AUIRFR/U8405 Product Datasheet

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/auirfr8405-html.html
background image

 

AUIRFR8405 
AUIRFU8405 

V

DSS 

40V 

R

DS(on)

            typ. 

1.65m



I

D (Silicon Limited) 

211A 

                       max. 

1.98m



I

D (Package Limited) 

100A 

Features 
 Advanced 

Process 

Technology 

  New Ultra Low On-Resistance 
 175°C 

Operating 

Temperature 

 Fast 

Switching 

  Repetitive Avalanche Allowed up to Tjmax 
 Lead-Free, 

RoHS 

Compliant 

  Automotive Qualified *  
Description 
Specifically designed for Automotive applications, this HEXFET® Power MOSFET 
utilizes the latest processing techniques to achieve extremely low on-resistance per 
silicon area. Additional features of this design are a 175°C junction operating 
temperature, fast switching speed and improved repetitive avalanche rating. These 
features combine to make this design an extremely efficient and reliable device for 
use in Automotive applications and wide variety of other applications. 

 

2015-10-12 

HEXFET® is a registered trademark of Infineon. 
*Qualification standards can be found at 

www.infineon.com

 

 

AUTOMOTIVE GRADE 

Symbol Parameter 

Max. 

Units 

I

D

 @ T

C

 = 25°C 

Continuous Drain Current, V

GS

 @ 10V (Silicon Limited) 

211 

I

D

 @ T

C

 = 100°C 

Continuous Drain Current, V

GS

 @ 10V (Silicon Limited) 

150 

I

D

 @ T

C

 = 25°C 

Continuous Drain Current, V

GS

 @ 10V (Package Limited) 

100 

I

DM 

Pulsed Drain Current  804 

P

D

 @T

C

 = 25°C 

Maximum Power Dissipation   

163 

  

Linear Derating Factor 

1.1 

W/°C 

V

GS 

Gate-to-Source Voltage 

 ± 20 

T

J  

Operating Junction and 

-55  to + 175 

 

T

STG 

Storage Temperature Range 

  

°C 

  

Soldering Temperature, for 10 seconds (1.6mm from case) 

300 

 

Absolute Maximum Ratings 
Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device.   These are stress 
ratings only; and functional operation of the device at these or any other condition beyond those indicated in the specifications is not 
implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability. The thermal resistance and 
power dissipation ratings are measured under board mounted and still air conditions. Ambient temperature (TA) is 25°C, unless 
otherwise specified. 

Thermal Resistance  

Symbol Parameter 

Typ. 

Max. 

Units 

R

JC

  

Junction-to-Case  ––– 

0.92 

°C/W   

R

JA

  

Junction-to-Ambient ( PCB Mount)  ––– 

50 

R

JA

  

Junction-to-Ambient  

––– 

110 

D-Pak 

AUIRFR8405 

I-Pak 

AUIRFU8405 

Base part number 

Package Type 

Standard Pack 

Form 

Quantity 

AUIRFU8405 

I-Pak 

Tube  

75 

AUIRFU8405 

AUIRFR8405 

D-Pak    

Tube  

75 

AUIRFR8405 

Tape and Reel Left  

3000 

AUIRFR8405TRL 

Orderable Part Number   

G D  S 

Gate Drain Source 

Avalanche Characteristics  

E

AS  

Single Pulse Avalanche Energy (Thermally Limited)  208 

E

AS 

(tested)

 

Single Pulse Avalanche Energy (Tested Limited)  256 

I

AR 

Avalanche Current  

See Fig. 14, 15, 24a, 24b 

E

AR 

Repetitive Avalanche Energy  

 

mJ 

mJ    

Applications 
  Electric Power Steering (EPS) 
 Battery 

Switch 

  Start/Stop Micro Hybrid 
 Heavy 

Loads 

 DC-DC 

Converter 

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/auirfr8405-html.html
background image

 

AUIRFR/U8405 

 

2015-10-12 

Notes: 



Calculated continuous current based on maximum allowable junction temperature. Bond wire current limit is 100A by source  

     bonding technology. Note that  current limitations arising from heating of the device leads may occur with some lead mounting  
 

arrangements. (Refer to AN-1140) 

 Repetitive rating;  pulse width limited by max. junction temperature. (See fig. 11) 

 Limited by

 

T

Jmax , 

starting  T

J

 = 25°C, L = 0.051mH, R

G

 = 50

, I

AS

 = 90A, V

GS

 =10V. Part not recommended for use above this value.  



I

SD

 

 90A, di/dt  1304A/µs, V

DD

 

V

(BR)DSS

, T

J

 

 175°C. 

 Pulse width 

400µs; duty cycle  2%. 



C

oss eff

. (TR) is a fixed capacitance that gives the same charging time as C

oss

 while V

DS

 is rising from 0 to 80% V

DSS



C

oss eff

. (ER) is a fixed capacitance that gives the same energy as  C

oss

 while V

DS

 is rising from 0 to 80% V

DSS

.

  When mounted on 1" square PCB (FR-4 or G-10 Material). For recommended footprint and soldering techniques refer to  

 

application note #AN-994  

   R

is measured at T

J

 approximately 90°C

  Pulse drain current is limited by source bonding technology. 

**

  

All AC and DC test condition based on old Package

 

limitation current = 90A.

 

Static @ T

J

 = 25°C (unless otherwise specified) 

  

Parameter Min. 

Typ. 

Max. 

Units 

Conditions 

V

(BR)DSS 

Drain-to-Source Breakdown Voltage 

40 

–––  ––– 

V  V

GS

 = 0V, I

D

 = 250µA 

V

(BR)DSS

/

T

J  

Breakdown Voltage Temp. Coefficient 

–––  0.03  –––  V/°C  Reference to 25°C, I

D

 = 5mA  

R

DS(on) 

  

Static Drain-to-Source On-Resistance   

–––  1.65  1.98  m

 V

GS

 = 10V, I

D

 = 90A**  

V

GS(th) 

Gate Threshold Voltage 

2.2 

3.0 

3.9 

V  V

DS

 = V

GS

, I

D

 = 100µA 

I

DSS 

  

Drain-to-Source Leakage Current   

––– ––– 1.0 

µA 

V

DS

 = 40V, V

GS

 = 0V 

––– ––– 150 

V

DS

 = 40V,V

GS

 = 0V,T

J

 =125°C 

I

GSS 

   

Gate-to-Source Forward Leakage 

––– 

–––  100 

nA  

V

GS

 = 20V 

Gate-to-Source Reverse Leakage 

––– 

–––  -100 

V

GS

 = -20V 

R

Internal Gate Resistance 

––– 

2.3 

––– 

  

Dynamic  Electrical Characteristics @ T

J

 = 25°C (unless otherwise specified) 

gfs 

Forward Trans conductance 

294 

–––  ––– 

S  V

DS

 = 10V, I

D

 = 90A**  

Q

Total Gate Charge  

––– 

103  155 

nC   

I

D

 = 90A**  

Q

gs 

Gate-to-Source Charge 

––– 

26 

––– 

V

DS

 = 20V 

Q

gd 

Gate-to-Drain Charge 

––– 

38 

––– 

V

GS

 = 10V 

Q

sync 

Total Gate Charge Sync. (Q

g

 - Q

gd

) ––– 

65 

––– 

 

t

d(on) 

Turn-On Delay Time 

––– 

12 

––– 

ns 

V

DD

 = 26V 

t

Rise Time 

––– 

80 

––– 

I

D

 = 90A**  

t

d(off) 

Turn-Off Delay Time 

––– 

51 

––– 

R

= 2.7



t

Fall Time 

––– 

51 

––– 

V

GS

 = 10V 

C

iss 

Input Capacitance 

–––  5171  ––– 

pF   

V

GS

 = 0V 

C

oss 

Output Capacitance 

––– 

770  ––– 

V

DS

 = 25V 

C

rss 

Reverse Transfer Capacitance 

––– 

523  ––– 

ƒ = 1.0MHz, See Fig. 5 

C

oss eff. 

(ER)

 

Effective Output Capacitance (Energy Related) 

––– 

939  ––– 

V

GS

 = 0V, V

DS

 = 0V to 32V  

C

oss eff. 

(TR)

 

Effective Output Capacitance  (Time Related) 

–––  1054  ––– 

V

GS

 = 0V, V

DS

 = 0V to 32V  

Diode Characteristics  

  

        Parameter 

Min.  Typ.  Max.  Units 

Conditions 

I

  

Continuous Source Current  

––– ––– 211 

MOSFET symbol 

(Body Diode) 

showing  the 

I

SM 

  

Pulsed Source Current 

––– ––– 804 

integral reverse 

(Body Diode)

p-n junction diode. 

V

SD 

Diode Forward Voltage 

––– 

0.9 

1.3 

V  T

J

 = 25°C,I

= 90A** ,V

GS

 = 0V 

dv/dt 

Peak Diode Recovery dv/dt 

––– 2.1 ––– 

V/ns 

T

J

 = 175°C,I

= 90A** ,V

DS

 = 40V 

t

rr  

Reverse Recovery Time  

––– 28 ––– 

ns   

T

J

 = 25°C  

 

 

––– 29 ––– 

T

J

 = 125°C  

Q

rr  

Reverse Recovery Charge  

––– 19 ––– 

nC   

T

J

 = 25°C  

 

 

––– 20 ––– 

T

J

 = 125°C  

I

RRM 

Reverse Recovery Current 

––– 

1.1 

––– 

A  T

J

 = 25°C  

V

R

 = 34V, 

I

F

 = 90A**  

di/dt = 100A/µs  

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/auirfr8405-html.html
background image

 

AUIRFR/U8405 

 

2015-10-12 

Fig. 2 Typical Output Characteristics 

Fig. 3 

Typical Transfer Characteristics

 

 

Fig. 1 Typical Output Characteristics 

Fig 5.  Typical Capacitance vs. Drain-to-Source Voltage

 

Fig 6.  Typical Gate Charge vs. Gate-to-Source Voltage

 

 

Fig. 4 Normalized On-Resistance vs. Temperature

 

0.1

1

10

100

VDS, Drain-to-Source Voltage (V)

1

10

100

1000

I D

, D

ra

in

-t

o-

S

ou

rc

C

u

rr

en

t (

A

)

VGS

TOP           15V

10V

8.0V

7.0V

6.0V

5.5V

5.0V

BOTTOM

4.8V

60µs 

PULSE WIDTH

Tj = 25°C

4.8V

0.1

1

10

100

VDS, Drain-to-Source Voltage (V)

10

100

1000

I D

, D

ra

in

-t

o-

S

ou

rc

C

u

rr

en

t (

A

)

60µs 

PULSE WIDTH

Tj = 175°C

4.8V

VGS

TOP           15V

10V

8.0V

7.0V

6.0V

5.5V

5.0V

BOTTOM

4.8V

2

3

4

5

6

7

8

VGS, Gate-to-Source Voltage (V)

0.1

1

10

100

1000

I D

, D

ra

in

-t

o-

S

ou

rc

C

ur

re

nt

 

(A

)

TJ = 25°C

TJ = 175°C

VDS = 10V

60µs PULSE WIDTH

-60

-20

20

60

100

140

180

TJ , Junction Temperature (°C)

0.4

0.8

1.2

1.6

2.0

R

D

S

(o

n)

 ,

 D

ra

in

-t

o-

S

ou

rc

O

R

es

is

ta

nc

   

   

   

   

   

   

   

 (

N

or

m

al

iz

ed

)

ID = 90A

VGS = 10V

0.1

1

10

100

VDS, Drain-to-Source Voltage (V)

100

1000

10000

100000

C

, C

ap

ac

ita

nc

(p

F

)

VGS   = 0V,       f = 1 MHZ

Ciss    = Cgs + Cgd,  C ds SHORTED
Crss    = Cgd 
Coss   = Cds + Cgd

Coss

Crss

Ciss

0

20

40

60

80

100

120

140

 QG,  Total Gate Charge (nC)

0.0

2.0

4.0

6.0

8.0

10.0

12.0

14.0

V

G

S

, G

at

e-

to

-S

ou

rc

V

ol

ta

ge

 (

V

)

VDS= 32V

VDS= 20V

ID = 90A

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/auirfr8405-html.html
background image

 

AUIRFR/U8405 

 

2015-10-12 

 

Fig 8.  Maximum Safe Operating Area  

Fig. 7  Typical Source-to-Drain Diode  Forward Voltage 

Fig. 9  

Maximum Drain Current vs. Case Temperature 

Fig. 11 

Typical C

OSS

 Stored Energy 

0.2

0.6

1.0

1.4

1.8

VSD, Source-to-Drain Voltage (V)

0.1

1

10

100

1000

I S

D

, R

ev

er

se

 D

ra

in

 C

ur

re

nt

 (

A

)

TJ = 25°C

TJ = 175°C

VGS = 0V

0.1

1

10

100

VDS, Drain-to-Source Voltage (V)

0.1

1

10

100

1000

10000

I D

,  

D

ra

in

-t

o-

S

ou

rc

C

ur

re

nt

 (

A

)

Tc = 25°C

Tj = 175°C

Single Pulse

1msec

10msec

OPERATION IN THIS AREA 

LIMITED BY RDS(on)

100µsec

DC

Limited by Package

25

50

75

100

125

150

175

 TC , Case Temperature (°C)

0

30

60

90

120

150

180

210

240

I D

,   

D

ra

in

 C

ur

re

nt

 (

A

)

Limited By  Package

-60

-20

20

60

100

140

180

TJ , Temperature ( °C )

40

41

42

43

44

45

46

47

48

V

(B

R

)D

S

S

,  D

ra

in

-t

o-

S

ou

rc

B

re

ak

do

w

V

ol

ta

ge

 (

V

)

Id = 5.0mA

-5

0

5

10 15 20 25 30 35 40 45

VDS, Drain-to-Source Voltage (V)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

E

ne

rg

J)

25

50

75

100

125

150

175

Starting TJ , Junction Temperature (°C)

0

100

200

300

400

500

600

700

800

900

E

A

S

 , 

S

in

gl

P

ul

se

 A

va

la

nc

he

 E

ne

rg

(m

J)

ID

TOP           18A
                   37A
BOTTOM    90A

Fig 12.  

Maximum Avalanche Energy vs. Drain Current 

Fig 10.  

 Drain-to-Source Breakdown Voltage 

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/auirfr8405-html.html
background image

 

AUIRFR/U8405 

 

2015-10-12 

Notes on Repetitive Avalanche Curves , Figures 14, 15: 
(For further info, see AN-1005 at www.infineon.com) 
1.  Avalanche failures assumption:  
 

Purely a thermal phenomenon and failure occurs at a temperature far in  

 

excess of T

jmax

. This is validated for every part type. 

2.  Safe operation in Avalanche is allowed as long as T

jmax

 is not exceeded. 

3.   Equation below based on circuit and waveforms shown in Figures 22a, 22b. 
4.   P

D (ave) 

= Average power dissipation per single avalanche pulse. 

5.   BV = Rated breakdown voltage (1.3 factor accounts for voltage increase  
 during 

avalanche). 

6.   I

av 

= Allowable avalanche current. 

7. 

T

 = 

Allowable rise in junction temperature, not to exceed

 

T

jmax 

(assumed as  

 

25°C in Figure 13, 14).  

 

t

av = 

Average time in avalanche. 

 

D = Duty cycle in avalanche =  t

av 

·f 

 

Z

thJC

(D, t

av

) = Transient thermal resistance, see Figures 13) 

 

P

D (ave)

 = 1/2 ( 1.3·BV·I

av

) = 

T/ Z

thJC

 

I

av

 = 2

T/ [1.3·BV·Z

th

E

AS (AR) 

= P

D (ave)

·t

av

 

Fig 13.  Maximum Effective Transient Thermal Impedance, Junction-to-Case  

1E-006

1E-005

0.0001

0.001

0.01

0.1

t1 , Rectangular Pulse Duration (sec)

0.0001

0.001

0.01

0.1

1

10

T

he

rm

al

 R

es

po

ns

Z

 th

JC

 )

 °

C

/W

0.20
0.10

D = 0.50

0.02

0.01

0.05

SINGLE PULSE

( THERMAL RESPONSE )

Notes:

1. Duty Factor D = t1/t2

2. Peak Tj = P dm x Zthjc + Tc

1.0E-06

1.0E-05

1.0E-04

1.0E-03

1.0E-02

1.0E-01

tav (sec)

1

10

100

1000

A

va

la

nc

he

 C

ur

re

nt

 (

A

)

0.05

Duty Cycle = Single Pulse

0.10

Allowed avalanche Current vs avalanche 
pulsewidth, tav, assuming  j = 25°C and 

Tstart = 150°C.

0.01

Allowed avalanche Current vs avalanche 
pulsewidth, tav, assuming Tj = 150°C and 

Tstart =25°C (Single Pulse)

25

50

75

100

125

150

175

Starting TJ , Junction Temperature (°C)

0

50

100

150

200

250

E

A

R

 , 

A

va

la

nc

he

 E

ne

rg

(m

J)

TOP          Single Pulse                
BOTTOM   1.0% Duty Cycle
ID = 90A

Fig 15.  Maximum Avalanche Energy Vs. Temperature 

Fig 14.  Typical Avalanche Current Vs. Pulse width  

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/auirfr8405-html.html
background image

 

AUIRFR/U8405 

 

2015-10-12 

Fig 16.  On-Resistance vs. Gate Voltage 

Fig. 18 - Typical Recovery Current vs. di

f

/dt  

Fig. 20 - Typical Recovery Current vs. di

f

/dt  

Fig. 19 - Typical Stored Charge vs. di

f

/dt  

Fig. 21 - Typical Stored Charge vs. di

f

/dt  

4

6

8

10

12

14

16

18

20

VGS, Gate -to -Source Voltage  (V)

0.0

2.0

4.0

6.0

8.0

R

D

S

(o

n)

,  

D

ra

in

-t

-S

ou

rc

e

 O

n

 R

es

is

ta

nc

e

 (

m

)

ID = 90A

TJ = 25°C

TJ = 125°C

-75

-25

25

75

125

175

225

TJ , Temperature ( °C )

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

V

G

S

(t

h)

,  G

at

th

re

sh

ol

V

ol

ta

ge

 (

V

)

ID = 100µA

ID = 250µA

ID = 1.0mA

ID = 1.0A

Fig. 17 - Threshold Voltage vs. Temperature

 

0

200

400

600

800

1000

diF /dt (A/µs)

0

1

2

3

4

5

6

7

8

9

I R

R

M

 (

A

)

IF = 36A
VR = 34V
TJ = 25°C
TJ = 125°C

0

200

400

600

800

1000

diF /dt (A/µs)

10

20

30

40

50

60

70

80

90

100

110

120

Q

R

R

 (

nC

)

IF = 36A
VR = 34V
TJ = 25°C
TJ = 125°C

0

200

400

600

800

1000

diF /dt (A/µs)

0

1

2

3

4

5

6

7

8

I R

R

M

 (

A

)

IF = 90A
VR = 34V
TJ = 25°C
TJ = 125°C

0

200

400

600

800

1000

diF /dt (A/µs)

0

20

40

60

80

100

Q

R

R

 (

nC

)

IF = 90A
VR = 34V
TJ = 25°C
TJ = 125°C

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/auirfr8405-html.html
background image

 

AUIRFR/U8405 

 

2015-10-12 

Fig 22.   Typical On-Resistance vs. Drain Current 

0

100

200

300

400

500

ID, Drain Current (A)

0.0

3.0

6.0

9.0

R

D

S

(o

n)

,  

D

ra

in

-t

-S

ou

rc

O

R

es

is

ta

nc

(m

)

VGS = 5.5V

VGS = 6.0V

VGS = 7.0V

VGS = 8.0V

VGS = 10V

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/auirfr8405-html.html
background image

 

AUIRFR/U8405 

 

2015-10-12 

 

Fig 23. Peak Diode Recovery dv/dt Test Circuit for N-Channel HEXFET® Power MOSFETs 

Fig 25a.  Switching Time Test Circuit 

Fig 25b.  Switching Time Waveforms 

Fig 24a.  Unclamped Inductive Test Circuit 

RG

IAS

0.01

tp

D.U.T

L

VDS

+

- VDD

DRIVER

A

15V

20V

Fig 24b.  Unclamped Inductive Waveforms 

tp

V

(BR)DSS

I

AS

Fig 26b.   Gate Charge Waveform 

Vds

Vgs

Id

Vgs(th)

Qgs1 Qgs2

Qgd

Qgodr

Fig 26a.  Gate Charge Test Circuit 

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/auirfr8405-html.html
background image

 

AUIRFR/U8405 

 

2015-10-12 

Note: For the most current drawing please refer to IR website at 

http://www.irf.com/package/

 

D-Pak (TO-252AA) Package Outline (Dimensions are shown in millimeters (inches)) 

YWWA 

XX    

    XX 

Date Code 

Y= Year 

WW= Work Week 

AUFR8405 

Lot Code 

Part Number 

IR Logo 

D-Pak (TO-252AA) Part Marking Information 

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/auirfr8405-html.html
background image

 

AUIRFR/U8405 

10 

 

2015-10-12 

 

 

I-Pak (TO-251AA)  Part Marking Information 

YWWA 

XX    

    XX 

Date Code 

Y= Year 

WW= Work Week 

AUFU8405 

Lot Code 

Part Number 

IR Logo 

I-Pak (TO-251AA)  Package Outline (Dimensions are shown in millimeters (inches) 

Note: For the most current drawing please refer to IR website at 

http://www.irf.com/package/

 

Maker
Infineon Technologies