AUIRFR4292
AUIRFU4292
V
DSS
250V
R
DS(on)
typ.
275m
I
D
9.3A
max.
345m
Features
Advanced Process Technology
Low
On-Resistance
175°C Operating Temperature
Fast Switching
Repetitive Avalanche Allowed up to Tjmax
Lead-Free, RoHS Compliant
Automotive Qualified *
Description
Specifically designed for Automotive applications, this HEXFET
®
Power MOSFET utilizes the latest processing techniques to
achieve extremely low on-resistance per silicon area. Additional
features of this design are a 175°C junction operating temperature,
fast switching speed and improved repetitive avalanche rating .
These features combine to make this design an extremely efficient
and reliable device for use in Automotive applications and a wide
variety of other applications.
1
2015-10-12
HEXFET® is a registered trademark of Infineon.
*Qualification standards can be found at
www.infineon.com
AUTOMOTIVE GRADE
Symbol Parameter
Max.
Units
I
D
@ T
C
= 25°C
Continuous Drain Current, V
GS
@ 10V
9.3
A
I
D
@ T
C
= 100°C
Continuous Drain Current, V
GS
@ 10V
6.6
I
DM
Pulsed Drain Current 40
P
D
@T
C
= 25°C
Maximum Power Dissipation
100
W
Linear Derating Factor
0.67
W/°C
V
GS
Gate-to-Source Voltage
± 20
V
E
AS
Single Pulse Avalanche Energy (Thermally Limited) 130
E
AS
(Tested)
Single Pulse Avalanche Energy Tested Value 97
I
AR
Avalanche Current
See Fig.15,16, 12a, 12b
A
E
AR
Repetitive Avalanche Energy
mJ
T
J
Operating Junction and
-55 to + 175
T
STG
Storage Temperature Range
°C
Soldering Temperature, for 10 seconds (1.6mm from case)
300
mJ
Absolute Maximum Ratings
Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress
ratings only; and functional operation of the device at these or any other condition beyond those indicated in the specifications is not
implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability. The thermal resistance
and power dissipation ratings are measured under board mounted and still air conditions. Ambient temperature (TA) is 25°C, unless
otherwise specified.
Thermal Resistance
Symbol Parameter
Typ.
Max.
Units
R
JC
Junction-to-Case
–––
1.5
°C/W
R
JA
Junction-to-Ambient ( PCB Mount) –––
50
R
JA
Junction-to-Ambient
–––
110
D-Pak
AUIRFR4292
I-Pak
AUIRFU4292
Base part number Package Type
Standard Pack
Form
Quantity
AUIRFU4292
I-Pak
Tube
75
AUIRFU4292
AUIRFR4292
D-Pak
Tube
75
AUIRFR4292
Tape and Reel Left
3000
AUIRFR4292TRL
Orderable Part Number
Tape and Reel Right
3000
AUIRFR4292TRR
Note
EOL notice # 530
G D S
Gate Drain Source
G
S
D
D
S
G
D
AUIRFR/U4292
2
2015-10-12
Notes:
Repetitive rating; pulse width limited by max. junction temperature. (See fig. 11)
Limited by
T
Jmax ,
starting T
J
= 25°C, L = 8.1mH, R
G
= 50
, I
AS
= 5.6A, V
GS
=10V. Part not recommended for use above this value.
Pulse width
1.0ms; duty cycle 2%.
C
oss
eff. is a fixed capacitance that gives the same charging time as C
oss
while V
DS
is rising from 0 to 80% V
DSS
Limited by T
Jmax
, see Fig.12a, 12b, 15, 16 for typical repetitive avalanche performance.
This value determined from sample failure population. starting T
J
= 25°C, L = 8.1mH, R
G
= 50
, I
AS
= 5.6A, V
GS
=10V.
When mounted on 1" square PCB (FR-4 or G-10 Material). For recommended footprint and soldering techniques refer to
application note #AN-994
R
is measured at T
J
approximately 90°C
Static @ T
J
= 25°C (unless otherwise specified)
Parameter Min.
Typ.
Max.
Units
Conditions
V
(BR)DSS
Drain-to-Source Breakdown Voltage
250
––– –––
V V
GS
= 0V, I
D
= 250µA
V
(BR)DSS
/
T
J
Breakdown Voltage Temp. Coefficient
––– 0.31 ––– V/°C Reference to 25°C, I
D
= 1mA
R
DS(on)
Static Drain-to-Source On-Resistance
–––
275 345 m
V
GS
= 10V, I
D
= 5.6A
V
GS(th)
Gate Threshold Voltage
3.0
–––
5.0
V V
DS
= V
GS
, I
D
= 50µA
gfs
Forward Trans conductance
6.2
––– –––
S V
DS
= 50V, I
D
= 5.6A
I
DSS
Drain-to-Source Leakage Current
––– ––– 20
µA
V
DS
= 250 V, V
GS
= 0V
––– ––– 250
V
DS
= 250V,V
GS
= 0V,T
J
=125°C
I
GSS
Gate-to-Source Forward Leakage
–––
––– 200
nA
V
GS
= 20V
Gate-to-Source Reverse Leakage
–––
––– -200
V
GS
= -20V
Dynamic Electrical Characteristics @ T
J
= 25°C (unless otherwise specified)
Q
g
Total Gate Charge
–––
13
20
nC
I
D
= 5.6A
Q
gs
Gate-to-Source Charge
–––
4.7
–––
V
DS
= 125V
Q
gd
Gate-to-Drain Charge
–––
4.8
–––
V
GS
= 10V
t
d(on)
Turn-On Delay Time
–––
11
–––
ns
V
DD
= 250V
t
r
Rise Time
–––
15
–––
I
D
= 5.6A
t
d(off)
Turn-Off Delay Time
–––
16
–––
R
G
= 15
t
f
Fall Time
–––
8.4
–––
V
GS
= 10V
L
D
Internal Drain Inductance
–––
4.5
–––
nH
Between lead,
6mm (0.25in.)
L
S
Internal Source Inductance
–––
7.5
–––
from package
and center of die contact
C
iss
Input Capacitance
–––
705 –––
V
GS
= 0V
C
oss
Output Capacitance
–––
71
–––
V
DS
= 25V
C
rss
Reverse Transfer Capacitance
–––
20
–––
ƒ = 1.0MHz
Diode Characteristics
Parameter
Min. Typ. Max. Units
Conditions
I
S
Continuous Source Current
––– ––– 9.3
A
MOSFET symbol
(Body Diode)
showing the
I
SM
Pulsed Source Current
––– ––– 40
integral reverse
(Body Diode)
p-n junction diode.
V
SD
Diode Forward Voltage
–––
–––
1.3
V T
J
= 25°C,I
S
= 5.6A,V
GS
= 0V
t
rr
Reverse Recovery Time
–––
110 165
ns T
J
= 25°C ,I
F
= 5.6A, V
DD
= 125V
Q
rr
Reverse Recovery Charge
–––
390 585
nC di/dt = 100A/µs
t
on
Forward Turn-On Time
Intrinsic turn-on time is negligible (turn-on is dominated by L
S
+L
D
)
pF
C
oss
Output Capacitance
–––
600 –––
V
GS
= 0V, V
DS
= 1.0V ƒ = 1.0MHz
C
oss eff.
Effective Output Capacitance
–––
65
–––
V
GS
= 0V, V
DS
= 0V to 200V
C
oss
Output Capacitance
–––
26
–––
V
GS
= 0V, V
DS
= 200V ƒ = 1.0MHz
AUIRFR/U4292
3
2015-10-12
Fig. 2 Typical Output Characteristics
Fig. 3
Typical Transfer Characteristics
Fig. 4
Typical Forward Transconductance
Vs. Drain Current
Fig. 1 Typical Output Characteristics
0.1
1
10
100
VDS, Drain-to-Source Voltage (V)
0.01
0.1
1
10
100
I D
, D
ra
in
-t
o
-S
ou
rc
e
C
u
rr
en
t
(A
)
VGS
TOP 15V
10V
8.0V
7.5V
7.0V
6.5V
6.0V
BOTTOM
5.5V
60µs PULSE WIDTH
Tj = 25°C
5.5V
0.1
1
10
100
VDS, Drain-to-Source Voltage (V)
0.1
1
10
100
I D
, D
ra
in
-t
o-
S
o
ur
ce
C
ur
re
nt
(
A
)
5.5V
60µs PULSE WIDTH
Tj = 175°C
VGS
TOP 15V
10V
8.0V
7.5V
7.0V
6.5V
6.0V
BOTTOM
5.5V
4
5
6
7
8
9
10
VGS, Gate-to-Source Voltage (V)
1.0
10
100
I D
, D
ra
in
-t
o-
S
ou
rc
e
C
ur
re
nt
(A
)
TJ = 25°C
TJ = 175°C
VDS = 50V
60µs PULSE WIDTH
0
1
2
3
4
5
6
ID,Drain-to-Source Current (A)
0
2
4
6
8
10
12
14
16
G
fs
, F
or
w
ar
d
T
ra
ns
co
nd
uc
ta
nc
e
(S
)
TJ = 25°C
TJ = 175°C
VDS = 10V
380µs PULSE WIDTH
AUIRFR/U4292
4
2015-10-12
Fig 5. Typical Capacitance vs.
Drain-to-Source Voltage
Fig 6. Typical Gate Charge vs.
Gate-to-Source Voltage
Fig 8. Maximum Safe Operating Area
Fig. 7 Typical Source-to-Drain Diode
Forward Voltage
1
10
100
1000
VDS, Drain-to-Source Voltage (V)
1
10
100
1000
10000
100000
C
, C
ap
ac
ita
nc
e
(p
F
)
VGS = 0V, f = 1 MHZ
Ciss = Cgs + Cgd, C ds SHORTED
Crss = Cgd
Coss = Cds + Cgd
Coss
Crss
Ciss
0
2
4
6
8
10
12
14
16
18
QG, Total Gate Charge (nC)
0.0
2.0
4.0
6.0
8.0
10.0
12.0
14.0
V
G
S
, G
at
e-
to
-S
ou
rc
e
V
ol
ta
ge
(
V
)
VDS= 200V
VDS= 125V
VDS= 50V
ID= 5.6A
0.4
0.5
0.6
0.7
0.8
0.9
1.0
1.1
VSD, Source-to-Drain Voltage (V)
1.0
10
100
I S
D
, R
ev
er
se
D
ra
in
C
ur
re
nt
(
A
)
TJ = 25°C
TJ = 175°C
VGS = 0V
1
10
100
VDS, Drain-to-Source Voltage (V)
0.01
0.1
1
10
100
I D
,
D
ra
in
-t
o-
S
ou
rc
e
C
ur
re
nt
(
A
)
Tc = 25°C
Tj = 175°C
Single Pulse
1msec
10msec
OPERATION IN THIS AREA
LIMITED BY RDS(on)
100µsec
DC
AUIRFR/U4292
5
2015-10-12
Fig 10. Normalized On-Resistance
Vs. Temperature
Fig 11. Maximum Effective Transient Thermal Impedance, Junction-to-Case
Fig 9. Maximum Drain Current Vs.
Case Temperature
25
50
75
100
125
150
175
TC , Case Temperature (°C)
0
2
4
6
8
10
I D
,
D
ra
in
C
ur
re
nt
(
A
)
-60 -40 -20 0 20 40 60 80 100120140160180
TJ , Junction Temperature (°C)
0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
R
D
S
(o
n)
,
D
ra
in
-t
o-
S
ou
rc
e
O
n
R
es
is
ta
nc
e
(
N
or
m
al
iz
ed
)
ID = 9.3A
VGS = 10V
1E-006
1E-005
0.0001
0.001
0.01
0.1
t1 , Rectangular Pulse Duration (sec)
0.001
0.01
0.1
1
10
T
he
rm
al
R
es
po
ns
e
(
Z
th
JC
)
°
C
/W
0.20
0.10
D = 0.50
0.02
0.01
0.05
SINGLE PULSE
( THERMAL RESPONSE )
Notes:
1. Duty Factor D = t1/t2
2. Peak Tj = P dm x Zthjc + Tc
AUIRFR/U4292
6
2015-10-12
Fig 12c. Maximum Avalanche Energy
vs. Drain Current
Fig 12a. Unclamped Inductive Test Circuit
Fig 12b. Unclamped Inductive Waveforms
RG
IAS
0.01
tp
D.U.T
L
VDS
+
- VDD
DRIVER
A
15V
20V
tp
V
(BR)DSS
I
AS
Fig 13b. Gate Charge Test Circuit
Fig 13a. Gate Charge Waveform
Vds
Vgs
Id
Vgs(th)
Qgs1 Qgs2
Qgd
Qgodr
Fig 14. Threshold Voltage Vs. Temperature
25
50
75
100
125
150
175
Starting TJ , Junction Temperature (°C)
0
100
200
300
400
500
600
E
A
S
,
S
in
gl
e
P
ul
se
A
va
la
nc
he
E
ne
rg
y
(m
J)
ID
TOP 1.0A
2.2A
BOTTOM 5.6A
-75 -50 -25 0
25 50 75 100 125 150 175
TJ , Temperature ( °C )
2.0
2.5
3.0
3.5
4.0
4.5
5.0
5.5
V
G
S
(t
h)
, G
at
e
th
re
sh
ol
d
V
ol
ta
ge
(
V
)
ID = 50µA
ID = 250µA
ID = 1.0mA
ID = 1.0A
AUIRFR/U4292
7
2015-10-12
Fig 15. Typical Avalanche Current Vs. Pulse width
Notes on Repetitive Avalanche Curves , Figures 15, 16:
(For further info, see AN-1005 at www.infineon.com)
1. Avalanche failures assumption:
Purely a thermal phenomenon and failure occurs at a temperature far in
excess of T
jmax
. This is validated for every part type.
2. Safe operation in Avalanche is allowed as long as T
jmax
is not exceeded.
3. Equation below based on circuit and waveforms shown in Figures 12a, 12b.
4. P
D (ave)
= Average power dissipation per single avalanche pulse.
5. BV = Rated breakdown voltage (1.3 factor accounts for voltage increase
during
avalanche).
6. I
av
= Allowable avalanche current.
7.
T
=
Allowable rise in junction temperature, not to exceed
T
jmax
(assumed as
25°C in Figure 15, 16).
t
av =
Average time in avalanche.
D = Duty cycle in avalanche = t
av
·f
Z
thJC
(D, t
av
) = Transient thermal resistance, see Figures 13)
P
D (ave)
= 1/2 ( 1.3·BV·I
av
) =
T/ Z
thJC
I
av
= 2
T/ [1.3·BV·Z
th
]
E
AS (AR)
= P
D (ave)
·t
av
Fig 16. Maximum Avalanche Energy
Vs. Temperature
1.0E-06
1.0E-05
1.0E-04
1.0E-03
1.0E-02
1.0E-01
tav (sec)
0.1
1
10
100
A
va
la
nc
he
C
ur
re
nt
(
A
)
0.05
Duty Cycle = Single Pulse
0.10
Allowed avalanche Current vs avalanche
pulsewidth, tav, assuming j = 25°C and
Tstart = 150°C.
0.01
Allowed avalanche Current vs avalanche
pulsewidth, tav, assuming Tj = 150°C and
Tstart =25°C (Single Pulse)
25
50
75
100
125
150
175
Starting TJ , Junction Temperature (°C)
0
20
40
60
80
100
120
140
E
A
R
,
A
va
la
nc
he
E
ne
rg
y
(m
J)
TOP Single Pulse
BOTTOM 1.0% Duty Cycle
ID = 5.6A
AUIRFR/U4292
8
2015-10-12
Fig 17. Peak Diode Recovery dv/dt Test Circuit for N-Channel HEXFET® Power MOSFETs
Fig 18a. Switching Time Test Circuit
Fig 18b. Switching Time Waveforms
AUIRFR/U4292
9
2015-10-12
Note: For the most current drawing please refer to IR website at
http://www.irf.com/package/
D-Pak (TO-252AA) Package Outline (Dimensions are shown in millimeters (inches))
YWWA
XX
XX
Date Code
Y= Year
WW= Work Week
AUFR4292
Lot Code
Part Number
IR Logo
D-Pak (TO-252AA) Part Marking Information
AUIRFR/U4292
10
2015-10-12
I-Pak (TO-251AA) Part Marking Information
YWWA
XX
XX
Date Code
Y= Year
WW= Work Week
AUFU4292
Lot Code
Part Number
IR Logo
I-Pak (TO-251AA) Package Outline (Dimensions are shown in millimeters (inches)
Note: For the most current drawing please refer to IR website at
http://www.irf.com/package/