AUIRFR_U4615 Product datasheet

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/auirfr4615-html.html
background image

10/04/11

www.irf.com

1

HEXFET

®

 Power MOSFET

S

D

G

G

D

S

Gate

Drain

Source

AUIRFR4615
AUIRFU4615

DPak

AUIRFR4615

IPAK

AUIRFU4615

V

DSS

150V

R

DS(on)

   typ.

34m:

              max.

42m

:

I

33A

D

S

G

S

D

G

D

Specifically designed for Automotive applications, this
HEXFET

®

 Power MOSFET utilizes the latest processing

techniques to achieve extremely low on-resistance per silicon
area.  Additional features of this design  are a 175°C junction
operating temperature, fast switching speed and improved
repetitive avalanche rating . These features combine to make
this design an extremely efficient and reliable device for use in
Automotive applications and a wide variety of other applications.

Description

Features

l

Advanced Process Technology

l

 Low On-Resistance

l

175°C Operating Temperature

l

Fast Switching

l

Repetitive Avalanche Allowed up to Tjmax

l

Lead-Free, RoHS Compliant

l

Automotive Qualified *

Absolute Maximum Ratings

Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are

stress ratings only; and functional operation of the device at these or any other condition beyond those indicated in the

specifications is not implied.

Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

The thermal resistance and power dissipation ratings are measured under board mounted and still air conditions. Ambient

temperature (T

A

) is 25°C, unless otherwise specified.

AUTOMOTIVE GRADE

HEXFET

®

 is a registered trademark of International Rectifier.

*Qualification standards can be found at http://www.irf.com/

Parameter

Units

I

D

 @ T

C

 = 25°C

Continuous Drain Current, V

GS

 @ 10V 

I

D

 @ T

C

 = 100°C

Continuous Drain Current, V

GS

 @ 10V 

I

DM

Pulsed Drain Current 

c

P

D

 @T

C

 = 25°C

Maximum Power Dissipation  

W

Linear Derating Factor

W/°C

V

GS

Gate-to-Source Voltage

V

E

AS (Thermally limited) 

Single Pulse Avalanche Energy d

mJ

I

AR

Avalanche Current c

A

E

AR

Repetitive Avalanche Energy c

mJ

dv/dt

Peak Diode Recovery 

e

V/ns

T

Operating Junction and

T

STG

Storage Temperature Range
Soldering Temperature, for 10 seconds

Thermal Resistance

Parameter

Typ.

Max.

Units

R

θJC 

Junction-to-Case 

j

–––

1.045

R

θJA 

Junction-to-Ambient (PCB Mount) 

i

–––

50

R

θJA 

Junction-to-Ambient

–––

110

°C/W

°C

A

144

38

-55  to + 175

 ± 20

0.96

300(1.6mm from case)

109

See Fig. 14, 15, 22a, 22b,

Max.

33
24

140

PD -

96398A

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/auirfr4615-html.html
background image

AUIRFR/U4615

2

www.irf.com

S

D

G

Notes:



 Repetitive rating;  pulse width limited by max. junction

temperature.

‚

 Limited by T

Jmax

, starting T

= 25°C, L = 0.51mH

     R

= 25

Ω, I

AS 

= 21A, V

GS

 =10V. Part not recommended for use

    above this value .

ƒ

I

SD 

≤ 21A, di/dt ≤ 549A/μs, V

DD 

≤ V

(BR)DSS

, T

≤ 175°C.

„

 Pulse width 

≤ 400μs; duty cycle ≤ 2%.

…

 C

oss

 eff. (TR) is a fixed capacitance that gives the same charging time

     as C

oss 

while V

DS 

is rising from 0 to 80% V

DSS

.

† 

C

oss

 eff. (ER) is a fixed capacitance that gives the same energy as

     C

oss 

while V

DS 

is rising from 0 to 80% V

DSS

.

‡

 When mounted on 1" square PCB (FR-4 or G-10 Material).  For recom

     mended footprint and soldering techniques refer to application
     note #AN-994

ˆ

 R

θ 

is measured at T

J

 approximately 90°C

Static Electrical Characteristics @ T

J

 = 25°C (unless otherwise specified)

Parameter

Min. Typ. Max. Units

V

(BR)DSS

Drain-to-Source Breakdown Voltage

150

–––

–––

V

ΔV

(BR)DSS

/ΔT

Breakdown Voltage Temp. Coefficient

–––

0.19

––– V/°C

R

DS(on)

Static Drain-to-Source On-Resistance

–––

34

42

V

GS(th)

Gate Threshold Voltage

3.0

–––

5.0

V

gfs

Forward Transconductance

35

–––

–––

S

I

DSS

Drain-to-Source Leakage Current

–––

–––

20

–––

–––

250

I

GSS

Gate-to-Source Forward Leakage

–––

–––

100

Gate-to-Source Reverse Leakage

–––

–––

-100

R

G(int)

Internal Gate Resistance

–––

2.7

–––

Ω

Dynamic @ T

J

 = 25°C (unless otherwise specified)

Parameter

Min. Typ. Max. Units

Q

g

Total Gate Charge

–––

26

Q

gs

Gate-to-Source Charge

–––

8.6

–––

Q

gd

Gate-to-Drain ("Miller") Charge

–––

9.0

–––

Q

sync

Total Gate Charge Sync. (Q

g

 - Q

gd

)

–––

17

–––

t

d(on)

Turn-On Delay Time

–––

15

–––

t

r

Rise Time

–––

35

–––

t

d(off)

Turn-Off Delay Time

–––

25

–––

t

f

Fall Time

–––

20

–––

C

iss

Input Capacitance

–––

1750

–––

C

oss

Output Capacitance

–––

155

–––

C

rss

Reverse Transfer Capacitance

–––

40

–––

C

oss

 eff. (ER) Effective Output Capacitance (Energy Related)

–––

179

–––

C

oss

 eff. (TR) Effective Output Capacitance (Time Related)

–––

382

–––

Diode Characteristics

        Parameter

Min. Typ. Max. Units

I

S

Continuous Source Current 
(Body Diode)

I

SM

Pulsed Source Current
(Body Diode)

c

V

SD

Diode Forward Voltage

–––

–––

1.3

V

t

rr

Reverse Recovery Time

–––

70

–––

T

J

 = 25°C

V

R

 = 100V,

–––

83

–––

T

J

 = 125°C

I

F

 = 21A

Q

rr

Reverse Recovery Charge

–––

177

–––

T

J

 = 25°C

di/dt = 100A/μs 

f

–––

247

–––

T

J

 = 125°C

I

RRM

Reverse Recovery Current

–––

4.9

–––

A

T

J

 = 25°C

t

on

Forward Turn-On Time

Intrinsic turn-on time is negligible (turn-on is dominated by LS+LD)

ns

nC

33

140

μA

nA

nC

ns

pF

A

–––

–––

–––

–––

I

D

 = 21A

R

G

 = 7.3Ω

V

GS

 = 10V 

f

V

DD

 = 98V

I

D

 = 21A, V

DS

 =0V, V

GS

 = 10V 

T

J

 = 25°C, I

S

 = 21A, V

GS

 = 0V 

f

integral reverse
p-n junction diode.

Conditions

V

GS

 = 0V, I

D

 = 250μA

Reference to 25°C, I

D

 = 5mA

c

V

GS

 = 10V, I

D

 = 21A 

f

V

DS

 = V

GS

, I

D

 = 100μA

V

DS

 = 150V, V

GS

 = 0V

V

DS

 = 150V, V

GS

 = 0V, T

J

 = 125°C

MOSFET symbol
showing  the

V

DS

 = 75V

Conditions

V

GS

 = 10V 

f

V

GS

 = 0V

V

DS

 = 50V

ƒ = 1.0MHz        (See Fig.5)
V

GS

 = 0V, V

DS

 = 0V to 120V 

h(See Fig.11)

V

GS

 = 0V, V

DS

 = 0V to 120V 

g

Conditions

V

DS

 = 50V, I

D

 = 21A

I

D

 = 21A

V

GS

 = 20V

V

GS

 = -20V

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/auirfr4615-html.html
background image

AUIRFR/U4615

www.irf.com

3

Qualification Information

Moisture Sensitivity Level

D

 

PAK 

MSL1 

I-PAK

N/A

RoHS Compliant

Yes

ESD

Machine Model

Class M3(+/- 400V )

†††

AEC-Q101-002

Human Body Model

Class H1B(+/- 1000V )

†††

AEC-Q101-001

Charged Device 
Model

Class C5(+/- 2000V )

†††

AEC-Q101-005

Qualification Level

Automotive

(per AEC-Q101) 

††

Comments:

This part number(s) passed Automotive

qualification. IR’s Industrial and Consumer qualification
level is granted by extension of the higher Automotive level.

†      Qualification standards can be found at International Rectifier’s web site:  http//www.irf.com/
††     Exceptions (if any) to AEC-Q101 requirements are noted in the qualification report.

†††    Highest passing voltage

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/auirfr4615-html.html
background image

AUIRFR/U4615

4

www.irf.com

Fig 1.  Typical Output Characteristics

Fig 3.  Typical Transfer Characteristics

Fig 4.  Normalized On-Resistance vs. Temperature

Fig 2.  Typical Output Characteristics

Fig 6.  Typical Gate Charge vs. Gate-to-Source Voltage

Fig 5.  Typical Capacitance vs. Drain-to-Source Voltage

0.1

1

10

100

VDS, Drain-to-Source Voltage (V)

0.01

0.1

1

10

100

1000

I D

, D

ra

in

-t

o-

S

ou

rc

C

ur

re

nt

 (

A

)

VGS

TOP          

15V

12V
10V

8.0V

7.0V

6.0V

5.5V

BOTTOM

5.0V

≤60μs PULSE WIDTH

Tj = 25°C

5.0V

0.1

1

10

100

VDS, Drain-to-Source Voltage (V)

0.1

1

10

100

1000

I D

, D

ra

in

-t

o-

S

ou

rc

C

ur

re

nt

 (

A

)

VGS

TOP          

15V
12V

10V

8.0V

7.0V

6.0V

5.5V

BOTTOM

5.0V

≤60μs PULSE WIDTH

Tj = 175°C

5.0V

2

4

6

8

10

12

14

16

VGS, Gate-to-Source Voltage (V)

0.1

1

10

100

1000

I D

, D

ra

in

-t

o-

S

ou

rc

C

ur

re

nt

 (

A

)

TJ = 25°C

TJ = 175°C

VDS = 50V
≤60μs PULSE WIDTH

-60 -40 -20 0 20 40 60 80 100120140160180

TJ , Junction Temperature (°C)

0.5

1.0

1.5

2.0

2.5

3.0

R

D

S

(o

n)

 ,

 D

ra

in

-t

o-

S

ou

rc

O

R

es

is

ta

nc

   

   

   

   

   

   

   

 (

N

or

m

al

iz

ed

)

ID = 21A

VGS = 10V

1

10

100

1000

VDS, Drain-to-Source Voltage (V)

10

100

1000

10000

100000

C

, C

ap

ac

ita

nc

(p

F

)

VGS   = 0V,       f = 1 MHZ

Ciss   = Cgs + Cgd,  C ds SHORTED
Crss   = Cgd 

Coss  = Cds + Cgd

Coss

Crss

Ciss

0

5

10

15

20

25

30

35

 QG,  Total Gate Charge (nC)

0.0

2.0

4.0

6.0

8.0

10.0

12.0

14.0

V

G

S

, G

at

e-

to

-S

ou

rc

V

ol

ta

ge

 (

V

)

VDS= 120V

VDS= 75V

VDS= 30V

ID= 21A

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/auirfr4615-html.html
background image

AUIRFR/U4615

www.irf.com

5

Fig 8.  Maximum Safe Operating Area

Fig 10.  Drain-to-Source Breakdown Voltage

Fig 7.  Typical Source-Drain Diode

Forward Voltage

Fig 11.  Typical C

OSS

 Stored Energy

Fig 9.  Maximum Drain Current vs.

Case Temperature

Fig 12.  Maximum Avalanche Energy vs. DrainCurrent

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

VSD, Source-to-Drain Voltage (V)

1.0

10

100

1000

I S

D

, R

ev

er

se

 D

ra

in

 C

ur

re

nt

 (

A

)

TJ = 25°C

TJ = 175°C

VGS = 0V

1

10

100

1000

VDS, Drain-to-Source Voltage (V)

0.1

1

10

100

1000

I D

,  

D

ra

in

-t

o-

S

ou

rc

C

ur

re

nt

 (

A

)

OPERATION IN THIS AREA 

LIMITED BY R DS(on)

Tc = 25°C

Tj = 175°C

Single Pulse

100μsec

1msec

10msec

DC

-60 -40 -20 0 20 40 60 80 100120140160180

TJ , Temperature ( °C )

140

145

150

155

160

165

170

175

180

185

190

V

(B

R

)D

S

S

,  D

ra

in

-t

o-

S

ou

rc

B

re

ak

do

w

V

ol

ta

ge

 (

V

)

Id = 5mA

25

50

75

100

125

150

175

Starting TJ , Junction Temperature (°C)

0

50

100

150

200

250

300

350

400

450

500

E

A

S

 , 

S

in

gl

P

ul

se

 A

va

la

nc

he

 E

ne

rg

(m

J)

ID

TOP          2.8A

5.3A

BOTTOM 21A

-20

0

20

40

60

80 100 120 140 160

VDS, Drain-to-Source Voltage (V)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

E

ne

rg

J)

25

50

75

100

125

150

175

 TC , Case Temperature (°C)

0

5

10

15

20

25

30

35

40

I D

,   

D

ra

in

 C

ur

re

nt

 (

A

)

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/auirfr4615-html.html
background image

AUIRFR/U4615

6

www.irf.com

Fig 13.  Maximum Effective Transient Thermal Impedance, Junction-to-Case

Fig 14.  Typical Avalanche Current vs.Pulsewidth

Fig 15.  Maximum Avalanche Energy vs. Temperature

Notes on Repetitive Avalanche Curves , Figures 14, 15:
(For further info, see AN-1005 at www.irf.com)
1. Avalanche failures assumption:

Purely a thermal phenomenon and failure occurs at a temperature far in
excess of T

jmax

. This is validated for every part type.

2. Safe operation in Avalanche is allowed as long asT

jmax

 is not exceeded.

3. Equation below based on circuit and waveforms shown in Figures 22a,22b.
4. P

D (ave) 

= Average power dissipation per single avalanche pulse.

5. BV = Rated breakdown voltage (1.3 factor accounts for voltage increase

during avalanche).

6. I

av 

= Allowable avalanche current.

7. 

ΔT

 = 

Allowable rise in junction temperature, not to exceed

 

T

jmax 

(assumed as

25°C in Figure 14, 15).
t

av = 

Average time in avalanche.

D = Duty cycle in avalanche =  t

av 

·f

Z

thJC

(D, t

av

) = Transient thermal resistance, see Figures 13)

P

D (ave)

 = 1/2 ( 1.3·BV·I

av

) =

 DT/ Z

thJC

I

av 

=

 

2

DT/ [1.3·BV·Z

th

]

E

AS (AR)

 = P

D (ave)

·t

av

1E-006

1E-005

0.0001

0.001

0.01

0.1

t1 , Rectangular Pulse Duration (sec)

0.001

0.01

0.1

1

10

T

he

rm

al

 R

es

po

ns

Z

 th

JC

 )

 °

C

/W

0.20

0.10

D = 0.50

0.02
0.01

0.05

SINGLE PULSE

( THERMAL RESPONSE )

Notes:

1. Duty Factor D = t1/t2

2. Peak Tj = P dm x Zthjc + Tc

1.0E-06

1.0E-05

1.0E-04

1.0E-03

1.0E-02

1.0E-01

tav (sec)

0.1

1

10

100

A

va

la

nc

he

 C

ur

re

nt

 (

A

)

0.05

Duty Cycle = Single Pulse

0.10

Allowed avalanche Current vs avalanche 
pulsewidth, tav, assuming 

ΔΤ j = 25°C and 

Tstart = 150°C.

0.01

Allowed avalanche Current vs avalanche 
pulsewidth, tav, assuming 

ΔTj = 150°C and 

Tstart =25°C (Single Pulse)

25

50

75

100

125

150

175

Starting TJ , Junction Temperature (°C)

0

20

40

60

80

100

120

E

A

R

 , 

A

va

la

nc

he

 E

ne

rg

(m

J)

TOP          Single Pulse                
BOTTOM   1.0% Duty Cycle
ID = 21A

τ

J

τ

J

τ

1

τ

1

τ

2

τ

2

τ

3

τ

3

R

1

R

1

R

2

R

2

R

3

R

3

Ci   i

/Ri

Ci= 

τi/Ri

τ

τ

C

τ

4

τ

4

R

4

R

4

Ri (°C/W)   

 τi (sec)

0.02324    0.000008
0.26212    0.000106
0.50102    0.001115
0.25880    0.005407

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/auirfr4615-html.html
background image

AUIRFR/U4615

www.irf.com

7

Fig. 17 - Typical Recovery Current vs. di

f

/dt

Fig 16.  Threshold Voltage vs. Temperature

Fig. 19 - Typical Stored Charge vs. di

f

/dt

Fig. 18 - Typical Recovery Current vs. di

f

/dt

Fig. 20 - Typical Stored Charge vs. di

f

/dt

-75 -50 -25 0

25 50 75 100 125 150 175

TJ , Temperature ( °C )

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

5.5

6.0

V

G

S

(t

h)

,  G

at

th

re

sh

ol

V

ol

ta

ge

 (

V

)

ID = 100μA

ID = 250uA

ID = 1.0mA

ID = 1.0A

0

200

400

600

800

1000

diF /dt (A/μs)

100

200

300

400

500

600

700

800

Q

R

R

 (

A

)

IF = 14A
VR = 100V
TJ = 25°C
TJ = 125°C

0

200

400

600

800

1000

diF /dt (A/μs)

100

200

300

400

500

600

700

800

900

1000

Q

R

R

 (

A

)

IF = 21A
VR = 100V
TJ = 25°C
TJ = 125°C

0

200

400

600

800

1000

diF /dt (A/μs)

0

5

10

15

20

25

30

35

I R

R

M

 (

A

)

IF = 21A
VR = 100V
TJ = 25°C
TJ = 125°C

0

200

400

600

800

1000

diF /dt (A/μs)

0

5

10

15

20

25

30

I R

R

M

 (

A

)

IF = 14A
VR = 100V
TJ = 25°C
TJ = 125°C

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/auirfr4615-html.html
background image

AUIRFR/U4615

8

www.irf.com

Fig 23a.  Switching Time Test Circuit

Fig 23b.  Switching Time Waveforms

Fig 22b.  Unclamped Inductive Waveforms

Fig 22a.  Unclamped Inductive Test Circuit

tp

V

(BR)DSS

I

AS

RG

IAS

0.01

Ω

tp

D.U.T

L

VDS

+

- VDD

DRIVER

A

15V

20V

V

GS

Fig 24a.  Gate Charge Test Circuit

Fig 24b.   Gate Charge Waveform

Vds

Vgs

Id

Vgs(th)

Qgs1 Qgs2

Qgd

Qgodr

Fig 21. 

Peak Diode Recovery dv/dt Test Circuit for N-Channel

HEXFET

®

 Power MOSFETs

Circuit Layout Considerations

   •  Low Stray Inductance

   •  Ground Plane

   •  Low Leakage Inductance

      Current Transformer

P.W.

Period

di/dt

Diode Recovery

dv/dt

Ripple 

≤ 5%

Body Diode  Forward Drop

Re-Applied

Voltage

Reverse

Recovery

Current

Body Diode Forward

Current

V

GS

=10V

V

DD

I

SD

Driver Gate Drive

D.U.T. I

SD

Waveform

D.U.T. V

DS

Waveform

Inductor Curent

D = 

P.W.

Period

*

 V

GS

 = 5V for Logic Level Devices

*

+

-

+

+

+

-

-

-

ƒ

„

‚

R

G

V

DD

•  dv/dt controlled by R

G

•  Driver same type as D.U.T.

•  I

SD

 controlled by Duty Factor "D"

•  D.U.T. - Device Under Test

D.U.T



Inductor Current

D.U.T.

V

DS

I

D

I

G

3mA

V

GS

.3

μF

50K

Ω

.2

μF

12V

Current Regulator

Same Type as D.U.T.

Current Sampling Resistors

+

-

V

DS

90%

10%
V

GS

t

d(on)

t

r

t

d(off)

t

f

V

DS

Pulse Width ≤ 1 µs
Duty Factor ≤ 0.1 %

R

D

V

GS

R

G

D.U.T.

10V

+

-

V

DD

V

GS

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/auirfr4615-html.html
background image

AUIRFR/U4615

www.irf.com

9

Note: For the most current drawing please refer to IR website at http://www.irf.com/package/

D-Pak (TO-252AA) Package Outline

Dimensions  are  shown  in  millimeters  (inches)

D-Pak (TO-252AA) Part Marking Information

YWWA

XX    or    XX

Part Number

IR Logo

Lot Code

AUFR4615

Date Code

Y= Year

WW= Work Week

A= Automotive, Lead Free

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/auirfr4615-html.html
background image

AUIRFR/U4615

10

www.irf.com

I-Pak (TO-251AA) Part Marking Information

I-Pak  (TO-251AA)  Package  Outline 

( Dimensions are shown in millimeters (inches)

Note: For the most current drawing please refer to IR website at http://www.irf.com/package/

YWWA

XX    or    XX

Part Number

IR Logo

Lot Code

AUFU4615

Date Code

Y= Year

WW= Work Week

A= Automotive, Lead Free

Maker
Infineon Technologies