. 

Max. 

Units 

Conditions 

V

(BR)DSS 

Drain-to-Source Breakdown Voltage 

60 

–––  ––– 

V  V

GS

 = 0V, I

D

 = 250µA 

V

(BR)DSS

/

T

J  

Breakdown Voltage Temp. Coefficient 

–––  0.07  –––  V/°C  Reference to 25°C, I

D

 = 5mA  

R

DS(on) 

  

Static Drain-to-Source On-Resistance   

––– 

2.4 

3.0 

m

 V

GS

 = 10V, I

D

 = 75A 

V

GS(th) 

Gate Threshold Voltage 

2.0  

––– 

4.0 

V  V

DS

 = V

GS

, I

D

 = 150µA 

gfs 

Forward Trans conductance 

210 

–––  ––– 

S  V

DS

 = 50V, I

D

 = 75A 

R

Gate Resistance 

––– 

0.7 

––– 

  

I

DSS 

  

Drain-to-Source Leakage Current   

––– –––  20 

µA 

V

DS

 = 60V, V

GS

 = 0V 

––– ––– 250 

V

DS

 = 48V,V

GS

 = 0V,T

J

 =125°C 

I

GSS 

  

Gate-to-Source Forward Leakage 

––– 

–––  100 

nA  

V

GS

 = 20V 

 

Gate-to-Source Reverse Leakage 

––– 

–––  -100 

V

GS

 = -20V 

Dynamic  Electrical Characteristics @ T

J

 = 25°C (unless otherwise specified) 

Q

Total Gate Charge  

––– 

120  170 

nC  

I

D

 = 75A 

Q

gs 

Gate-to-Source Charge 

––– 

29 

––– 

V

DS

 = 30V 

Q

gd 

Gate-to-Drain Charge 

––– 

35 

––– 

V

GS

 = 10V 

Q

sync 

Total Gate Charge Sync. (Q

- Q

gd

) ––– 

85 

––– 

 

t

d(on) 

Turn-On Delay Time 

––– 

19 

––– 

ns 

V

DD

 = 30V 

t

Rise Time 

––– 

82 

––– 

I

D

 = 75A 

t

d(off) 

Turn-Off Delay Time 

––– 

55 

––– 

R

G

= 2.7



t

Fall Time 

––– 

83 

––– 

V

GS

 = 10V 

C

iss 

Input Capacitance 

–––  6540  ––– 

pF  

V

GS

 = 0V 

C

oss 

Output Capacitance 

––– 

720  ––– 

V

DS

 = 50V 

C

rss 

Reverse Transfer Capacitance 

––– 

360  ––– 

ƒ = 1.0MHz, See Fig. 5 

C

oss eff.(ER) 

Effective Output Capacitance (Energy Related)  –––  1040  ––– 

V

GS

 = 0V, V

DS

 = 0V to 48V  

C

oss eff.(TR) 

Effective Output Capacitance (Time Related) 

–––  1230  ––– 

V

GS

 = 0V, V

DS

 = 0V to 48V  

Diode Characteristics  

  

        Parameter 

Min.  Typ.  Max.  Units 

Conditions 

I

  

Continuous Source Current  

––– ––– 210 

MOSFET symbol 

(Body Diode) 

showing  the 

I

SM 

  

Pulsed Source Current 

––– ––– 840 

integral reverse 

(Body Diode)

p-n junction diode. 

V

SD 

Diode Forward Voltage 

––– 

––– 

1.3 

V  T

J

 = 25°C,I

= 75A,V

GS

 = 0V 

t

rr  

Reverse Recovery Time  

––– 33  50 

ns  

T

J

 = 25°C          V

DD

 = 51V 

––– 37  56 

T

J

 = 125°C         I

F

 = 75A,  

Q

rr  

Reverse Recovery Charge  

––– 41  62 

nC  

 T

J

 = 25°C     di/dt = 100A/µs 

––– 53  80 

T

J

 = 125°C          

I

RRM 

Reverse Recovery Current 

––– 

2.1 

––– 

A  T

J

 = 25°C     

t

on 

Forward Turn-On Time 

Intrinsic turn-on time is negligible (turn-on is dominated by L

S

+L

D

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/Infineon-AUIRFS3206-DS-v02_01-EN-html.html
background image

 

AUIRFS/SL3206 

 

2015-10-27 

Fig. 2 Typical Output Characteristics 

Fig. 3 

Typical Transfer Characteristics

 

 

Fig. 1 Typical Output Characteristics 

Fig 5.  Typical Capacitance vs. Drain-to-Source Voltage

 

0.1

1

10

100

VDS, Drain-to-Source Voltage (V)

10

100

1000

I D

, D

ra

in

-t

o-

S

ou

rc

C

ur

re

nt

 (

A

)

 60µs PULSE WIDTH

Tj = 25°C

4.5V

VGS

TOP           15V

10V

8.0V

6.0V

5.5V

5.0V

4.8V

BOTTOM

4.5V

0.1

1

10

100

VDS, Drain-to-Source Voltage (V)

10

100

1000

I D

, D

ra

in

-t

o-

S

ou

rc

C

ur

re

nt

 (

A

)

 60µs PULSE WIDTH

Tj = 175°C

4.5V

VGS

TOP           15V

10V

8.0V

6.0V

5.5V

5.0V

4.8V

BOTTOM

4.5V

2.0

3.0

4.0

5.0

6.0

7.0

8.0

VGS, Gate-to-Source Voltage (V)

0.1

1

10

100

1000

I D

, D

ra

in

-t

o-

S

ou

rc

C

ur

re

nt

 

)

VDS = 25V

 60µs PULSE WIDTH

TJ = 25°C

TJ = 175°C

-60 -40 -20 0

20 40 60 80 100 120 140 160 180

TJ , Junction Temperature (°C)

0.5

1.0

1.5

2.0

2.5

R

D

S

(o

n)

 , 

D

ra

in

-t

o-

S

ou

rc

O

R

es

is

ta

nc

   

   

   

   

   

   

   

 (

N

or

m

al

iz

ed

)

ID = 75A

VGS = 10V

1

10

100

VDS, Drain-to-Source Voltage (V)

0

2000

4000

6000

8000

10000

12000

C

, C

ap

ac

ita

nc

(p

F

)

Coss

Crss

Ciss

VGS   = 0V,       f = 1 MHZ

Ciss   = Cgs + Cgd,  Cds SHORTED
Crss   = Cgd 
Coss  = Cds + Cgd

0

40

80

120

160

200

 QG  Total Gate Charge (nC)

0

4

8

12

16

20

V

G

S

, G

at

e-

to

-S

ou

rc

V

ol

ta

ge

 (

V

)

VDS= 48V

VDS= 30V

VDS= 12V

ID= 75A

Fig 6.  Typical Gate Charge vs. Gate-to-Source Voltage

 

 

Fig. 4 

Normalized On-Resistance vs. Temperature

 

 

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/Infineon-AUIRFS3206-DS-v02_01-EN-html.html
background image

 

AUIRFS/SL3206 

 

2015-10-27 

 

Fig 8.  Maximum Safe Operating Area  

Fig 10.  Drain-to-Source Breakdown Voltage 

Fig 11.  Typical C

OSS

 Stored Energy 

Fig 12. Maximum Avalanche Energy vs. Drain Current 

Fig. 7 Typical Source-to-Drain Diode 

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

VSD, Source-to-Drain Voltage (V)

0.1

1

10

100

1000

I S

D

R

ev

er

se

 D

ra

in

 C

ur

re

nt

 (

A

)

TJ = 25°C

TJ = 175°C

VGS = 0V

0.1

1

10

100

VDS, Drain-toSource Voltage (V)

0.1

1

10

100

1000

10000

I D

,  

D

ra

in

-t

o-

S

ou

rc

C

ur

re

nt

 (

A

)

Tc = 25°C

Tj = 175°C

Single Pulse

1msec

10msec

OPERATION IN THIS AREA 

LIMITED BY R DS(on)

100µsec

DC

25

50

75

100

125

150

175

 TC , Case Temperature (°C)

0

40

80

120

160

200

240

I D

,   

D

ra

in

 C

ur

re

nt

 (

A

)

Limited By Package

-60 -40 -20 0

20 40 60 80 100 120 140 160 180

TJ , Junction Temperature (°C)

55

60

65

70

75

80

V

(B

R

)D

S

S

 ,

 D

ra

in

-t

o-

S

ou

rc

B

re

ak

do

w

V

ol

ta

ge

ID = 5mA

0

10

20

30

40

50

60

VDS, Drain-to-Source Voltage (V)

0.0

0.5

1.0

1.5

2.0

E

ne

rg

J)

Fig 9.  Maximum Drain Current vs. Case Temperature 

25

50

75

100

125

150

175

Starting TJ, Junction Temperature (°C)

0

200

400

600

800

E

A

S

S

in

gl

P

ul

se

 A

va

la

nc

he

 E

ne

rg

(m

J)

                 ID

TOP  

        21A

                33A

BOTTOM 

  120A

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/Infineon-AUIRFS3206-DS-v02_01-EN-html.html
background image

 

AUIRFS/SL3206 

 

2015-10-27 

 

Fig 14.   Avalanche Current vs. Pulse width  

Fig 15.  Maximum Avalanche Energy vs. Temperature 

Notes on Repetitive Avalanche Curves , Figures 14, 15: 
(For further info, see AN-1005 at www.infineon.com)
 
1.  Avalanche failures assumption:  
 

Purely a thermal phenomenon and failure occurs at a temperature far in  

 

excess of T

jmax

. This is validated for every part type. 

2.  Safe operation in Avalanche is allowed as long as T

jmax

 is not exceeded. 

3.   Equation below based on circuit and waveforms shown in Figures 18a, 18b. 
4.   P

D (ave) 

= Average power dissipation per single avalanche pulse. 

5.   BV = Rated breakdown voltage (1.3 factor accounts for voltage increase  
 during 

avalanche). 

6.   I

av 

= Allowable avalanche current. 

7. 

T

 = 

Allowable rise in junction temperature, not to exceed

 

T

jmax 

(assumed as  

 

25°C in Figure 13, 14).  

 

t

av = 

Average time in avalanche. 

 

D = Duty cycle in avalanche =  t

av 

·f 

 

Z

thJC

(D, t

av

) = Transient thermal resistance, see Figures 13) 

 

P

D (ave)

 = 1/2 ( 1.3·BV·I

av

) = 

T/ Z

thJC

 

I

av

 = 2

T/ [1.3·BV·Z

th

E

AS (AR) 

= P

D (ave)

·t

av

 

Fig 13.  Maximum Effective Transient Thermal Impedance, Junction-to-Case  

1E-006

1E-005

0.0001

0.001

0.01

0.1

t1 , Rectangular Pulse Duration (sec)

0.0001

0.001

0.01

0.1

1

T

he

rm

al

 R

es

po

ns

Z  

th

JC

 )

0.20

0.10

D = 0.50

0.02

0.01

0.05

SINGLE PULSE

( THERMAL RESPONSE )

Notes:

1. Duty Factor D = t1/t2

2. Peak Tj = P dm x Zthjc + Tc

J

J

1

1

2

2

3

3

R

1

R

1

R

2

R

2

R

3

R

3

C

Ci= 

iRi

Ci= 

iRi

Ri (°C/W) 

I (sec)

0.106416 

0.0001 

0.201878 

0.0012621 

0.190923 

0.011922 

1.0E-06

1.0E-05

1.0E-04

1.0E-03

1.0E-02

1.0E-01

tav (sec)

1

10

100

1000

A

va

la

nc

he

 C

ur

re

nt

 (

A

)

0.05

Duty Cycle = Single Pulse

0.10

Allowed avalanche Current vs avalanche 
pulsewidth, tav, assuming 

 j = 25°C and 

Tstart = 150°C.

0.01

Allowed avalanche Current vs avalanche 
pulsewidth, tav, assuming 

Tj = 150°C and 

Tstart =25°C (Single Pulse)

25

50

75

100

125

150

175

Starting TJ , Junction Temperature (°C)

0

40

80

120

160

200

E

A

R

 ,

 A

va

la

nc

he

 E

ne

rg

(m

J)

TOP          Single Pulse                
BOTTOM   1% Duty Cycle
ID = 120A

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/Infineon-AUIRFS3206-DS-v02_01-EN-html.html
background image

 

AUIRFS/SL3206 

 

2015-10-27 

 

Fig 16.  Threshold Voltage vs. Temperature 

Fig. 18 - Typical Recovery Current vs. di

f

/dt  

Fig. 20 - Typical Stored Charge vs. di

f

/dt  

Fig. 17 - Typical Recovery Current vs. di

f

/dt  

Fig. 19 - Typical Stored Charge vs. di

f

/dt  

-75 -50 -25

0

25

50

75 100 125 150 175

TJ , Temperature ( °C )

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

V

G

S

(t

h)

 G

at

th

re

sh

ol

V

ol

ta

ge

 (

V

)

ID = 1.0A

ID = 1.0mA

ID = 250µA

ID = 150µA

100 200 300 400 500 600 700 800 900 1000

dif / dt - (A / µs)

0

2

4

6

8

10

12

14

16

18

I R

R

M

 -

 (

A

)

IF = 30A
VR = 51V
TJ = 125°C   
TJ =  25°C  

100 200 300 400 500 600 700 800 900 1000

dif / dt - (A / µs)

0

2

4

6

8

10

12

14

16

18

I R

R

M

 -

 (

A

)

IF = 45A
VR = 51V
TJ = 125°C   
TJ =  25°C  

100 200 300 400 500 600 700 800 900 1000

dif / dt - (A / µs)

0

50

100

150

200

250

300

350

Q

R

R

 -

 (

nC

)

IF = 30A
VR = 51V
TJ = 125°C   
TJ =  25°C  

100 200 300 400 500 600 700 800 900 1000

dif / dt - (A / µs)

0

50

100

150

200

250

300

350

Q

R

R

 -

 (

nC

)

IF = 45A
VR = 51V
TJ = 125°C   
TJ =  25°C  

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/Infineon-AUIRFS3206-DS-v02_01-EN-html.html
background image

 

AUIRFS/SL3206 

 

2015-10-27 

 

Fig 21. Peak Diode Recovery dv/dt Test Circuit for N-Channel HEXFET® Power MOSFETs 

Fig 22a.  Unclamped Inductive Test Circuit 

Fig 22b.  Unclamped Inductive Waveforms 

Fig 23a.  Switching Time Test Circuit 

Fig 24a.  Gate Charge Test Circuit 

Fig 24b.   Gate Charge Waveform 

R G

IAS

0.01

tp

D.U.T

L

VDS

+

- VDD

DRIVER

A

15V

20V

tp

V

(BR)DSS

I

AS

Fig 23b.  Switching Time Waveforms 

Vds

Vgs

Id

Vgs(th)

Qgs1 Qgs2

Qgd

Qgodr

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/Infineon-AUIRFS3206-DS-v02_01-EN-html.html
background image

 

AUIRFS/SL3206 

 

2015-10-27 

 

Note: For the most current drawing please refer to IR website at 

http://www.irf.com/package/

 

D

2

Pak (TO-263AB) Part Marking Information 

YWWA 

XX    

    XX 

Date Code 

Y= Year 

WW= Work Week 

AUFS3206 

Lot Code 

Part Number 

IR Logo 

D

2

Pak (TO-263AB) Package Outline (Dimensions are shown in millimeters (inches)) 

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/Infineon-AUIRFS3206-DS-v02_01-EN-html.html
background image

 

AUIRFS/SL3206 

 

2015-10-27 

TO-262 Part Marking Information 

YWWA 

XX    

    XX 

Date Code 

Y= Year 

WW= Work Week 

AUFSL3206 

Lot Code 

Part Number 

IR Logo 

TO-262 Package Outline (Dimensions are shown in millimeters (inches) 

Note: For the most current drawing please refer to IR website at 

http://www.irf.com/package/

 

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/Infineon-AUIRFS3206-DS-v02_01-EN-html.html
background image

 

AUIRFS/SL3206 

10 

 

2015-10-27 

D

2

Pak (TO-263AB) Tape & Reel Information (Dimensions are shown in millimeters (inches)) 

Note: For the most current drawing please refer to IR website at 

http://www.irf.com/package/

 

3

4

4

TRR

FEED DIRECTION

1.85 (.073)
1.65 (.065)

1.60 (.063)
1.50 (.059)

4.10 (.161)
3.90 (.153)

TRL

FEED DIRECTION

10.90 (.429)
10.70 (.421)

16.10 (.634)
15.90 (.626)

1.75 (.069)
1.25 (.049)

11.60 (.457)
11.40 (.449)

15.42 (.609)
15.22 (.601)

4.72 (.136)
4.52 (.178)

24.30 (.957)
23.90 (.941)

0.368 (.0145)
0.342 (.0135)

1.60 (.063)
1.50 (.059)

13.50 (.532)
12.80 (.504)

330.00
(14.173)
  MAX.

27.40 (1.079)
23.90 (.941)

60.00 (2.362)
      MIN.

30.40 (1.197)
      MAX.

26.40 (1.039)
24.40 (.961)

NOTES :
1.   COMFORMS TO EIA-418.
2.   CONTROLLING DIMENSION: MILLIMETER.
3.   DIMENSION MEASURED @ HUB.
4.   INCLUDES FLANGE DISTORTION @ OUTER EDGE.

Maker
Infineon Technologies