AUIRFR4620 Product Datasheet

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/auirfr4620-html.html
background image

 

AUIRFR4620 

V

DSS 

200V 

R

DS(on)

            typ. 

64m



                       max. 

78m



I

D  

24A 

Features 

  Advanced Process Technology 

  Ultra Low On-Resistance 

  Dynamic dV/dT Rating 

  175°C Operating Temperature 
 Fast Switching 

  Repetitive Avalanche Allowed up to Tjmax 

  Lead-Free, RoHS Compliant 

  Automotive Qualified *  

Description 
Specifically designed for Automotive applications, this HEXFET® 
Power MOSFET utilizes the latest processing techniques to 
achieve extremely low on-resistance per silicon area.  Additional 
features of this design  are a 175°C junction operating temperature, 
fast switching speed and improved repetitive avalanche rating . 
These features combine to make this design an extremely efficient 
and reliable device for use in Automotive applications and a wide 
variety of other applications. 

 

2015-12-1 

HEXFET® is a registered trademark of Infineon. 
*Qualification standards can be found at 

www.infineon.com

 

 

AUTOMOTIVE GRADE 

Symbol Parameter 

Max. 

Units 

I

D

 @ T

C

 = 25°C 

Continuous Drain Current, V

GS

 @ 10V  

24 

I

D

 @ T

C

 = 100°C 

Continuous Drain Current, V

GS

 @ 10V  

17 

I

DM 

Pulsed Drain Current  100 

P

D

 @T

C

 = 25°C 

Maximum Power Dissipation   

144 

  

Linear Derating Factor 

0.96 

W/°C 

V

GS 

Gate-to-Source Voltage 

 ± 20 

E

AS  

Single Pulse Avalanche Energy (Thermally Limited)  113 

mJ   

I

AR 

Avalanche Current  

See Fig. 14,  15, 22a, 22b 

E

AR 

Repetitive Avalanche Energy  

 

mJ 

dv/dt 

Pead Diode Recovery dv/dt 54 

V/ns 

T

J  

Operating Junction and 

-55  to + 175 

 

T

STG 

Storage Temperature Range 

  

°C 

  

Soldering Temperature, for 10 seconds (1.6mm from case) 

300 

 

Absolute Maximum Ratings 

Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device.   These are stress 
ratings only; and functional operation of the device at these or any other condition beyond those indicated in the specifications is not 
implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability. The thermal resistance 
and power dissipation ratings are measured under board mounted and still air conditions. Ambient temperature (TA) is 25°C, unless 
otherwise specified. 

Thermal Resistance  

Symbol Parameter 

Typ. 

Max. 

Units 

R

JC

  

Junction-to-Case  ––– 

1.045 

°C/W   

R

JA

  

Junction-to-Ambient ( PCB Mount)  ––– 

50 

R

JA

  

Junction-to-Ambient  ––– 

110 

D-Pak 

AUIRFR4620 

Base part number 

Package Type 

Standard Pack 

Orderable Part Number   

Form 

Quantity 

AUIRFR4620 

D-Pak    

Tube  

75 

AUIRFR4620 

Tape and Reel Left  

3000 

AUIRFR4620TRL 

G D S 

Gate Drain Source 

HEXFET

® 

Power MOSFET 

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/auirfr4620-html.html
background image

 

AUIRFR4620 

 

2015-12-1 

Notes: 

  Repetitive rating;  pulse width limited by max. junction temperature.  

 Limited 

by

 

T

Jmax , 

starting  T

J

 = 25°C, L = 1.0mH, R

G

 = 25

, I

AS

 = 15A, V

GS

 =10V. Part not recommended for use above this value.  



I

SD

 

 15A, di/dt  634A/µs, V

DD

 

V

(BR)DSS

, T

J

 

 175°C. 

 Pulse 

width 

400µs; duty cycle  2%. 



C

oss eff

. (TR) is a fixed capacitance that gives the same charging time as C

oss

 while V

DS

 is rising from 0 to 80% V

DSS



C

oss eff

. (ER) is a fixed capacitance that gives the same energy as  C

oss

 while V

DS

 is rising from 0 to 80% V

DSS

.

  When mounted on 1" square PCB (FR-4 or G-10 Material). For recommended footprint and soldering techniques refer to  

 

application note #AN-994  

 

R

is measured at T

J

 approximately 90°C. 

Static @ T

J

 = 25°C (unless otherwise specified) 

  

Parameter Min. 

Typ. 

Max. 

Units 

Conditions 

V

(BR)DSS 

Drain-to-Source Breakdown Voltage 

200 

–––  ––– 

V  V

GS

 = 0V, I

D

 = 250µA 

V

(BR)DSS

/

T

J  

Breakdown Voltage Temp. Coefficient 

–––  0.23  –––  V/°C  Reference to 25°C, I

D

 = 5mA  

R

DS(on) 

   

Static Drain-to-Source On-Resistance    

––– 

64 

78 

m

V

GS

 = 10V, I

D

 = 15A  

V

GS(th) 

Gate Threshold Voltage 

3.0 

––– 

5.0 

V  V

DS

 = V

GS

, I

D

 = 100µA 

gfs 

Forward Trans conductance 

37 

–––  ––– 

S  V

DS

 = 50V, I

D

 = 15A  

R

G(Int) 

Internal Gate Resistance 

––– 

2.6 

––– 

  

I

DSS 

  

Drain-to-Source Leakage Current   

––– –––  20 

µA 

V

DS

 = 200V, V

GS

 = 0V 

––– ––– 250 

V

DS

 = 200V,V

GS

 = 0V,T

J

 =125°C 

I

GSS 

  

Gate-to-Source Forward Leakage 

––– 

–––  100 

nA 

V

GS

 = 20V 

Gate-to-Source Reverse Leakage 

––– 

–––  -100 

V

GS

 = -20V 

Dynamic  Electrical Characteristics @ T

J

 = 25°C (unless otherwise specified) 

Q

Total Gate Charge  

––– 

25 

38 

nC   

I

D

 = 15A 

Q

gs 

Gate-to-Source Charge 

––– 

8.2 

––– 

V

DS

 = 100V 

Q

gd 

Gate-to-Drain Charge 

––– 

7.9 

––– 

V

GS

 = 10V 

Q

sync 

Total Gate Charge Sync. (Q

g

 - Q

gd

) ––– 

17 

––– 

 

t

d(on) 

Turn-On Delay Time 

–––  13.4  ––– 

ns 

V

DD

 = 130V 

t

Rise Time 

–––  22.4  ––– 

I

D

 = 15A 

t

d(off) 

Turn-Off Delay Time 

–––  25.4  ––– 

R

= 7.3



t

Fall Time 

–––  14.8  ––– 

V

GS

 = 10V 

C

iss 

Input Capacitance 

–––  1710  ––– 

pF   

V

GS

 = 0V 

C

oss 

Output Capacitance 

––– 

125  ––– 

V

DS

 = 50V 

C

rss 

Reverse Transfer Capacitance 

––– 

30 

––– 

ƒ = 1.0MHz 

C

oss eff. 

(ER)

 

Effective Output Capacitance (Energy Related) 

––– 

113  ––– 

V

GS

 = 0V, V

DS

 = 0V to 160V  

C

oss eff. 

(TR)

 

Effective Output Capacitance  (Time Related) 

––– 

317  ––– 

V

GS

 = 0V, V

DS

 = 0V to 160V  

Diode Characteristics  

  

        Parameter 

Min.  Typ.  Max.  Units 

Conditions 

I

  

Continuous Source Current  

––– –––  24 

MOSFET symbol 

(Body Diode) 

showing  the 

I

SM 

  

Pulsed Source Current 

––– ––– 100 

integral reverse 

(Body Diode)

p-n junction diode. 

V

SD 

Diode Forward Voltage 

––– 

––– 

1.3 

V  T

J

 = 25°C,I

= 15A,V

GS

 = 0V 

t

rr  

Reverse Recovery Time  

––– 78 ––– 

ns   

T

J

 = 25°C  

 

 

––– 99 ––– 

T

J

 = 125°C  

Q

rr  

Reverse Recovery Charge  

––– 294 ––– 

nC   

T

J

 = 25°C  

 

 

––– 432 ––– 

T

J

 = 125°C  

 

 ––– 

7.6 

––– 

T

J

 = 25°C  

t

on 

Forward Turn-On Time 

Intrinsic turn-on time is negligible (turn-on is dominated by L

S

+L

D

V

R

 = 100V, 

I

F

 = 15A 

di/dt = 100A/µs  

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/auirfr4620-html.html
background image

 

AUIRFR4620 

 

2015-12-1 

Fig. 3 

Typical Transfer Characteristics

 

 

Fig. 1 Typical Output Characteristics 

Fig 5.  Typical Capacitance vs. Drain-to-Source Voltage

 

Fig 6.  Typical Gate Charge vs. Gate-to-Source Voltage

 

 

Fig. 4 Normalized On-Resistance vs. Temperature

 

0.1

1

10

100

VDS, Drain-to-Source Voltage (V)

0.01

0.1

1

10

100

1000

I D

, D

ra

in

-t

o-

S

ou

rc

C

u

rr

en

t (

A

)

VGS

TOP           15V

12V

10V

8.0V

7.0V

6.0V

5.5V

BOTTOM

5.0V

60µs PULSE WIDTH
Tj = 25°C

5.0V

0.1

1

10

100

VDS, Drain-to-Source Voltage (V)

0.1

1

10

100

1000

I D

D

ra

in

-t

o

-S

o

ur

ce

 C

u

rr

en

t (

A

)

VGS

TOP           15V

12V

10V

8.0V

7.0V

6.0V

5.5V

BOTTOM

5.0V

60µs PULSE WIDTH

Tj = 175°C

5.0V

2

4

6

8

10

12

14

16

VGS, Gate-to-Source Voltage (V)

0.1

1

10

100

1000

I D

, D

ra

in

-t

o-

S

ou

rc

C

ur

re

nt

 

(A

)

TJ = 25°C

TJ = 175°C

VDS = 50V

60µs PULSE WIDTH

-60 -40 -20 0 20 40 60 80 100 120140160180

TJ , Junction Temperature (°C)

0.5

1.0

1.5

2.0

2.5

3.0

3.5

R

D

S

(o

n)

 ,

 D

ra

in

-t

o-

S

ou

rc

O

R

es

is

ta

nc

   

   

   

   

   

   

   

 (

N

or

m

al

iz

ed

)

ID = 15A

VGS = 10V

Fig. 2 Typical Output Characteristics 

1

10

100

1000

VDS, Drain-to-Source Voltage (V)

10

100

1000

10000

100000

C

, C

ap

ac

ita

nc

(p

F

)

VGS   = 0V,       f = 1 MHZ

Ciss    = Cgs + Cgd,  C ds SHORTED
Crss    = Cgd 
Coss   = Cds + Cgd

Coss

Crss

Ciss

0

5

10

15

20

25

30

35

 QG,  Total Gate Charge (nC)

0.0

2.0

4.0

6.0

8.0

10.0

12.0

14.0

V

G

S

, G

at

e-

to

-S

ou

rc

V

ol

ta

ge

 (

V

)

VDS= 160V

VDS= 100V

VDS= 40V

ID= 15A

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/auirfr4620-html.html
background image

 

AUIRFR4620 

 

2015-12-1 

 

Fig 8.  Maximum Safe Operating Area  

Fig. 7  Typical Source-to-Drain Diode  Forward Voltage 

Fig. 9  

Maximum Drain Current vs. Case Temperature 

Fig. 11 

Typical C

OSS

 Stored Energy 

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

VSD, Source-to-Drain Voltage (V)

1.0

10

100

I S

D

, R

ev

er

se

 D

ra

in

 C

ur

re

nt

 (

A

)

TJ = 25°C

TJ = 175°C

VGS = 0V

1

10

100

1000

VDS, Drain-to-Source Voltage (V)

0.1

1

10

100

1000

I D

,  

D

ra

in

-t

o-

S

ou

rc

C

ur

re

nt

 (

A

)

OPERATION IN THIS AREA 

LIMITED BY R DS(on)

Tc = 25°C

Tj = 175°C

Single Pulse

100µsec

1msec

10msec

DC

25

50

75

100

125

150

175

 TC , Case Temperature (°C)

0

5

10

15

20

25

30

I D

,   

D

ra

in

 C

ur

re

nt

 (

A

)

-60 -40 -20 0 20 40 60 80 100 120140160 180

TJ , Temperature ( °C )

190

200

210

220

230

240

250

260

V

(B

R

)D

S

S

,  D

ra

in

-t

o-

S

ou

rc

B

re

ak

do

w

V

ol

ta

ge

 (

V

)

Id = 5mA

-50

0

50

100

150

200

VDS, Drain-to-Source Voltage (V)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

E

ne

rg

J)

25

50

75

100

125

150

175

Starting TJ , Junction Temperature (°C)

0

50

100

150

200

250

300

350

400

450

500

E

A

S

 , 

S

in

gl

P

ul

se

 A

va

la

nc

he

 E

ne

rg

(m

J)

ID

TOP          2.05A

 2.94A

BOTTOM  15A

Fig 12.  

Maximum Avalanche Energy vs. Drain Current 

Fig 10.  

 Drain-to-Source Breakdown Voltage 

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/auirfr4620-html.html
background image

 

AUIRFR4620 

 

2015-12-1 

Notes on Repetitive Avalanche Curves , Figures 14, 15: 
(For further info, see AN-1005 at www.infineon.com) 
1.  Avalanche failures assumption:  
 

Purely a thermal phenomenon and failure occurs at a temperature far in  

 

excess of T

jmax

. This is validated for every part type. 

2.  Safe operation in Avalanche is allowed as long as T

jmax

 is not exceeded. 

3.   Equation below based on circuit and waveforms shown in Figures 22a, 22b. 
4.   P

D (ave) 

= Average power dissipation per single avalanche pulse. 

5.   BV = Rated breakdown voltage (1.3 factor accounts for voltage increase  
 during 

avalanche). 

6.   I

av 

= Allowable avalanche current. 

7. 

T

 = 

Allowable rise in junction temperature, not to exceed

 

T

jmax 

(assumed as  

 

25°C in Figure 13, 14).  

 

t

av = 

Average time in avalanche. 

 

D = Duty cycle in avalanche =  t

av 

·f 

 

Z

thJC

(D, t

av

) = Transient thermal resistance, see Figures 13) 

 

P

D (ave)

 = 1/2 ( 1.3·BV·I

av

) = 

T/ Z

thJC

 

I

av

 = 2

T/ [1.3·BV·Z

th

E

AS (AR) 

= P

D (ave)

·t

av

 

Fig 13.  Maximum Effective Transient Thermal Impedance, Junction-to-Case  

Fig 15.  Maximum Avalanche Energy Vs. Temperature 

Fig 14.  Typical Avalanche Current Vs. Pulse width  

1E-006

1E-005

0.0001

0.001

0.01

0.1

t1 , Rectangular Pulse Duration (sec)

0.001

0.01

0.1

1

10

T

he

rm

al

 R

es

po

ns

Z

 th

JC

 )

 °

C

/W

0.20
0.10

D = 0.50

0.02

0.01

0.05

SINGLE PULSE

( THERMAL RESPONSE )

Notes:

1. Duty Factor D = t1/t2

2. Peak Tj = P dm x Zthjc + Tc

J

J

1

1

2

2

R

1

R

1

R

2

R

2

C

C

Ci= 

iRi

Ci= 

iRi

Ri (°C/W) 

i (sec)

0.456 

0.000311 

0.589 

0.003759 

1.0E-06

1.0E-05

1.0E-04

1.0E-03

1.0E-02

1.0E-01

tav (sec)

0.1

1

10

100

A

va

la

nc

he

 C

ur

re

nt

 (

A

)

0.05

Duty Cycle = Single Pulse

0.10

Allowed avalanche Current vs avalanche 
pulsewidth, tav, assuming   j = 25°C and 

Tstart = 150°C.

0.01

Allowed avalanche Current vs avalanche 
pulsewidth, tav, assuming Tj = 150°C and 

Tstart =25°C (Single Pulse)

25

50

75

100

125

150

175

Starting TJ , Junction Temperature (°C)

0

20

40

60

80

100

120

E

A

R

 , 

A

va

la

nc

he

 E

ne

rg

(m

J)

TOP          Single Pulse                
BOTTOM   1.0% Duty Cycle
ID = 15A

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/auirfr4620-html.html
background image

 

AUIRFR4620 

 

2015-12-1 

Fig 16.  Threshold Voltage vs. Temperature 

Fig. 18 - Typical Recovery Current vs. di

f

/dt  

Fig. 20 - Typical Stored Charge vs. di

f

/dt  

Fig. 19 - Typical Stored Charge vs. di

f

/dt  

-75 -50 -25 0

25 50 75 100 125 150 175

TJ , Temperature ( °C )

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

5.5

6.0

V

G

S

(t

h)

,  G

at

th

re

sh

ol

V

ol

ta

ge

 (

V

)

ID = 100µA

ID = 250uA

ID = 1.0mA

ID = 1.0A

0

200

400

600

800

1000

diF /dt (A/µs)

0

10

20

30

40

50

60

70

80

90

I R

R

M

 (

A

)

IF = 10A
VR = 100V
TJ = 25°C
TJ = 125°C

Fig. 17 - Typical Recovery Current vs. di

f

/dt  

0

200

400

600

800

1000

diF /dt (A/µs)

0

10

20

30

40

50

60

70

80

90

I R

R

M

 (

A

)

IF = 15A
VR = 100V
TJ = 25°C
TJ = 125°C

0

200

400

600

800

1000

diF /dt (A/µs)

200

400

600

800

1000

1200

1400

1600

1800

2000

Q

R

R

 (

nC

)

IF = 10A
VR = 100V
TJ = 25°C
TJ = 125°C

0

200

400

600

800

1000

diF /dt (A/µs)

200

400

600

800

1000

1200

1400

1600

1800

2000

Q

R

R

 (

nC

)

IF = 15A
VR = 100V
TJ = 25°C
TJ = 125°C

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/auirfr4620-html.html
background image

 

AUIRFR4620 

 

2015-12-1 

 

Fig 20. Peak Diode Recovery dv/dt Test Circuit for N-Channel HEXFET® Power MOSFETs 

Fig 22a.  Switching Time Test Circuit 

Fig 22b.  Switching Time Waveforms 

Fig 21a.  Unclamped Inductive Test Circuit 

RG

IAS

0.01

tp

D.U.T

L

VDS

+

- VDD

DRIVER

A

15V

20V

Fig 21b.  Unclamped Inductive Waveforms 

tp

V

(BR)DSS

I

AS

Fig 23b.   Gate Charge Waveform 

Vds

Vgs

Id

Vgs(th)

Qgs1 Qgs2

Qgd

Qgodr

Fig 23a.  Gate Charge Test Circuit 

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/auirfr4620-html.html
background image

 

AUIRFR4620 

 

2015-12-1 

Note: For the most current drawing please refer to IR website at 

http://www.irf.com/package/

 

D-Pak (TO-252AA) Package Outline (Dimensions are shown in millimeters (inches)) 

YWWA 

XX    

    XX 

Date Code 

Y= Year 

WW= Work Week 

AUFR4620 

Lot Code 

Part Number 

IR Logo 

D-Pak (TO-252AA) Part Marking Information 

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/auirfr4620-html.html
background image

 

AUIRFR4620 

 

2015-12-1 

D-Pak (TO-252AA) Tape & Reel Information (Dimensions are shown in millimeters (inches)) 

Note: For the most current drawing please refer to IR website at 

http://www.irf.com/package/

 

TR

16.3 ( .641 )
15.7 ( .619 )

8.1 ( .318 )
7.9 ( .312 )

12.1 ( .476 )
11.9 ( .469 )

FEED DIRECTION

FEED DIRECTION

16.3 ( .641 )
15.7 ( .619 )

TRR

TRL

NOTES :
1.  CONTROLLING DIMENSION : MILLIMETER.
2.  ALL DIMENSIONS ARE SHOWN IN MILLIMETERS ( INCHES ).
3.  OUTLINE CONFORMS TO EIA-481 & EIA-541.

NOTES :
1. OUTLINE CONFORMS TO EIA-481.

16 mm

  13 INCH

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/auirfr4620-html.html
background image

 

AUIRFR4620 

10 

 

2015-12-1 

 

Qualification Information  

Qualification Level 

Automotive 

(per AEC-Q101)  

Comments: This part number(s) passed Automotive qualification. Infineon’s  
Industrial and Consumer qualification level is granted by extension of the higher 
Automotive level. 

 Moisture Sensitivity Level    

D-Pak 

MSL1  

ESD 

Machine Model  

Class M3 (+/- 400V)

 

 

AEC-Q101-002 

Human Body Model  

Class H1B (+/- 1000V)

 

 

AEC-Q101-001 

Charged Device Model 

Class C5 (+/- 2000V)

 

 

AEC-Q101-005 

RoHS Compliant 

Yes 

Published by 
Infineon Technologies AG 
81726 München, Germany 

© 

Infineon Technologies AG 2015 

All Rights Reserved. 
 
IMPORTANT NOTICE
 
The information given in this document shall in no event be regarded as a guarantee of conditions or characteristics 
(“Beschaffenheitsgarantie”). With respect to any examples, hints or any typical values stated herein and/or any 
information regarding the application of the product, Infineon Technologies hereby disclaims any and all warranties and 
liabilities of any kind, including without limitation warranties of non-infringement of intellectual property rights of any third 
party.  
In addition, any information given in this document is subject to customer’s compliance with its obligations stated in this 
document and any applicable legal requirements, norms and standards concerning customer’s products and any use of 
the product of Infineon Technologies in customer’s applications.  
The data contained in this document is exclusively intended for technically trained staff. It is the responsibility of 
customer’s technical departments to evaluate the suitability of the product for the intended application and the 
completeness of the product information given in this document with respect to such application.   
For further information on the product, technology, delivery terms and conditions and prices please contact your nearest 
Infineon Technologies office (

www.infineon.com

). 

WARNINGS 
Due to technical requirements products may contain dangerous substances. For information on the types in question 
please contact your nearest Infineon Technologies office. 
Except as otherwise explicitly approved by Infineon Technologies in a written document signed by authorized 
representatives of Infineon Technologies, Infineon Technologies’ products may not be used in any applications where a 
failure of the product or any consequences of the use thereof can reasonably be expected to result in personal injury.  

Revision History  

Date Comments 

12/1/2015 



Updated datasheet with corporate template 



Corrected ordering table on page 1. 



Updated typo on the fig.19 and fig.20, unit of y-axis from "A" to "nC" on page 6. 

†  Highest passing voltage. 

Maker
Infineon Technologies