AUIRFR48Z Product Datasheet

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/auirfr48z-html.html
background image

 

AUIRFR48Z 

V

DSS 

55V 

R

DS(on)

            max. 

11m



I

D (Silicon Limited) 

62A 

I

D (Package Limited) 

42A 

Features 

  Advanced Process Technology 

  Ultra Low On-Resistance 

  175°C Operating Temperature 

 Fast Switching 
  Repetitive Avalanche Allowed up to Tjmax 

  Lead-Free, RoHS Compliant 

  Automotive Qualified *  

Description 
Specifically designed for Automotive applications, this HEXFET® 
Power MOSFET utilizes the latest processing techniques to 
achieve extremely low on-resistance per silicon area.  Additional 
features of this design  are a 175°C junction operating temperature, 
fast switching speed and improved repetitive avalanche rating . 
These features combine to make this design an extremely efficient 
and reliable device for use in Automotive applications and a wide 
variety of other applications. 

 

2015-12-1 

HEXFET® is a registered trademark of Infineon. 
*Qualification standards can be found at 

www.infineon.com

 

 

AUTOMOTIVE GRADE 

Symbol Parameter 

Max. 

Units 

I

D

 @ T

C

 = 25°C 

Continuous Drain Current, V

GS

 @ 10V (Silicon Limited) 

62 

I

D

 @ T

C

 = 100°C 

Continuous Drain Current, V

GS

 @ 10V (Silicon Limited) 

44 

I

D

 @ T

C

 = 25°C 

Continuous Drain Current, V

GS

 @ 10V (Package Limited) 

42 

I

DM 

Pulsed Drain Current  250 

P

D

 @T

C

 = 25°C 

Maximum Power Dissipation   

91 

  

Linear Derating Factor 

0.61 

W/°C 

V

GS 

Gate-to-Source Voltage 

 ± 20 

E

AS  

Single Pulse Avalanche Energy (Thermally Limited)  74 

mJ   

E

AS  

(Tested)

 

Single Pulse Avalanche Energy Tested Value  110 

I

AR 

Avalanche Current  

See Fig.15,16, 12a, 12b   

E

AR 

Repetitive Avalanche Energy  

 

mJ 

T

J  

Operating Junction and 

-55  to + 175 

T

STG 

Storage Temperature Range 

  

  

Soldering Temperature, for 10 seconds (1.6mm from case) 

300 

°C  

Absolute Maximum Ratings 

Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device.   These are stress 
ratings only; and functional operation of the device at these or any other condition beyond those indicated in the specifications is not 
implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability. The thermal resistance 
and power dissipation ratings are measured under board mounted and still air conditions. Ambient temperature (TA) is 25°C, unless 
otherwise specified. 

Thermal Resistance  

Symbol Parameter 

Typ. 

Max. 

Units 

R

JC

  

Junction-to-Case  ––– 

1.64 

°C/W   

R

JA

  

Junction-to-Ambient ( PCB Mount)  ––– 

50 

R

JA

  

Junction-to-Ambient  

––– 

110 

D-Pak 

AUIRFR48Z 

Base part number 

Package Type 

Standard Pack 

Orderable Part Number   

Form 

Quantity 

AUIRFR48Z 

D-Pak    

Tube  

75 

AUIRFR48Z 

Tape and Reel Left  

3000 

AUIRFR48ZTRL 

G D S 

Gate Drain Source 

HEXFET

® 

Power MOSFET 

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/auirfr48z-html.html
background image

 

AUIRFR48Z 

 

2015-12-1 

Notes:

 Repetitive rating;  pulse width limited by max. junction temperature. (See fig. 11) 

 Limited by

 

T

Jmax , 

starting  T

J

 = 25°C, L = 0.11mH, R

G

 = 25

, I

AS

 = 37A, V

GS

 =10V. Part not recommended for use above this value.  

 Pulse width 

1.0ms; duty cycle  2%. 



C

oss

 eff. is a fixed capacitance that gives the same charging time as C

oss

 while V

DS

 is rising from 0 to 80% V

DSS 

 



Limited by T

Jmax

 , see Fig.12a, 12b, 15, 16 for typical repetitive avalanche performance. 

 



This value determined from sample failure population, starting  T

J

 = 25°C, L = 0.11mH, R

G

 = 25

, I

AS

 = 37A, V

GS

 =10V.  

  When mounted on 1" square PCB (FR-4 or G-10 Material). For recommended footprint and soldering techniques refer to  

 

application note #AN-994  



R

 is measured at T

J

 approximately 90°C.

 

Static @ T

J

 = 25°C (unless otherwise specified) 

  

Parameter Min. 

Typ. 

Max. 

Units 

Conditions 

V

(BR)DSS 

Drain-to-Source Breakdown Voltage 

55 

–––  ––– 

V  V

GS

 = 0V, I

D

 = 250µA 

V

(BR)DSS

/

T

J  

Breakdown Voltage Temp. Coefficient 

–––  0.054  –––  V/°C  Reference to 25°C, I

D

 = 1mA  

R

DS(on) 

  

Static Drain-to-Source On-Resistance   

–––  8.86 

11 

m

 V

GS

 = 10V, I

D

 = 37A 

V

GS(th) 

Gate Threshold Voltage 

2.0  

––– 

4.0 

V  V

DS

 = V

GS

, I

D

 = 50µA 

gfs 

Forward Trans conductance 

120 

–––  ––– 

S  V

DS

 = 25V, I

D

 = 37A  

I

DSS 

  

Drain-to-Source Leakage Current   

––– –––  20 

µA 

V

DS

 = 55V, V

GS

 = 0V 

––– ––– 250 

V

DS

 = 55V,V

GS

 = 0V,T

J

 =125°C 

I

GSS 

  

Gate-to-Source Forward Leakage 

––– 

–––  200 

nA 

V

GS

 = 20V 

Gate-to-Source Reverse Leakage 

––– 

–––  -200 

V

GS

 = -20V 

Dynamic  Electrical Characteristics @ T

J

 = 25°C (unless otherwise specified) 

Q

Total Gate Charge  

––– 

40 

60 

nC  

I

D

 = 37A 

Q

gs 

Gate-to-Source Charge 

––– 

11 

––– 

V

DS

 = 44V 

Q

gd 

Gate-to-Drain Charge 

––– 

15 

––– 

V

GS

 = 10V 

t

d(on) 

Turn-On Delay Time 

––– 

15 

––– 

ns 

V

DD

 = 28V 

t

Rise Time 

––– 

61 

––– 

I

D

 = 37A 

t

d(off) 

Turn-Off Delay Time 

––– 

40 

––– 

R

= 12



t

Fall Time 

––– 

35 

––– 

V

GS

 = 10V 

L

D

 

Internal Drain Inductance 

––– 

4.5 

––– 

 nH  

Between lead, 
6mm (0.25in.) 

L

S

 

Internal Source Inductance 

––– 

7.5 

––– 

from package 
and center of die contact   

C

iss 

Input Capacitance 

–––  1720  ––– 

pF   

V

GS

 = 0V 

C

oss 

Output Capacitance 

––– 

290  ––– 

V

DS

 = 25V 

C

rss 

Reverse Transfer Capacitance 

––– 

160  ––– 

ƒ = 1.0MHz 

C

oss 

Output Capacitance 

–––  1000  ––– 

V

GS

 = 0V, V

DS

 = 1.0V ƒ = 1.0MHz 

C

oss 

Output Capacitance 

––– 

230  ––– 

V

GS

 = 0V, V

DS

 = 44V ƒ = 1.0MHz 

C

oss eff. 

Effective Output Capacitance  

––– 

360  ––– 

V

GS

 = 0V, V

DS

 = 0V to 44V  

Diode Characteristics  

  

        Parameter 

Min.  Typ.  Max.  Units 

Conditions 

I

  

Continuous Source Current  

––– –––  37 

MOSFET symbol 

(Body Diode) 

showing  the 

I

SM 

  

Pulsed Source Current 

––– ––– 250 

integral reverse 

(Body Diode)

p-n junction diode. 

V

SD 

Diode Forward Voltage 

––– 

––– 

1.3 

V  T

J

 = 25°C,I

= 37A, V

GS

 = 0V 

t

rr  

Reverse Recovery Time  

––– 

20 

40 

ns   T

J

 = 25°C ,I

F

 = 37A, V

DD

 = 28V 

Q

rr  

Reverse Recovery Charge  

––– 

14 

28 

nC    di/dt = 100A/µs  

t

on 

Forward Turn-On Time 

Intrinsic turn-on time is negligible (turn-on is dominated by L

S

+L

D

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/auirfr48z-html.html
background image

 

AUIRFR48Z 

 

2015-12-1 

Fig. 2 Typical Output Characteristics 

Fig. 3 

Typical Transfer Characteristics

 

 

Fig. 4 

Typical Forward Trans conductance 

Vs. Drain Current 

Fig. 1 Typical Output Characteristics 

0.1

1

10

100

VDS, Drain-to-Source Voltage (V)

1

10

100

1000

I D

D

ra

in

-t

o-

S

o

u

rc

e

 C

ur

re

n

t (

A

)

4.5V

60µs PULSE WIDTH

Tj = 175°C

VGS

TOP           15V

10V

8.0V

7.0V

6.0V

5.5V

5.0V

BOTTOM

4.5V

0.1

1

10

100

VDS, Drain-to-Source Voltage (V)

1

10

100

1000

I D

, D

ra

in

-t

o

-S

ou

rc

e

 C

u

rr

en

(A

)

VGS

TOP           15V

10V

8.0V

7.0V

6.0V

5.5V

5.0V

BOTTOM

4.5V

60µs PULSE WIDTH

Tj = 25°C

4.5V

2

4

6

8

10

12

VGS, Gate-to-Source Voltage (V)

0.1

1

10

100

1000

I D

, D

ra

in

-t

o-

S

ou

rc

C

ur

re

nt

 



)

TJ = 25°C

TJ = 175°C

VDS = 25V

60µs PULSE WIDTH

0

20

40

60

80

ID,Drain-to-Source Current (A)

0

10

20

30

40

50

60

G

fs

, F

or

w

ar

T

ra

ns

co

nd

uc

ta

nc

(S

)

TJ = 25°C

TJ = 175°C

VDS = 10V 
380µs PULSE WIDTH

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/auirfr48z-html.html
background image

 

AUIRFR48Z 

 

2015-12-1 

Fig 5.  Typical Capacitance vs.  
 

      Drain-to-Source Voltage

 

Fig 6.  Typical Gate Charge vs. 
 

      Gate-to-Source Voltage

 

 

 

Fig 8.  Maximum Safe Operating Area  

Fig. 7 Typical Source-to-Drain Diode 

 Forward Voltage 

1

10

100

VDS, Drain-to-Source Voltage (V)

100

1000

10000

C

, C

ap

ac

ita

nc

e(

pF

)

VGS   = 0V,       f = 1 MHZ

Ciss    = Cgs + Cgd,  C ds SHORTED
Crss    = Cgd 
Coss   = Cds + Cgd

Coss

Crss

Ciss

0

10

20

30

40

50

60

 QG  Total Gate Charge (nC)

0

4

8

12

16

20

V

G

S

, G

at

e-

to

-S

ou

rc

V

ol

ta

ge

 (

V

)

VDS= 44V

VDS= 28V

VDS= 11V

ID= 37A

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8

VSD, Source-to-Drain Voltage (V)

0.10

1.00

10.00

100.00

1000.00

I S

D

, R

ev

er

se

 D

ra

in

 C

ur

re

nt

 (

A

)

TJ = 25°C

TJ = 175°C

VGS = 0V

1

10

100

VDS  , Drain-toSource Voltage (V)

0.1

1

10

100

1000

I D

,  

D

ra

in

-t

o-

S

ou

rc

C

ur

re

nt

 (

A

)

Tc = 25°C

Tj = 175°C

Single Pulse

1msec

10msec

OPERATION IN THIS AREA 

LIMITED BY R DS(on)

100µsec

DC

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/auirfr48z-html.html
background image

 

AUIRFR48Z 

 

2015-12-1 

Fig 10.  Normalized On-Resistance 

Vs. Temperature 

Fig 11.  Maximum Effective Transient Thermal Impedance, Junction-to-Case  

Fig 9.  Maximum Drain Current Vs. 

Case Temperature 

25

50

75

100

125

150

175

 TC , Case Temperature (°C)

0

10

20

30

40

50

60

70

I D

 ,

 D

ra

in

 C

ur

re

nt

 (

A

)

LIMITED BY PACKAGE

-60 -40 -20 0

20 40 60 80 100 120 140 160 180

TJ , Junction Temperature (°C)

0.5

1.0

1.5

2.0

2.5

R

D

S

(o

n)

 , 

D

ra

in

-t

o-

S

ou

rc

O

R

es

is

ta

nc

   

   

   

   

   

   

   

 (

N

or

m

al

iz

ed

)

ID = 37A

VGS = 10V

1E-006

1E-005

0.0001

0.001

0.01

0.1

t1 , Rectangular Pulse Duration (sec)

0.001

0.01

0.1

1

10

T

he

rm

al

 R

es

po

ns

Z

 th

JC

 )

0.20

0.10

D = 0.50

0.02

0.01

0.05

SINGLE PULSE

( THERMAL RESPONSE )

Notes:

1. Duty Factor D = t1/t2

2. Peak Tj = P dm x Zthjc + Tc

J

J

1

1

2

2

3

3

R

1

R

1

R

2

R

2

R

3

R

3

C

C

Ci= 

iRi

Ci= 

iRi

Ri (°C/W) 

i (sec)

0.7206 

0.000326 

0.3175 

0.014886 

0.6009 

0.001810 

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/auirfr48z-html.html
background image

 

AUIRFR48Z 

 

2015-12-1 

 

Fig 12c. Maximum Avalanche Energy 

 vs. Drain Current 

Fig 12a.  Unclamped Inductive Test Circuit 

Fig 12b.  Unclamped Inductive Waveforms 

RG

IAS

0.01

tp

D.U.T

L

VDS

+

- VDD

DRIVER

A

15V

20V

tp

V

(BR)DSS

I

AS

Fig 13b.  Gate Charge Test Circuit 

Fig 13a.   Gate Charge Waveform 

Vds

Vgs

Id

Vgs(th)

Qgs1 Qgs2

Qgd

Qgodr

Fig 14.  Threshold Voltage Vs. Temperature 

25

50

75

100

125

150

175

Starting TJ, Junction Temperature (°C)

0

50

100

150

200

250

300

E

A

S

S

in

gl

P

ul

se

 A

va

la

nc

he

 E

ne

rg

(m

J)

                 ID

TOP  

        4.3A

                6.3A

BOTTOM 

  37A

-75 -50 -25

0

25

50

75 100 125 150 175

TJ , Temperature ( °C )

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

V

G

S

(t

h)

 G

at

th

re

sh

ol

V

ol

ta

ge

 (

V

)

ID = 1.0A

ID = 50µA

ID = 150µA

ID = 250µA

ID = 1.0mA

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/auirfr48z-html.html
background image

 

AUIRFR48Z 

 

2015-12-1 

Fig 15.  Typical Avalanche Current Vs. Pulse width  

Notes on Repetitive Avalanche Curves , Figures 15, 16: 

(For further info, see AN-1005 at www.infineon.com) 

1.  Avalanche failures assumption:  
 

Purely a thermal phenomenon and failure occurs at a temperature far in  

 

excess of T

jmax

. This is validated for every part type. 

2.  Safe operation in Avalanche is allowed as long as T

jmax

 is not exceeded. 

3.   Equation below based on circuit and waveforms shown in Figures 12a, 12b. 
4.   P

D (ave) 

= Average power dissipation per single avalanche pulse. 

5.   BV = Rated breakdown voltage (1.3 factor accounts for voltage increase  
 during 

avalanche). 

6.   I

av 

= Allowable avalanche current. 

7. 

T

 = 

Allowable rise in junction temperature, not to exceed

 

T

jmax 

(assumed as  

 

25°C in Figure 15, 16).  

 

t

av = 

Average time in avalanche. 

 

D = Duty cycle in avalanche =  t

av 

·f 

 

Z

thJC

(D, t

av

) = Transient thermal resistance, see Figures 13) 

 

P

D (ave)

 = 1/2 ( 1.3·BV·I

av

) = 

T/ Z

thJC

 

I

av

 = 2

T/ [1.3·BV·Z

th

E

AS (AR) 

= P

D (ave)

·t

av

 

Fig 16.  Maximum Avalanche Energy 

Vs. Temperature 

1.0E-06

1.0E-05

1.0E-04

1.0E-03

1.0E-02

1.0E-01

tav (sec)

0.1

1

10

100

1000

A

va

la

nc

he

 C

ur

re

nt

 (

A

)

0.05

Duty Cycle = Single Pulse

0.10

Allowed avalanche Current vs 
avalanche pulsewidth, tav 
assuming   Tj = 25°C due to 

avalanche losses

0.01

25

50

75

100

125

150

175

Starting TJ , Junction Temperature (°C)

0

20

40

60

80

E

A

R

 ,

 A

va

la

nc

he

 E

ne

rg

(m

J)

TOP          Single Pulse                
BOTTOM   1% Duty Cycle
ID = 37A

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/auirfr48z-html.html
background image

 

AUIRFR48Z 

 

2015-12-1 

 

Fig 17. Peak Diode Recovery dv/dt Test Circuit for N-Channel HEXFET® Power MOSFETs 

Fig 18a.  Switching Time Test Circuit 

Fig 18b.  Switching Time Waveforms 

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/auirfr48z-html.html
background image

 

AUIRFR48Z 

 

2015-12-1 

Note: For the most current drawing please refer to IR website at 

http://www.irf.com/package/

 

D-Pak (TO-252AA) Package Outline (Dimensions are shown in millimeters (inches)) 

YWWA 

XX    

    XX 

Date Code 

Y= Year 

WW= Work Week 

AUIRFR48Z 

Lot Code 

Part Number 

IR Logo 

D-Pak (TO-252AA) Part Marking Information 

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/auirfr48z-html.html
background image

 

AUIRFR48Z 

10 

 

2015-12-1 

D-Pak (TO-252AA) Tape & Reel Information (Dimensions are shown in millimeters (inches)) 

Note: For the most current drawing please refer to IR website at 

http://www.irf.com/package/

 

TR

16.3 ( .641 )
15.7 ( .619 )

8.1 ( .318 )
7.9 ( .312 )

12.1 ( .476 )
11.9 ( .469 )

FEED DIRECTION

FEED DIRECTION

16.3 ( .641 )
15.7 ( .619 )

TRR

TRL

NOTES :
1.  CONTROLLING DIMENSION : MILLIMETER.
2.  ALL DIMENSIONS ARE SHOWN IN MILLIMETERS ( INCHES ).
3.  OUTLINE CONFORMS TO EIA-481 & EIA-541.

NOTES :
1. OUTLINE CONFORMS TO EIA-481.

16 mm

  13 INCH

Maker
Infineon Technologies
Datasheet PDF Download