AUIRFR4620
V
DSS
200V
R
DS(on)
typ.
64m
max.
78m
I
D
24A
Features
Advanced Process Technology
Ultra Low On-Resistance
Dynamic dV/dT Rating
175°C Operating Temperature
Fast Switching
Repetitive Avalanche Allowed up to Tjmax
Lead-Free, RoHS Compliant
Automotive Qualified *
Description
Specifically designed for Automotive applications, this HEXFET®
Power MOSFET utilizes the latest processing techniques to
achieve extremely low on-resistance per silicon area. Additional
features of this design are a 175°C junction operating temperature,
fast switching speed and improved repetitive avalanche rating .
These features combine to make this design an extremely efficient
and reliable device for use in Automotive applications and a wide
variety of other applications.
1
2015-12-1
HEXFET® is a registered trademark of Infineon.
*Qualification standards can be found at
www.infineon.com
AUTOMOTIVE GRADE
Symbol Parameter
Max.
Units
I
D
@ T
C
= 25°C
Continuous Drain Current, V
GS
@ 10V
24
A
I
D
@ T
C
= 100°C
Continuous Drain Current, V
GS
@ 10V
17
I
DM
Pulsed Drain Current 100
P
D
@T
C
= 25°C
Maximum Power Dissipation
144
W
Linear Derating Factor
0.96
W/°C
V
GS
Gate-to-Source Voltage
± 20
V
E
AS
Single Pulse Avalanche Energy (Thermally Limited) 113
mJ
I
AR
Avalanche Current
See Fig. 14, 15, 22a, 22b
A
E
AR
Repetitive Avalanche Energy
mJ
dv/dt
Pead Diode Recovery dv/dt 54
V/ns
T
J
Operating Junction and
-55 to + 175
T
STG
Storage Temperature Range
°C
Soldering Temperature, for 10 seconds (1.6mm from case)
300
Absolute Maximum Ratings
Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress
ratings only; and functional operation of the device at these or any other condition beyond those indicated in the specifications is not
implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability. The thermal resistance
and power dissipation ratings are measured under board mounted and still air conditions. Ambient temperature (TA) is 25°C, unless
otherwise specified.
Thermal Resistance
Symbol Parameter
Typ.
Max.
Units
R
JC
Junction-to-Case –––
1.045
°C/W
R
JA
Junction-to-Ambient ( PCB Mount) –––
50
R
JA
Junction-to-Ambient –––
110
D-Pak
AUIRFR4620
Base part number
Package Type
Standard Pack
Orderable Part Number
Form
Quantity
AUIRFR4620
D-Pak
Tube
75
AUIRFR4620
Tape and Reel Left
3000
AUIRFR4620TRL
G D S
Gate Drain Source
S
G
D
HEXFET
®
Power MOSFET
AUIRFR4620
2
2015-12-1
Notes:
Repetitive rating; pulse width limited by max. junction temperature.
Limited
by
T
Jmax ,
starting T
J
= 25°C, L = 1.0mH, R
G
= 25
, I
AS
= 15A, V
GS
=10V. Part not recommended for use above this value.
I
SD
15A, di/dt 634A/µs, V
DD
V
(BR)DSS
, T
J
175°C.
Pulse
width
400µs; duty cycle 2%.
C
oss eff
. (TR) is a fixed capacitance that gives the same charging time as C
oss
while V
DS
is rising from 0 to 80% V
DSS
.
C
oss eff
. (ER) is a fixed capacitance that gives the same energy as C
oss
while V
DS
is rising from 0 to 80% V
DSS
.
When mounted on 1" square PCB (FR-4 or G-10 Material). For recommended footprint and soldering techniques refer to
application note #AN-994
R
is measured at T
J
approximately 90°C.
Static @ T
J
= 25°C (unless otherwise specified)
Parameter Min.
Typ.
Max.
Units
Conditions
V
(BR)DSS
Drain-to-Source Breakdown Voltage
200
––– –––
V V
GS
= 0V, I
D
= 250µA
V
(BR)DSS
/
T
J
Breakdown Voltage Temp. Coefficient
––– 0.23 ––– V/°C Reference to 25°C, I
D
= 5mA
R
DS(on)
Static Drain-to-Source On-Resistance
–––
64
78
m
V
GS
= 10V, I
D
= 15A
V
GS(th)
Gate Threshold Voltage
3.0
–––
5.0
V V
DS
= V
GS
, I
D
= 100µA
gfs
Forward Trans conductance
37
––– –––
S V
DS
= 50V, I
D
= 15A
R
G(Int)
Internal Gate Resistance
–––
2.6
–––
I
DSS
Drain-to-Source Leakage Current
––– ––– 20
µA
V
DS
= 200V, V
GS
= 0V
––– ––– 250
V
DS
= 200V,V
GS
= 0V,T
J
=125°C
I
GSS
Gate-to-Source Forward Leakage
–––
––– 100
nA
V
GS
= 20V
Gate-to-Source Reverse Leakage
–––
––– -100
V
GS
= -20V
Dynamic Electrical Characteristics @ T
J
= 25°C (unless otherwise specified)
Q
g
Total Gate Charge
–––
25
38
nC
I
D
= 15A
Q
gs
Gate-to-Source Charge
–––
8.2
–––
V
DS
= 100V
Q
gd
Gate-to-Drain Charge
–––
7.9
–––
V
GS
= 10V
Q
sync
Total Gate Charge Sync. (Q
g
- Q
gd
) –––
17
–––
t
d(on)
Turn-On Delay Time
––– 13.4 –––
ns
V
DD
= 130V
t
r
Rise Time
––– 22.4 –––
I
D
= 15A
t
d(off)
Turn-Off Delay Time
––– 25.4 –––
R
G
= 7.3
t
f
Fall Time
––– 14.8 –––
V
GS
= 10V
C
iss
Input Capacitance
––– 1710 –––
pF
V
GS
= 0V
C
oss
Output Capacitance
–––
125 –––
V
DS
= 50V
C
rss
Reverse Transfer Capacitance
–––
30
–––
ƒ = 1.0MHz
C
oss eff.
(ER)
Effective Output Capacitance (Energy Related)
–––
113 –––
V
GS
= 0V, V
DS
= 0V to 160V
C
oss eff.
(TR)
Effective Output Capacitance (Time Related)
–––
317 –––
V
GS
= 0V, V
DS
= 0V to 160V
Diode Characteristics
Parameter
Min. Typ. Max. Units
Conditions
I
S
Continuous Source Current
––– ––– 24
A
MOSFET symbol
(Body Diode)
showing the
I
SM
Pulsed Source Current
––– ––– 100
integral reverse
(Body Diode)
p-n junction diode.
V
SD
Diode Forward Voltage
–––
–––
1.3
V T
J
= 25°C,I
S
= 15A,V
GS
= 0V
t
rr
Reverse Recovery Time
––– 78 –––
ns
T
J
= 25°C
––– 99 –––
T
J
= 125°C
Q
rr
Reverse Recovery Charge
––– 294 –––
nC
T
J
= 25°C
––– 432 –––
T
J
= 125°C
–––
7.6
–––
A
T
J
= 25°C
t
on
Forward Turn-On Time
Intrinsic turn-on time is negligible (turn-on is dominated by L
S
+L
D
)
V
R
= 100V,
I
F
= 15A
di/dt = 100A/µs
AUIRFR4620
3
2015-12-1
Fig. 3
Typical Transfer Characteristics
Fig. 1 Typical Output Characteristics
Fig 5. Typical Capacitance vs. Drain-to-Source Voltage
Fig 6. Typical Gate Charge vs. Gate-to-Source Voltage
Fig. 4 Normalized On-Resistance vs. Temperature
0.1
1
10
100
VDS, Drain-to-Source Voltage (V)
0.01
0.1
1
10
100
1000
I D
, D
ra
in
-t
o-
S
ou
rc
e
C
u
rr
en
t (
A
)
VGS
TOP 15V
12V
10V
8.0V
7.0V
6.0V
5.5V
BOTTOM
5.0V
60µs PULSE WIDTH
Tj = 25°C
5.0V
0.1
1
10
100
VDS, Drain-to-Source Voltage (V)
0.1
1
10
100
1000
I D
,
D
ra
in
-t
o
-S
o
ur
ce
C
u
rr
en
t (
A
)
VGS
TOP 15V
12V
10V
8.0V
7.0V
6.0V
5.5V
BOTTOM
5.0V
60µs PULSE WIDTH
Tj = 175°C
5.0V
2
4
6
8
10
12
14
16
VGS, Gate-to-Source Voltage (V)
0.1
1
10
100
1000
I D
, D
ra
in
-t
o-
S
ou
rc
e
C
ur
re
nt
(A
)
TJ = 25°C
TJ = 175°C
VDS = 50V
60µs PULSE WIDTH
-60 -40 -20 0 20 40 60 80 100 120140160180
TJ , Junction Temperature (°C)
0.5
1.0
1.5
2.0
2.5
3.0
3.5
R
D
S
(o
n)
,
D
ra
in
-t
o-
S
ou
rc
e
O
n
R
es
is
ta
nc
e
(
N
or
m
al
iz
ed
)
ID = 15A
VGS = 10V
Fig. 2 Typical Output Characteristics
1
10
100
1000
VDS, Drain-to-Source Voltage (V)
10
100
1000
10000
100000
C
, C
ap
ac
ita
nc
e
(p
F
)
VGS = 0V, f = 1 MHZ
Ciss = Cgs + Cgd, C ds SHORTED
Crss = Cgd
Coss = Cds + Cgd
Coss
Crss
Ciss
0
5
10
15
20
25
30
35
QG, Total Gate Charge (nC)
0.0
2.0
4.0
6.0
8.0
10.0
12.0
14.0
V
G
S
, G
at
e-
to
-S
ou
rc
e
V
ol
ta
ge
(
V
)
VDS= 160V
VDS= 100V
VDS= 40V
ID= 15A
AUIRFR4620
4
2015-12-1
Fig 8. Maximum Safe Operating Area
Fig. 7 Typical Source-to-Drain Diode Forward Voltage
Fig. 9
Maximum Drain Current vs. Case Temperature
Fig. 11
Typical C
OSS
Stored Energy
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6
VSD, Source-to-Drain Voltage (V)
1.0
10
100
I S
D
, R
ev
er
se
D
ra
in
C
ur
re
nt
(
A
)
TJ = 25°C
TJ = 175°C
VGS = 0V
1
10
100
1000
VDS, Drain-to-Source Voltage (V)
0.1
1
10
100
1000
I D
,
D
ra
in
-t
o-
S
ou
rc
e
C
ur
re
nt
(
A
)
OPERATION IN THIS AREA
LIMITED BY R DS(on)
Tc = 25°C
Tj = 175°C
Single Pulse
100µsec
1msec
10msec
DC
25
50
75
100
125
150
175
TC , Case Temperature (°C)
0
5
10
15
20
25
30
I D
,
D
ra
in
C
ur
re
nt
(
A
)
-60 -40 -20 0 20 40 60 80 100 120140160 180
TJ , Temperature ( °C )
190
200
210
220
230
240
250
260
V
(B
R
)D
S
S
, D
ra
in
-t
o-
S
ou
rc
e
B
re
ak
do
w
n
V
ol
ta
ge
(
V
)
Id = 5mA
-50
0
50
100
150
200
VDS, Drain-to-Source Voltage (V)
0.0
0.5
1.0
1.5
2.0
2.5
3.0
E
ne
rg
y
(µ
J)
25
50
75
100
125
150
175
Starting TJ , Junction Temperature (°C)
0
50
100
150
200
250
300
350
400
450
500
E
A
S
,
S
in
gl
e
P
ul
se
A
va
la
nc
he
E
ne
rg
y
(m
J)
ID
TOP 2.05A
2.94A
BOTTOM 15A
Fig 12.
Maximum Avalanche Energy vs. Drain Current
Fig 10.
Drain-to-Source Breakdown Voltage
AUIRFR4620
5
2015-12-1
Notes on Repetitive Avalanche Curves , Figures 14, 15:
(For further info, see AN-1005 at www.infineon.com)
1. Avalanche failures assumption:
Purely a thermal phenomenon and failure occurs at a temperature far in
excess of T
jmax
. This is validated for every part type.
2. Safe operation in Avalanche is allowed as long as T
jmax
is not exceeded.
3. Equation below based on circuit and waveforms shown in Figures 22a, 22b.
4. P
D (ave)
= Average power dissipation per single avalanche pulse.
5. BV = Rated breakdown voltage (1.3 factor accounts for voltage increase
during
avalanche).
6. I
av
= Allowable avalanche current.
7.
T
=
Allowable rise in junction temperature, not to exceed
T
jmax
(assumed as
25°C in Figure 13, 14).
t
av =
Average time in avalanche.
D = Duty cycle in avalanche = t
av
·f
Z
thJC
(D, t
av
) = Transient thermal resistance, see Figures 13)
P
D (ave)
= 1/2 ( 1.3·BV·I
av
) =
T/ Z
thJC
I
av
= 2
T/ [1.3·BV·Z
th
]
E
AS (AR)
= P
D (ave)
·t
av
Fig 13. Maximum Effective Transient Thermal Impedance, Junction-to-Case
Fig 15. Maximum Avalanche Energy Vs. Temperature
Fig 14. Typical Avalanche Current Vs. Pulse width
1E-006
1E-005
0.0001
0.001
0.01
0.1
t1 , Rectangular Pulse Duration (sec)
0.001
0.01
0.1
1
10
T
he
rm
al
R
es
po
ns
e
(
Z
th
JC
)
°
C
/W
0.20
0.10
D = 0.50
0.02
0.01
0.05
SINGLE PULSE
( THERMAL RESPONSE )
Notes:
1. Duty Factor D = t1/t2
2. Peak Tj = P dm x Zthjc + Tc
J
J
1
1
2
2
R
1
R
1
R
2
R
2
C
C
Ci=
iRi
Ci=
iRi
Ri (°C/W)
i (sec)
0.456
0.000311
0.589
0.003759
1.0E-06
1.0E-05
1.0E-04
1.0E-03
1.0E-02
1.0E-01
tav (sec)
0.1
1
10
100
A
va
la
nc
he
C
ur
re
nt
(
A
)
0.05
Duty Cycle = Single Pulse
0.10
Allowed avalanche Current vs avalanche
pulsewidth, tav, assuming j = 25°C and
Tstart = 150°C.
0.01
Allowed avalanche Current vs avalanche
pulsewidth, tav, assuming Tj = 150°C and
Tstart =25°C (Single Pulse)
25
50
75
100
125
150
175
Starting TJ , Junction Temperature (°C)
0
20
40
60
80
100
120
E
A
R
,
A
va
la
nc
he
E
ne
rg
y
(m
J)
TOP Single Pulse
BOTTOM 1.0% Duty Cycle
ID = 15A
AUIRFR4620
6
2015-12-1
Fig 16. Threshold Voltage vs. Temperature
Fig. 18 - Typical Recovery Current vs. di
f
/dt
Fig. 20 - Typical Stored Charge vs. di
f
/dt
Fig. 19 - Typical Stored Charge vs. di
f
/dt
-75 -50 -25 0
25 50 75 100 125 150 175
TJ , Temperature ( °C )
1.0
1.5
2.0
2.5
3.0
3.5
4.0
4.5
5.0
5.5
6.0
V
G
S
(t
h)
, G
at
e
th
re
sh
ol
d
V
ol
ta
ge
(
V
)
ID = 100µA
ID = 250uA
ID = 1.0mA
ID = 1.0A
0
200
400
600
800
1000
diF /dt (A/µs)
0
10
20
30
40
50
60
70
80
90
I R
R
M
(
A
)
IF = 10A
VR = 100V
TJ = 25°C
TJ = 125°C
Fig. 17 - Typical Recovery Current vs. di
f
/dt
0
200
400
600
800
1000
diF /dt (A/µs)
0
10
20
30
40
50
60
70
80
90
I R
R
M
(
A
)
IF = 15A
VR = 100V
TJ = 25°C
TJ = 125°C
0
200
400
600
800
1000
diF /dt (A/µs)
200
400
600
800
1000
1200
1400
1600
1800
2000
Q
R
R
(
nC
)
IF = 10A
VR = 100V
TJ = 25°C
TJ = 125°C
0
200
400
600
800
1000
diF /dt (A/µs)
200
400
600
800
1000
1200
1400
1600
1800
2000
Q
R
R
(
nC
)
IF = 15A
VR = 100V
TJ = 25°C
TJ = 125°C
AUIRFR4620
7
2015-12-1
Fig 20. Peak Diode Recovery dv/dt Test Circuit for N-Channel HEXFET® Power MOSFETs
Fig 22a. Switching Time Test Circuit
Fig 22b. Switching Time Waveforms
Fig 21a. Unclamped Inductive Test Circuit
RG
IAS
0.01
tp
D.U.T
L
VDS
+
- VDD
DRIVER
A
15V
20V
Fig 21b. Unclamped Inductive Waveforms
tp
V
(BR)DSS
I
AS
Fig 23b. Gate Charge Waveform
Vds
Vgs
Id
Vgs(th)
Qgs1 Qgs2
Qgd
Qgodr
Fig 23a. Gate Charge Test Circuit
AUIRFR4620
8
2015-12-1
Note: For the most current drawing please refer to IR website at
http://www.irf.com/package/
D-Pak (TO-252AA) Package Outline (Dimensions are shown in millimeters (inches))
YWWA
XX
XX
Date Code
Y= Year
WW= Work Week
AUFR4620
Lot Code
Part Number
IR Logo
D-Pak (TO-252AA) Part Marking Information
AUIRFR4620
9
2015-12-1
D-Pak (TO-252AA) Tape & Reel Information (Dimensions are shown in millimeters (inches))
Note: For the most current drawing please refer to IR website at
http://www.irf.com/package/
TR
16.3 ( .641 )
15.7 ( .619 )
8.1 ( .318 )
7.9 ( .312 )
12.1 ( .476 )
11.9 ( .469 )
FEED DIRECTION
FEED DIRECTION
16.3 ( .641 )
15.7 ( .619 )
TRR
TRL
NOTES :
1. CONTROLLING DIMENSION : MILLIMETER.
2. ALL DIMENSIONS ARE SHOWN IN MILLIMETERS ( INCHES ).
3. OUTLINE CONFORMS TO EIA-481 & EIA-541.
NOTES :
1. OUTLINE CONFORMS TO EIA-481.
16 mm
13 INCH
AUIRFR4620
10
2015-12-1
Qualification Information
Qualification Level
Automotive
(per AEC-Q101)
Comments: This part number(s) passed Automotive qualification. Infineon’s
Industrial and Consumer qualification level is granted by extension of the higher
Automotive level.
Moisture Sensitivity Level
D-Pak
MSL1
ESD
Machine Model
Class M3 (+/- 400V)
†
AEC-Q101-002
Human Body Model
Class H1B (+/- 1000V)
†
AEC-Q101-001
Charged Device Model
Class C5 (+/- 2000V)
†
AEC-Q101-005
RoHS Compliant
Yes
Published by
Infineon Technologies AG
81726 München, Germany
©
Infineon Technologies AG 2015
All Rights Reserved.
IMPORTANT NOTICE
The information given in this document shall in no event be regarded as a guarantee of conditions or characteristics
(“Beschaffenheitsgarantie”). With respect to any examples, hints or any typical values stated herein and/or any
information regarding the application of the product, Infineon Technologies hereby disclaims any and all warranties and
liabilities of any kind, including without limitation warranties of non-infringement of intellectual property rights of any third
party.
In addition, any information given in this document is subject to customer’s compliance with its obligations stated in this
document and any applicable legal requirements, norms and standards concerning customer’s products and any use of
the product of Infineon Technologies in customer’s applications.
The data contained in this document is exclusively intended for technically trained staff. It is the responsibility of
customer’s technical departments to evaluate the suitability of the product for the intended application and the
completeness of the product information given in this document with respect to such application.
For further information on the product, technology, delivery terms and conditions and prices please contact your nearest
Infineon Technologies office (
www.infineon.com
).
WARNINGS
Due to technical requirements products may contain dangerous substances. For information on the types in question
please contact your nearest Infineon Technologies office.
Except as otherwise explicitly approved by Infineon Technologies in a written document signed by authorized
representatives of Infineon Technologies, Infineon Technologies’ products may not be used in any applications where a
failure of the product or any consequences of the use thereof can reasonably be expected to result in personal injury.
Revision History
Date Comments
12/1/2015
Updated datasheet with corporate template
Corrected ordering table on page 1.
Updated typo on the fig.19 and fig.20, unit of y-axis from "A" to "nC" on page 6.
† Highest passing voltage.