AUIRFS3004
AUIRFSL3004
V
DSS
40V
R
DS(on)
typ.
1.4m
max.
1.75m
I
D (Silicon Limited)
340A
I
D (Package Limited)
195A
Absolute Maximum Ratings
Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress
ratings only; and functional operation of the device at these or any other condition beyond those indicated in the specifications is not
implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability. The thermal resistance
and power dissipation ratings are measured under board mounted and still air conditions. Ambient temperature (TA) is 25°C, unless
otherwise specified.
Features
Advanced Process Technology
Ultra Low On-Resistance
175°C Operating Temperature
Fast Switching
Repetitive Avalanche Allowed up to Tjmax
Lead-Free, RoHS Compliant
Automotive Qualified *
Description
Specifically designed for Automotive applications, this HEXFET
®
Power MOSFET utilizes the latest processing techniques to achieve
extremely low on-resistance per silicon area. Additional features of
this design are a 175°C junction operating temperature, fast
switching speed and improved repetitive avalanche rating . These
features combine to make this design an extremely efficient and
reliable device for use in Automotive applications and a wide variety
of other applications.
1
2015-10-20
HEXFET® is a registered trademark of Infineon.
*Qualification standards can be found at
www.infineon.com
AUTOMOTIVE GRADE
Symbol Parameter
Max.
Units
I
D
@ T
C
= 25°C
Continuous Drain Current, V
GS
@ 10V (Silicon Limited)
340
A
I
D
@ T
C
= 100°C
Continuous Drain Current, V
GS
@ 10V (Silicon Limited)
240
I
D
@ T
C
= 25°C
Continuous Drain Current, V
GS
@ 10V (Package Limited)
195
I
DM
Pulsed Drain Current 1310
P
D
@T
C
= 25°C
Maximum Power Dissipation
380
W
Linear Derating Factor
2.5
W/°C
V
GS
Gate-to-Source Voltage
± 20
V
dv/dt Peak
Diode
Recovery
4.4
V/ns
E
AS
Single Pulse Avalanche Energy (Thermally Limited) 300
mJ
I
AR
Avalanche Current
See Fig.14,15, 22a, 22b
A
E
AR
Repetitive Avalanche Energy
mJ
T
J
Operating Junction and
-55 to + 175
T
STG
Storage Temperature Range
°C
Soldering Temperature, for 10 seconds (1.6mm from case)
300
Thermal Resistance
Symbol Parameter
Typ.
Max.
Units
R
JC
Junction-to-Case –––
0.40
°C/W
R
JA
Junction-to-Ambient (PCB Mount), D
2
Pak –––
40
D
2
Pak
AUIRFS3004
TO-262
AUIRFSL3004
S
D
G
S
D
G
D
Base part number
Package Type
Standard Pack
Form
Quantity
AUIRFSL3004
TO-262
Tube
50
AUIRFSL3004
AUIRFS3004
D
2
-Pak
Tube
50
AUIRFS3004
Tape and Reel Left
800
AUIRFS3004TRL
Orderable Part Number
G D S
Gate Drain
Source
HEXFET
®
Power MOSFET
AUIRFS/SL3004
2
2015-10-20
Notes:
Calculated continuous current based on maximum allowable junction temperature. Bond wire current limit is 195A. Note that
current limitations arising from heating of the device leads may occur with some lead mounting arrangements.
Repetitive rating; pulse width limited by max. junction temperature.
Limited by T
Jmax,
starting T
J
= 25°C, L = 0.016mH, R
G
= 25
, I
AS
= 195A, V
GS
=10V. Part not recommended for use above this value.
I
SD
195A, di/dt 930A/µs, V
DD
V
(BR)DSS
, T
J
175°C.
Pulse width
400µs; duty cycle 2%.
C
oss
eff. (TR) is a fixed capacitance that gives the same charging time as C
oss
while V
DS
is rising from 0 to 80% V
DSS
.
C
oss
eff. (ER) is a fixed capacitance that gives the same energy as C
oss
while V
DS
is rising from 0 to 80% V
DSS
.
When mounted on 1" square PCB (FR-4 or G-10 Material). For recommended footprint and soldering techniques refer to
application note #AN-994
R
is measured at T
J
approximately 90°C.
R
JC
value shown is at time zero
Static @ T
J
= 25°C (unless otherwise specified)
Parameter Min.
Typ.
Max.
Units
Conditions
V
(BR)DSS
Drain-to-Source Breakdown Voltage
40
––– –––
V V
GS
= 0V, I
D
= 250µA
V
(BR)DSS
/
T
J
Breakdown Voltage Temp. Coefficient
––– 0.037 ––– V/°C Reference to 25°C, I
D
= 5mA
R
DS(on)
Static Drain-to-Source On-Resistance
–––
1.4 1.75 m
V
GS
= 10V, I
D
= 195A
V
GS(th)
Gate Threshold Voltage
2.0
–––
4.0
V V
DS
= V
GS
, I
D
= 250µA
gfs
Forward Trans conductance
1170 ––– –––
S V
DS
= 10V, I
D
= 195A
I
DSS
Drain-to-Source Leakage Current
––– ––– 20
µA
V
DS
= 40V, V
GS
= 0V
––– ––– 250
V
DS
= 40V,V
GS
= 0V,T
J
=125°C
I
GSS
Gate-to-Source Forward Leakage
–––
––– 100
V
GS
= 20V
Gate-to-Source Reverse Leakage
–––
––– -100
V
GS
= -20V
R
G
Internal Gate Resistance
–––
2.2
–––
Dynamic Electrical Characteristics @ T
J
= 25°C (unless otherwise specified)
Q
g
Total Gate Charge
–––
160 240
nC
I
D
= 187A
Q
gs
Gate-to-Source Charge
–––
40
–––
V
DS
= 20V
Q
gd
Gate-to-Drain Charge
–––
68
–––
V
GS
= 10V
Q
sync
Total Gate Charge Sync. (Q
g
- Q
gd
) –––
92
–––
t
d(on)
Turn-On Delay Time
–––
23
–––
ns
V
DD
= 26V
t
r
Rise Time
–––
220 –––
I
D
= 195A
t
d(off)
Turn-Off Delay Time
–––
90
–––
R
G
= 2.7
t
f
Fall Time
–––
130 –––
V
GS
= 10V
C
iss
Input Capacitance
––– 9200 –––
pF
V
GS
= 0V
C
oss
Output Capacitance
––– 2020 –––
V
DS
= 25V
C
rss
Reverse Transfer Capacitance
––– 1340 –––
ƒ = 1.0MHz, See Fig. 5
C
oss eff.(ER)
Effective Output Capacitance (Energy Related) ––– 2440 –––
V
GS
= 0V, V
DS
= 0V to 32V
C
oss eff.(TR)
Effective Output Capacitance (Time Related)
––– 2690 –––
V
GS
= 0V, V
DS
= 0V to 32V
Diode Characteristics
Parameter
Min. Typ. Max. Units
Conditions
I
S
Continuous Source Current
––– ––– 340
A
MOSFET symbol
(Body Diode)
showing the
I
SM
Pulsed Source Current
––– ––– 1310
integral reverse
(Body Diode)
p-n junction diode.
V
SD
Diode Forward Voltage
–––
–––
1.3
V T
J
= 25°C,I
S
= 195A,V
GS
= 0V
t
rr
Reverse Recovery Time
––– 27 –––
ns
T
J
= 25°C V
DD
= 34V
––– 31 –––
T
J
= 125°C I
F
= 195A,
Q
rr
Reverse Recovery Charge
––– 18 –––
nC
T
J
= 25°C di/dt = 100A/µs
––– 41 –––
T
J
= 125°C
I
RRM
Reverse Recovery Current
–––
1.2
–––
A T
J
= 25°C
t
on
Forward Turn-On Time
Intrinsic turn-on time is negligible (turn-on is dominated by L
S
+L
D
)
nA
AUIRFS/SL3004
3
2015-10-20
Fig. 2 Typical Output Characteristics
Fig. 3
Typical Transfer Characteristics
Fig. 4
Normalized On-Resistance vs. Temperature
Fig. 1 Typical Output Characteristics
Fig 5. Typical Capacitance vs. Drain-to-Source Voltage
Fig 6. Typical Gate Charge vs. Gate-to-Source Voltage
0.1
1
10
100
VDS, Drain-to-Source Voltage (V)
10
100
1000
10000
I D
, D
ra
in
-t
o
-S
ou
rc
e
C
u
rr
en
t
(A
)
VGS
TOP 15V
10V
8.0V
7.0V
6.0V
5.5V
4.8V
BOTTOM
4.5V
60µs PULSE WIDTH
Tj = 25°C
4.5V
0.1
1
10
100
VDS, Drain-to-Source Voltage (V)
10
100
1000
10000
I D
, D
ra
in
-t
o-
S
ou
rc
e
C
u
rr
en
t (
A
)
4.5V
60µs PULSE WIDTH
Tj = 175°C
VGS
TOP 15V
10V
8.0V
7.0V
6.0V
5.5V
4.8V
BOTTOM
4.5V
1
2
3
4
5
6
7
8
VGS, Gate-to-Source Voltage (V)
0.1
1
10
100
1000
I D
, D
ra
in
-t
o-
S
ou
rc
e
C
ur
re
nt
(A
)
TJ = 25°C
TJ = 175°C
VDS = 25V
60µs PULSE WIDTH
-60 -40 -20 0 20 40 60 80 100120140160180
TJ , Junction Temperature (°C)
0.5
1.0
1.5
2.0
R
D
S
(o
n)
,
D
ra
in
-t
o-
S
ou
rc
e
O
n
R
es
is
ta
nc
e
(
N
or
m
al
iz
ed
)
ID = 195A
VGS = 10V
1
10
100
VDS, Drain-to-Source Voltage (V)
100
1000
10000
100000
C
, C
ap
ac
ita
nc
e
(p
F
)
VGS = 0V, f = 1 MHZ
Ciss = Cgs + Cgd, C ds SHORTED
Crss = Cgd
Coss = Cds + Cgd
Coss
Crss
Ciss
0
50
100
150
200
QG, Total Gate Charge (nC)
0.0
2.0
4.0
6.0
8.0
10.0
12.0
14.0
V
G
S
, G
at
e-
to
-S
ou
rc
e
V
ol
ta
ge
(
V
)
VDS= 32V
VDS= 20V
ID= 187A
AUIRFS/SL3004
4
2015-10-20
Fig 8. Maximum Safe Operating Area
Fig 10. Drain-to-Source Breakdown Voltage
Fig 11. Typical C
OSS
Stored Energy
Fig 12. Maximum Avalanche Energy vs. Drain Current
Fig. 7 Typical Source-to-Drain Diode
0.0
0.5
1.0
1.5
2.0
VSD, Source-to-Drain Voltage (V)
0.1
1
10
100
1000
I S
D
, R
ev
er
se
D
ra
in
C
ur
re
nt
(
A
)
TJ = 25°C
TJ = 175°C
VGS = 0V
1
10
100
VDS, Drain-to-Source Voltage (V)
1
10
100
1000
10000
I D
,
D
ra
in
-t
o-
S
ou
rc
e
C
ur
re
nt
(
A
)
OPERATION IN THIS AREA
LIMITED BY R DS(on)
Tc = 25°C
Tj = 175°C
Single Pulse
100µsec
1msec
10msec
DC
25
50
75
100
125
150
175
TC , Case Temperature (°C)
0
50
100
150
200
250
300
350
I D
,
D
ra
in
C
ur
re
nt
(
A
)
Limited By Package
-60 -40 -20 0 20 40 60 80 100 120140160 180
TJ , Temperature ( °C )
40
42
44
46
48
50
V
(B
R
)D
S
S
, D
ra
in
-t
o-
S
ou
rc
e
B
re
ak
do
w
n
V
ol
ta
ge
(
V
)
Id = 5mA
-5
0
5
10 15 20 25 30 35 40 45
VDS, Drain-to-Source Voltage (V)
0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6
1.8
2.0
E
ne
rg
y
(µ
J)
Fig 9. Maximum Drain Current vs. Case Temperature
25
50
75
100
125
150
175
Starting TJ , Junction Temperature (°C)
0
200
400
600
800
1000
1200
1400
E
A
S
,
S
in
gl
e
P
ul
se
A
va
la
nc
he
E
ne
rg
y
(m
J)
ID
TOP 30A
54A
BOTTOM 195A
AUIRFS/SL3004
5
2015-10-20
Fig 14. Avalanche Current vs. Pulse width
Fig 13. Maximum Effective Transient Thermal Impedance, Junction-to-Case
Fig 15. Maximum Avalanche Energy vs. Temperature
Notes on Repetitive Avalanche Curves , Figures 14, 15:
(For further info, see AN-1005 at www.infineon.com)
1. Avalanche failures assumption:
Purely a thermal phenomenon and failure occurs at a temperature far in
excess of T
jmax
. This is validated for every part type.
2. Safe operation in Avalanche is allowed as long as T
jmax
is not exceeded.
3. Equation below based on circuit and waveforms shown in Figures 18a, 18b.
4. P
D (ave)
= Average power dissipation per single avalanche pulse.
5. BV = Rated breakdown voltage (1.3 factor accounts for voltage increase
during
avalanche).
6. I
av
= Allowable avalanche current.
7.
T
=
Allowable rise in junction temperature, not to exceed
T
jmax
(assumed as
25°C in Figure 13, 14).
t
av =
Average time in avalanche.
D = Duty cycle in avalanche = t
av
·f
Z
thJC
(D, t
av
) = Transient thermal resistance, see Figures 13)
P
D (ave)
= 1/2 ( 1.3·BV·I
av
) =
T/ Z
thJC
I
av
= 2
T/ [1.3·BV·Z
th
]
E
AS (AR)
= P
D (ave)
·t
av
1E-006
1E-005
0.0001
0.001
0.01
0.1
t1 , Rectangular Pulse Duration (sec)
0.001
0.01
0.1
1
T
he
rm
al
R
es
po
ns
e
(
Z
th
JC
)
°
C
/W
0.20
0.10
D = 0.50
0.02
0.01
0.05
SINGLE PULSE
( THERMAL RESPONSE )
Notes:
1. Duty Factor D = t1/t2
2. Peak Tj = P dm x Zthjc + Tc
Ri (°C/W)
I (sec)
0.00646
0.000005
0.10020
0.000124
0.18747
0.001374
0.10667
0.008465
J
J
1
1
2
2
3
3
R
1
R
1
R
2
R
2
R
3
R
3
Ci=
iRi
Ci=
iRi
C
C
4
4
R
4
R
4
1.0E-06
1.0E-05
1.0E-04
1.0E-03
1.0E-02
1.0E-01
tav (sec)
1
10
100
1000
A
va
la
nc
he
C
ur
re
nt
(
A
)
0.05
Duty Cycle = Single Pulse
0.10
Allowed avalanche Current vs avalanche
pulsewidth, tav, assuming j = 25°C and
Tstart = 150°C.
0.01
Allowed avalanche Current vs avalanche
pulsewidth, tav, assuming Tj = 150°C and
Tstart =25°C (Single Pulse)
25
50
75
100
125
150
175
Starting TJ , Junction Temperature (°C)
0
40
80
120
160
200
240
280
320
E
A
R
,
A
va
la
nc
he
E
ne
rg
y
(m
J)
TOP Single Pulse
BOTTOM 1.0% Duty Cycle
ID = 195A
AUIRFS/SL3004
6
2015-10-20
Fig 16. Threshold Voltage vs. Temperature
Fig. 18 - Typical Recovery Current vs. di
f
/dt
Fig. 20 - Typical Stored Charge vs. di
f
/dt
-75 -50 -25 0 25 50 75 100 125 150 175 200
TJ , Temperature ( °C )
1.0
1.5
2.0
2.5
3.0
3.5
4.0
4.5
V
G
S
(t
h)
, G
at
e
th
re
sh
ol
d
V
ol
ta
ge
(
V
)
ID = 250µA
ID = 1.0mA
ID = 1.0A
100
200
300
400
500
diF /dt (A/µs)
2
3
4
5
6
7
8
9
10
I R
R
M
(
A
)
IF = 78A
VR = 34V
TJ = 25°C
TJ = 125°C
100
200
300
400
500
diF /dt (A/µs)
1
2
3
4
5
6
7
8
9
10
11
I R
R
M
(
A
)
IF = 117A
VR = 34V
TJ = 25°C
TJ = 125°C
100
200
300
400
500
diF /dt (A/µs)
50
100
150
200
250
300
350
Q
R
R
(
nC
)
IF = 78A
VR = 34V
TJ = 25°C
TJ = 125°C
Fig. 17 - Typical Recovery Current vs. di
f
/dt
100
200
300
400
500
diF /dt (A/µs)
0
50
100
150
200
250
300
350
400
Q
R
R
(
nC
)
IF = 117A
VR = 34V
TJ = 25°C
TJ = 125°C
Fig. 19 - Typical Stored Charge vs. di
f
/dt
AUIRFS/SL3004
7
2015-10-20
Fig 21. Peak Diode Recovery dv/dt Test Circuit for N-Channel HEXFET® Power MOSFETs
Fig 22a. Unclamped Inductive Test Circuit
Fig 22b. Unclamped Inductive Waveforms
Fig 23a. Switching Time Test Circuit
Fig 24a. Gate Charge Test Circuit
Fig 24b. Gate Charge Waveform
R G
IAS
0.01
tp
D.U.T
L
VDS
+
- VDD
DRIVER
A
15V
20V
tp
V
(BR)DSS
I
AS
Fig 23b. Switching Time Waveforms
Vds
Vgs
Id
Vgs(th)
Qgs1 Qgs2
Qgd
Qgodr
AUIRFS/SL3004
8
2015-10-20
Note: For the most current drawing please refer to IR website at
http://www.irf.com/package/
D
2
Pak (TO-263AB) Part Marking Information
YWWA
XX
XX
Date Code
Y= Year
WW= Work Week
AUFS3004
Lot Code
Part Number
IR Logo
D
2
Pak (TO-263AB) Package Outline (Dimensions are shown in millimeters (inches))
AUIRFS/SL3004
9
2015-10-20
TO-262 Part Marking Information
YWWA
XX
XX
Date Code
Y= Year
WW= Work Week
AUFSL3004
Lot Code
Part Number
IR Logo
TO-262 Package Outline (Dimensions are shown in millimeters (inches)
Note: For the most current drawing please refer to IR website at
http://www.irf.com/package/
AUIRFS/SL3004
10
2015-10-20
D
2
Pak (TO-263AB) Tape & Reel Information (Dimensions are shown in millimeters (inches))
Note: For the most current drawing please refer to IR website at
http://www.irf.com/package/
3
4
4
TRR
FEED DIRECTION
1.85 (.073)
1.65 (.065)
1.60 (.063)
1.50 (.059)
4.10 (.161)
3.90 (.153)
TRL
FEED DIRECTION
10.90 (.429)
10.70 (.421)
16.10 (.634)
15.90 (.626)
1.75 (.069)
1.25 (.049)
11.60 (.457)
11.40 (.449)
15.42 (.609)
15.22 (.601)
4.72 (.136)
4.52 (.178)
24.30 (.957)
23.90 (.941)
0.368 (.0145)
0.342 (.0135)
1.60 (.063)
1.50 (.059)
13.50 (.532)
12.80 (.504)
330.00
(14.173)
MAX.
27.40 (1.079)
23.90 (.941)
60.00 (2.362)
MIN.
30.40 (1.197)
MAX.
26.40 (1.039)
24.40 (.961)
NOTES :
1. COMFORMS TO EIA-418.
2. CONTROLLING DIMENSION: MILLIMETER.
3. DIMENSION MEASURED @ HUB.
4. INCLUDES FLANGE DISTORTION @ OUTER EDGE.