AUIRFR540Z
AUIRFU540Z
V
DSS
100V
R
DS(on)
typ.
22.5m
I
D
35A
max.
28.5m
Application
Automatic Voltage Regulator (AVR)
Solenoid
Injection
Body
Control
Low
Power
Automotive Applications
Description
Specifically designed for Automotive applications, this HEXFET®
Power MOSFET utilizes the latest processing techniques to
achieve extremely low on-resistance per silicon area. Additional
features of this design are a 175°C junction operating temperature,
fast switching speed and improved repetitive avalanche rating .
These features combine to make this design an extremely efficient
and reliable device for use in Automotive applications and a wide
variety of other applications.
1
2017-10-03
HEXFET® is a registered trademark of Infineon.
*Qualification standards can be found at
www.infineon.com
AUTOMOTIVE GRADE
Symbol Parameter
Max.
Units
I
D
@ T
C
= 25°C
Continuous Drain Current, V
GS
@ 10V (Silicon Limited)
35
A
I
D
@ T
C
= 100°C
Continuous Drain Current, V
GS
@ 10V (Silicon Limited)
25
I
DM
Pulsed Drain Current 140
P
D
@T
C
= 25°C
Maximum Power Dissipation
91
W
Linear Derating Factor
0.61
W/°C
V
GS
Gate-to-Source Voltage
± 20
V
E
AS
Single Pulse Avalanche Energy (Thermally Limited) 39
mJ
E
AS
(Tested)
Single Pulse Avalanche Energy Tested Value 75
I
AR
Avalanche Current
See Fig.15,16, 12a, 12b
A
E
AR
Repetitive Avalanche Energy mJ
T
J
Operating Junction and
T
STG
Storage Temperature Range
°C
Soldering Temperature, for 10 seconds (1.6mm from case)
300
-55 to + 175
Absolute Maximum Ratings
Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress
ratings only; and functional operation of the device at these or any other condition beyond those indicated in the specifications is not
implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability. The thermal resistance
and power dissipation ratings are measured under board mounted and still air conditions. Ambient temperature (TA) is 25°C, unless
Thermal Resistance
Symbol Parameter
Typ.
Max.
Units
R
JC
Junction-to-Case –––
1.64
°C/W
R
JA
Junction-to-Ambient ( PCB Mount) –––
50
R
JA
Junction-to-Ambient
–––
110
D-Pak
AUIRFR540Z
Base part number
Package Type
Standard Pack
Orderable Part Number
Form
Quantity
AUIRFU540Z
I-Pak
Tube
75
AUIRFU540Z
AUIRFR540Z
Tube
75
AUIRFR540Z
Tape and Reel Left
3000
AUIRFR540ZTRL
D-Pak
G D S
Gate Drain Source
S
G
D
HEXFET
®
Power MOSFET
G
I-Pak
AUIRFU540Z
S
D
D
AUIRFR/U540Z
2
2017-10-03
Notes:
Repetitive rating; pulse width limited by max. junction temperature. (See fig. 11)
Limited by
T
Jmax ,
starting T
J
= 25°C, L = 0.17mH, R
G
= 25
, I
AS
= 21A, V
GS
=10V. Part not recommended for use above this value.
Pulse width
1.0ms; duty cycle 2%.
C
oss
eff. is a fixed capacitance that gives the same charging time as C
oss
while V
DS
is rising from 0 to 80% V
DSS
Limited by T
Jmax
, see Fig.12a, 12b, 15, 16 for typical repetitive avalanche performance.
This value determined from sample failure population, 100% tested to this value in production.
When mounted on 1" square PCB (FR-4 or G-10 Material). For recommended footprint and soldering techniques refer to
application note #AN-994
R
is measured at T
J
approximately 90°C.
Static @ T
J
= 25°C (unless otherwise specified)
Parameter Min.
Typ.
Max.
Units
Conditions
V
(BR)DSS
Drain-to-Source Breakdown Voltage
100
––– –––
V V
GS
= 0V, I
D
= 250µA
V
(BR)DSS
/
T
J
Breakdown Voltage Temp. Coefficient
––– 0.092 ––– V/°C Reference to 25°C, I
D
= 1mA
R
DS(on)
Static Drain-to-Source On-Resistance
––– 22.5 28.5 m
V
GS
= 10V, I
D
= 21A
V
GS(th)
Gate Threshold Voltage
2.0
–––
4.0
V V
DS
= V
GS
, I
D
= 50µA
gfs
Forward Trans conductance
28
––– –––
S V
DS
= 25V, I
D
= 21A
I
DSS
Drain-to-Source Leakage Current
––– ––– 20
µA
V
DS
= 100V, V
GS
= 0V
––– ––– 250
V
DS
= 100V,V
GS
= 0V,T
J
=125°C
I
GSS
Gate-to-Source Forward Leakage
–––
––– 200
nA
V
GS
= 20V
Gate-to-Source Reverse Leakage
–––
––– -200
V
GS
= -20V
Dynamic Electrical Characteristics @ T
J
= 25°C (unless otherwise specified)
Q
g
Total Gate Charge
–––
39
59
nC
I
D
= 21A
Q
gs
Gate-to-Source Charge
–––
11
–––
V
DS
= 50V
Q
gd
Gate-to-Drain Charge
–––
12
–––
V
GS
= 10V
t
d(on)
Turn-On Delay Time
–––
14
–––
ns
V
DD
= 50V
t
r
Rise Time
–––
42
–––
I
D
= 21A
t
d(off)
Turn-Off Delay Time
–––
43
–––
R
G
= 13
t
f
Fall Time
–––
34
–––
V
GS
= 10V
L
D
Internal Drain Inductance
–––
4.5
–––
nH
Between lead,
6mm (0.25in.)
L
S
Internal Source Inductance
–––
7.5
–––
from package
and center of die contact
C
iss
Input Capacitance
––– 1690 –––
pF
V
GS
= 0V
C
oss
Output Capacitance
–––
180 –––
V
DS
= 25V
C
rss
Reverse Transfer Capacitance
–––
100 –––
ƒ = 1.0MHz
C
oss
Output Capacitance
–––
720 –––
V
GS
= 0V, V
DS
= 1.0V ƒ = 1.0MHz
C
oss
Output Capacitance
–––
110 –––
V
GS
= 0V, V
DS
= 80V ƒ = 1.0MHz
C
oss eff.
Effective Output Capacitance
–––
190 –––
V
GS
= 0V, V
DS
= 0V to 80V
Diode Characteristics
Parameter
Min. Typ. Max. Units
Conditions
I
S
Continuous Source Current
––– ––– 35
A
MOSFET symbol
(Body Diode)
showing the
I
SM
Pulsed Source Current
––– ––– 140
integral reverse
(Body Diode)
p-n junction diode.
V
SD
Diode Forward Voltage
–––
–––
1.3
V T
J
= 25°C,I
S
= 21A, V
GS
= 0V
t
rr
Reverse Recovery Time
–––
32
48
ns T
J
= 25°C ,I
F
= 21A, V
DD
= 50V
Q
rr
Reverse Recovery Charge
–––
40
60
nC di/dt = 100A/µs
t
on
Forward Turn-On Time
Intrinsic turn-on time is negligible (turn-on is dominated by L
S
+L
D
)
AUIRFR/U540Z
3
2017-10-03
Fig. 2 Typical Output Characteristics
Fig. 3
Typical Transfer Characteristics
Fig. 4
Typical Forward Trans conductance
Vs. Drain Current
Fig. 1 Typical Output Characteristics
0.1
1
10
100
VDS, Drain-to-Source Voltage (V)
1
10
100
1000
I D
,
D
ra
in
-t
o-
S
ou
rc
e
C
ur
re
nt
(
A
)
VGS
TOP 15V
10V
8.0V
7.0V
6.0V
5.5V
5.0V
BOTTOM
4.5V
60µs PULSE WIDTH
Tj = 25°C
4.5V
0.1
1
10
100
VDS, Drain-to-Source Voltage (V)
1
10
100
1000
I D
,
D
ra
in
-t
o
-S
ou
rc
e
C
u
rr
en
t (
A
)
VGS
TOP 15V
10V
8.0V
7.0V
6.0V
5.5V
5.0V
BOTTOM
4.5V
60µs PULSE WIDTH
Tj = 175°C
4.5V
2
3
4
5
6
7
8
VGS, Gate-to-Source Voltage (V)
0.1
1
10
100
1000
I D
, D
ra
in
-t
o-
S
ou
rc
e
C
ur
re
nt
)
TJ = 25°C
TJ = 175°C
VDS = 25V
60µs PULSE WIDTH
0
10
20
30
40
50
ID,Drain-to-Source Current (A)
0
10
20
30
40
50
60
70
G
fs
, F
or
w
ar
d
T
ra
ns
co
nd
uc
ta
nc
e
(S
)
TJ = 25°C
TJ = 175°C
VDS = 10V
380µs PULSE WIDTH
AUIRFR/U540Z
4
2017-10-03
Fig 5. Typical Capacitance vs.
Drain-to-Source Voltage
Fig 6. Typical Gate Charge vs.
Gate-to-Source Voltage
Fig 8. Maximum Safe Operating Area
Fig. 7 Typical Source-to-Drain Diode
Forward Voltage
1
10
100
VDS, Drain-to-Source Voltage (V)
0
500
1000
1500
2000
2500
3000
C
, C
ap
ac
ita
nc
e(
pF
)
VGS = 0V, f = 1 MHZ
Ciss = Cgs + Cgd, Cds SHORTED
Crss = Cgd
Coss = Cds + Cgd
Coss
Crss
Ciss
0
10
20
30
40
50
60
QG Total Gate Charge (nC)
0
4
8
12
16
20
V
G
S
, G
at
e-
to
-S
ou
rc
e
V
ol
ta
ge
(
V
)
VDS= 80V
VDS= 50V
VDS= 20V
ID= 21A
0.2
0.4
0.6
0.8
1.0
1.2
1.4
VSD, Source-to-Drain Voltage (V)
0.1
1.0
10.0
100.0
1000.0
I S
D
, R
ev
er
se
D
ra
in
C
ur
re
nt
(
A
)
TJ = 25°C
TJ = 175°C
VGS = 0V
0
1
10
100
1000
VDS , Drain-toSource Voltage (V)
0.1
1
10
100
1000
I D
,
D
ra
in
-t
o-
S
ou
rc
e
C
ur
re
nt
(
A
)
Tc = 25°C
Tj = 175°C
Single Pulse
1msec
10msec
OPERATION IN THIS AREA
LIMITED BY R DS(on)
100µsec
DC
AUIRFR/U540Z
5
2017-10-03
Fig 10. Normalized On-Resistance
Vs. Temperature
Fig 11. Maximum Effective Transient Thermal Impedance, Junction-to-Case
Fig 9. Maximum Drain Current Vs.
Case Temperature
25
50
75
100
125
150
175
TC , CaseTemperature (°C)
0
10
20
30
40
I D
, D
ra
in
C
ur
re
nt
(
A
)
-60 -40 -20 0
20 40 60 80 100 120 140 160 180
TJ , Junction Temperature (°C)
0.5
1.0
1.5
2.0
2.5
R
D
S
(o
n)
,
D
ra
in
-t
o-
S
ou
rc
e
O
n
R
es
is
ta
nc
e
(
N
or
m
al
iz
ed
)
ID = 21A
VGS = 10V
1E-006
1E-005
0.0001
0.001
0.01
0.1
t1 , Rectangular Pulse Duration (sec)
0.001
0.01
0.1
1
10
T
he
rm
al
R
es
po
ns
e
(
Z
th
JC
)
0.20
0.10
D = 0.50
0.02
0.01
0.05
SINGLE PULSE
( THERMAL RESPONSE )
Notes:
1. Duty Factor D = t1/t2
2. Peak Tj = P dm x Zthjc + Tc
J
J
1
1
2
2
3
3
R
1
R
1
R
2
R
2
R
3
R
3
C
C
Ci=
iRi
Ci=
iRi
Ri (°C/W)
i (sec)
2.626
0.000052
0.7154
0.01832
0.6611
0.001297
AUIRFR/U540Z
6
2017-10-03
Fig 12c. Maximum Avalanche Energy
vs. Drain Current
Fig 12a. Unclamped Inductive Test Circuit
Fig 12b. Unclamped Inductive Waveforms
RG
IAS
0.01
tp
D.U.T
L
VDS
+
- VDD
DRIVER
A
15V
20V
tp
V
(BR)DSS
I
AS
Fig 13b. Gate Charge Test Circuit
Fig 13a. Gate Charge Waveform
Vds
Vgs
Id
Vgs(th)
Qgs1 Qgs2
Qgd
Qgodr
Fig 14. Threshold Voltage Vs. Temperature
25
50
75
100
125
150
175
Starting TJ, Junction Temperature (°C)
0
40
80
120
160
E
A
S
,
S
in
gl
e
P
ul
se
A
va
la
nc
he
E
ne
rg
y
(m
J)
ID
TOP
6.5A
9.4A
BOTTOM
21A
-75 -50 -25
0
25
50
75 100 125 150 175
TJ , Temperature ( °C )
1.0
1.5
2.0
2.5
3.0
3.5
4.0
4.5
V
G
S
(t
h)
G
at
e
th
re
sh
ol
d
V
ol
ta
ge
(
V
)
ID = 1.0mA
ID = 250µA
ID = 50µA
AUIRFR/U540Z
7
2017-10-03
Fig 15. Typical Avalanche Current Vs. Pulse width
Notes on Repetitive Avalanche Curves , Figures 15, 16:
(For further info, see AN-1005 at www.infineon.com)
1. Avalanche failures assumption:
Purely a thermal phenomenon and failure occurs at a temperature far in
excess of T
jmax
. This is validated for every part type.
2. Safe operation in Avalanche is allowed as long as T
jmax
is not exceeded.
3. Equation below based on circuit and waveforms shown in Figures 12a, 12b.
4. P
D (ave)
= Average power dissipation per single avalanche pulse.
5. BV = Rated breakdown voltage (1.3 factor accounts for voltage increase
during
avalanche).
6. I
av
= Allowable avalanche current.
7.
T
=
Allowable rise in junction temperature, not to exceed
T
jmax
(assumed as
25°C in Figure 15, 16).
t
av =
Average time in avalanche.
D = Duty cycle in avalanche = t
av
·f
Z
thJC
(D, t
av
) = Transient thermal resistance, see Figures 13)
P
D (ave)
= 1/2 ( 1.3·BV·I
av
) =
T/ Z
thJC
I
av
= 2
T/ [1.3·BV·Z
th
]
E
AS (AR)
= P
D (ave)
·t
av
Fig 16. Maximum Avalanche Energy
Vs. Temperature
1.0E-06
1.0E-05
1.0E-04
1.0E-03
1.0E-02
1.0E-01
tav (sec)
0.1
1
10
100
A
va
la
nc
he
C
ur
re
nt
(
A
)
0.05
Duty Cycle = Single Pulse
0.10
Allowed avalanche Current vs
avalanche pulsewidth, tav
assuming
Tj = 25°C due to
avalanche losses
0.01
25
50
75
100
125
150
175
Starting TJ , Junction Temperature (°C)
0
10
20
30
40
E
A
R
,
A
va
la
nc
he
E
ne
rg
y
(m
J)
TOP Single Pulse
BOTTOM 1% Duty Cycle
ID = 21A
AUIRFR/U540Z
8
2017-10-03
Fig 17. Peak Diode Recovery dv/dt Test Circuit for N-Channel HEXFET® Power MOSFETs
Fig 18a. Switching Time Test Circuit
Fig 18b. Switching Time Waveforms
AUIRFR/U540Z
9
2017-10-03
D-Pak (TO-252AA) Package Outline (Dimensions are shown in millimeters (inches))
YWWA
XX
XX
Date Code
Y= Year
WW= Work Week
AUIRFR540Z
Lot Code
Part Number
IR Logo
D-Pak (TO-252AA) Part Marking Information
AUIRFR/U540Z
10
2017-10-03
I-Pak (TO-251AA) Part Marking Information
YWWA
XX
XX
Date Code
Y= Year
WW= Work Week
AUIRFU540Z
Lot Code
Part Number
IR Logo
I-Pak (TO-251AA) Package Outline (Dimensions are shown in millimeters (inches)