AUIRFP4568 Product Datasheet

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/auirfp4568-html.html
background image

 

AUIRFP4568 

V

DSS 

150V 

R

DS(on)

   typ. 

4.8m



              max. 

5.9m



I

D  

171A 

Features 

  Advanced Planar Technology 

  Ultra Low On-Resistance 

  Dynamic dv/dt Rating 

  175°C Operating Temperature 
 Fast 

Switching 

  Repetitive Avalanche Allowed up to Tjmax 

  Lead-Free, RoHS Compliant 

  Automotive Qualified *  

Description 
Specifically designed for Automotive applications, this 
HEXFET® Power MOSFET utilizes the latest processing 
techniques to achieve extremely low on-resistance per silicon 
area.  Additional features of this design  are a 175°C junction 
operating temperature, fast switching speed and improved 
repetitive avalanche rating . These features combine to make 
this design an extremely efficient and reliable device for use in 
Automotive applications and a wide variety of other 
applications. 

                          

2015-10-21 

HEXFET® is a registered trademark of Infineon. 
*Qualification standards can be found at 

www.infineon.com

 

 

AUTOMOTIVE GRADE 

Symbol Parameter 

Max. 

Units 

I

D

 @ T

C

 = 25°C 

Continuous Drain Current, V

GS

 @ 10V  

171 

I

D

 @ T

C

 = 100°C 

Continuous Drain Current, V

GS

 @ 10V  

121 

I

DM 

Pulsed Drain Current  684 

P

D

 @T

C

 = 25°C 

Maximum Power Dissipation   

517 

  

Linear Derating Factor 

3.45 

W/°C 

V

GS 

Gate-to-Source Voltage 

 ± 30 

E

AS  

Single Pulse Avalanche Energy (Thermally Limited)  763 

mJ  

I

AR 

Avalanche Current  

See Fig.14,15, 22a, 22b   

E

AR 

Repetitive Avalanche Energy  

 

mJ 

dv/dt 

Peak Diode Recovery dv/dt 18.5 

V/ns 

T

J  

Operating Junction and 

-55  to + 175 

 

T

STG 

Storage Temperature Range 

  

°C 

  

Soldering Temperature, for 10 seconds (1.6mm from case) 

300 

 

 

Mounting torque, 6-32 or M3 screw 

10 lbf•in (1.1N•m) 

   

Absolute Maximum Ratings 

Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device.   These are stress 
ratings only; and functional operation of the device at these or any other condition beyond those indicated in the specifications is not 
implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability. The thermal resistance 
and power dissipation ratings are measured under board mounted and still air conditions. Ambient temperature (TA) is 25°C, unless 
otherwise specified. 

Thermal Resistance  

Symbol Parameter 

Typ. 

Max. 

Units 

R

JC

  

Junction-to-Case  ––– 

0.29 

°C/W   

R

CS

 

Case-to-Sink, Flat, Greased Surface  

0.24 

––– 

R

JA

  

Junction-to-Ambient  

––– 

40 

TO-247AC 

AUIRFP4568 

Base part number 

Package Type 

Standard Pack 

Form 

Quantity 

AUIRFP4568 

TO-247AC 

Tube 

25 

AUIRFP4568 

Orderable Part Number   

G D S 

Gate Drain Source 

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/auirfp4568-html.html
background image

 

AUIRFP4568 

 

2015-10-21 

Notes:

  Repetitive rating;  pulse width limited by max. junction temperature.  

  Limited by T

Jmax

, starting  T

J

 = 25°C, L = 0.144mH, R

G

 = 25

, I

AS

 = 103A, V

GS

 =10V. Part not recommended for use above this value.  

  I

SD

 

103A, di/dt 360A/µs, V

DD

 

V

(BR)DSS

, T

J

 

 175°C. 

 Pulse width 

400µs; duty cycle  2%. 

  C

oss

 eff. (TR) is a fixed capacitance that gives the same charging time as C

oss

 while VDS is rising from 0 to 80% V

DSS

.

 

  C

oss

 eff. (ER) is a fixed capacitance that gives the same energy as C

oss

 while V

DS

 is rising from 0 to 80% V

DSS

   R

  is measured at T

J

 of approximately 90°C. 

Static @ T

J

 = 25°C (unless otherwise specified) 

  

Parameter Min. 

Typ. 

Max. 

Units 

Conditions 

V

(BR)DSS 

Drain-to-Source Breakdown Voltage 

150 

–––  ––– 

V  V

GS

 = 0V, I

D

 = 250µA 

V

(BR)DSS

/

T

J  

Breakdown Voltage Temp. Coefficient 

–––  0.17  –––  V/°C  Reference to 25°C, I

D

 = 5mA  

R

DS(on) 

  

Static Drain-to-Source On-Resistance   

––– 

4.8 

5.9 

m

 V

GS

 = 10V, I

D

 = 103A  

V

GS(th) 

Gate Threshold Voltage 

3.0 

––– 

5.0 

V  V

DS

 = V

GS

, I

D

 = 250µA 

gfs 

Forward Trans conductance 

162 

–––  ––– 

S  V

DS

 = 50V, I

D

 = 103A 

R

G

 Internal 

Gate 

Resistance 

––– 

1.0 

––– 

   

I

DSS 

  

Drain-to-Source Leakage Current   

––– –––  20 

µA 

V

DS

 =150 V, V

GS

 = 0V 

––– ––– 250 

V

DS

 =150V,V

GS

 = 0V,T

J

 =125°C 

I

GSS 

  

Gate-to-Source Forward Leakage 

––– 

–––  100 

nA 

V

GS

 = 20V 

Gate-to-Source Reverse Leakage 

––– 

–––  -100 

V

GS

 = -20V 

Dynamic  Electrical Characteristics @ T

J

 = 25°C (unless otherwise specified) 

Q

Total Gate Charge  

––– 

151  227 

nC  

I

D

 = 103A 

Q

gs 

Gate-to-Source Charge 

––– 

52 

––– 

V

DS

 = 75V 

Q

gd 

Gate-to-Drain Charge 

––– 

55 

––– 

V

GS

 = 10V  

Q

sync 

Total Gate Charge Sync. (Q

g

– Q

gd

) ––– 

96 

––– 

 

t

d(on) 

Turn-On Delay Time 

––– 

27 

––– 

ns 

V

DD

 = 98V 

t

Rise Time 

––– 

119  ––– 

I

D

 = 103A 

t

d(off) 

Turn-Off Delay Time 

––– 

47 

––– 

R

G

= 1.0



t

Fall Time 

––– 

84 

––– 

V

GS

 = 10V  

C

iss 

Input Capacitance 

–––  10470  ––– 

pF  

V

GS

 = 0V 

C

oss 

Output Capacitance 

––– 

977  ––– 

V

DS

 = 50V 

C

rss 

Reverse Transfer Capacitance 

––– 

203  ––– 

ƒ = 1.0MHz, See Fig. 5 

C

oss eff. 

(ER)

 

Effective Output Capacitance (Energy Related)  ––– 897 ––– 

V

GS

=0V, V

DS

=0V to 120V 

 (see fig.11) 

C

oss eff.

(TR) 

Effective Output Capacitance  (Time Related) 

––– 1272 ––– 

V

GS

 = 0V, V

DS

 = 0V to 120V  

Diode Characteristics  

  

        Parameter 

Min.  Typ.  Max.  Units 

Conditions 

I

  

Continuous Source Current  

––– ––– 171 

MOSFET symbol 

(Body Diode) 

showing  the 

I

SM 

  

Pulsed Source Current 

––– ––– 684 

integral reverse 

(Body Diode)

p-n junction diode. 

V

SD 

Diode Forward Voltage 

––– 

––– 

1.3 

V  T

J

 = 25°C,I

= 103A,V

GS

 = 0V 

t

rr   

Reverse Recovery Time   

––– 110 ––– 

ns   

T

J

 = 25°C        

––– 133 ––– 

T

J

 = 125°C  

Q

rr   

––– 515 ––– 

nC   

T

J

 = 25°C        

––– 758 ––– 

T

J

 = 125°C  

I

RRM 

Reverse Recovery Current 

––– 

8.8 

––– 

A  T

J

 = 25°C        

t

on 

Forward Turn-On Time 

Intrinsic turn-on time is negligible (turn-on is dominated by L

S

+L

D

Reverse Recovery Charge   

V

R

 =100V 

 I

F

 = 103A 

 di/dt = 100A/µs 

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/auirfp4568-html.html
background image

 

AUIRFP4568 

 

2015-10-21 

Fig. 2 Typical Output Characteristics 

Fig. 3 

Typical Transfer Characteristics

 

 

Fig. 4 

Normalized On-Resistance vs. Temperature

 

 

Fig. 1 Typical Output Characteristics 

Fig 5.  Typical Capacitance vs. Drain-to-Source Voltage

 

Fig 6.  Typical Gate Charge vs. Gate-to-Source Voltage

 

 

0.1

1

10

100

VDS, Drain-to-Source Voltage (V)

0.01

0.1

1

10

100

1000

I D

, D

ra

in

-t

o

-S

ou

rc

C

u

rr

en

t (

A

)

VGS

TOP           15V

10V

8.0V

7.0V

6.0V

5.5V

5.0V

BOTTOM

4.5V

60µs PULSE WIDTH
Tj = 25°C

4.5V

0.1

1

10

100

VDS, Drain-to-Source Voltage (V)

1

10

100

1000

I D

, D

ra

in

-t

o

-S

ou

rc

C

u

rr

en

t (

A

)

VGS

TOP           15V

10V

8.0V

7.0V

6.0V

5.5V

5.0V

BOTTOM

4.5V

60µs PULSE WIDTH
Tj = 175°C

4.5V

3

4

5

6

7

8

9

VGS, Gate-to-Source Voltage (V)

0.1

1

10

100

1000

I D

, D

ra

in

-t

o-

S

ou

rc

C

ur

re

nt

 

(A

)

TJ = 25°C

TJ = 175°C

VDS = 50V

60µs PULSE WIDTH

-60 -40 -20 0 20 40 60 80 100120140160180

TJ , Junction Temperature (°C)

0.5

1.0

1.5

2.0

2.5

3.0

R

D

S

(o

n)

 ,

 D

ra

in

-t

o-

S

ou

rc

O

R

es

is

ta

nc

   

   

   

   

   

   

   

 (

N

or

m

al

iz

ed

)

ID = 103A

VGS = 10V

1

10

100

1000

VDS, Drain-to-Source Voltage (V)

10

100

1000

10000

100000

1000000

C

, C

ap

ac

ita

nc

(p

F

)

VGS   = 0V,       f = 1 MHZ

Ciss    = Cgs + Cgd,  C ds SHORTED
Crss    = Cgd 
Coss   = Cds + Cgd

Coss

Crss

Ciss

0

50

100

150

200

 QG,  Total Gate Charge (nC)

0.0

2.0

4.0

6.0

8.0

10.0

12.0

14.0

V

G

S

, G

at

e-

to

-S

ou

rc

V

ol

ta

ge

 (

V

)

VDS= 120V

VDS= 75V

VDS= 30V

ID=  103A

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/auirfp4568-html.html
background image

 

AUIRFP4568 

 

2015-10-21 

 

Fig 8.  Maximum Safe Operating Area  

Fig 10.  Drain-to-Source Breakdown Voltage 

Fig 11.  Typical C

OSS

 Stored Energy 

Fig 12. Maximum Avalanche Energy vs. Drain Current 

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

VSD, Source-to-Drain Voltage (V)

1.0

10

100

1000

I S

D

, R

ev

er

se

 D

ra

in

 C

ur

re

nt

 (

A

)

TJ = 25°C

TJ = 175°C

VGS = 0V

0.1

1

10

100

1000

VDS, Drain-to-Source Voltage (V)

0.1

1

10

100

1000

10000

I D

,  

D

ra

in

-t

o-

S

ou

rc

C

ur

re

nt

 (

A

)

OPERATION IN THIS AREA 

LIMITED BY R DS(on)

Tc = 25°C

Tj = 175°C

Single Pulse

100µsec

1msec

10msec

DC

25

50

75

100

125

150

175

 TC , Case Temperature (°C)

0

20

40

60

80

100

120

140

160

180

I D

,   

D

ra

in

 C

ur

re

nt

 (

A

)

Fig. 7 Typical Source-to-Drain Diode 

 Forward Voltage 

-60 -40 -20 0 20 40 60 80 100 120140160 180

TJ , Temperature ( °C )

140

145

150

155

160

165

170

175

180

185

190

V

(B

R

)D

S

S

,  D

ra

in

-t

o-

S

ou

rc

B

re

ak

do

w

V

ol

ta

ge

 (

V

)

Id = 5mA

0

20

40

60

80

100 120 140 160

VDS, Drain-to-Source Voltage (V)

0.0

2.0

4.0

6.0

8.0

10.0

12.0

E

ne

rg

J)

Fig 9.  Maximum Drain Current vs. Case Temperature 

25

50

75

100

125

150

175

Starting TJ , Junction Temperature (°C)

0

500

1000

1500

2000

2500

3000

3500

E

A

S

 , 

S

in

gl

P

ul

se

 A

va

la

nc

he

 E

ne

rg

(m

J)

ID

TOP          21.5A

29.3A

BOTTOM 103A

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/auirfp4568-html.html
background image

 

AUIRFP4568 

 

2015-10-21 

Fig 14.   Avalanche Current vs. Pulse width  

Notes on Repetitive Avalanche Curves , Figures 14, 15: 
(For further info, see AN-1005 at www.infineon.com) 
 
1.  Avalanche failures assumption:  
 

Purely a thermal phenomenon and failure occurs at a temperature far in  

 

excess of T

jmax

. This is validated for every part type. 

2.  Safe operation in Avalanche is allowed as long as T

jmax

 is not exceeded. 

3.   Equation below based on circuit and waveforms shown in Figures 22a, 22b. 
4.   P

D (ave) 

= Average power dissipation per single avalanche pulse. 

5.   BV = Rated breakdown voltage (1.3 factor accounts for voltage increase  
 during 

avalanche). 

6.   I

av 

= Allowable avalanche current. 

7. 

T

 = 

Allowable rise in junction temperature, not to exceed

 

T

jmax 

(assumed as  

 

25°C in Figure 14, 15).  

 

t

av = 

Average time in avalanche. 

 

D = Duty cycle in avalanche =  t

av 

·f 

 

Z

thJC

(D, t

av

) = Transient thermal resistance, see Figures 13) 

 

P

D (ave)

 = 1/2 ( 1.3·BV·I

av

) = 

T/ Z

thJC

 

I

av

 = 2

T/ [1.3·BV·Z

th

E

AS (AR) 

= P

D (ave)

·t

av

 

Fig 15.  Maximum Avalanche Energy  

vs. Temperature 

1E-006

1E-005

0.0001

0.001

0.01

0.1

t1 , Rectangular Pulse Duration (sec)

0.0001

0.001

0.01

0.1

1

T

he

rm

al

 R

es

po

ns

Z

 th

JC

 )

 °

C

/W

0.20

0.10

D = 0.50

0.02

0.01

0.05

SINGLE PULSE

( THERMAL RESPONSE )

Notes:

1. Duty Factor D = t1/t2

2. Peak Tj = P dm x Zthjc + Tc

Ri (°C/W) 

I (sec)

0.06336 

0.000278 

0.11088 

0.005836 

0.11484 

0.053606 

J

J

1

1

2

2

3

3

R

1

R

1

R

2

R

2

R

3

R

3

C

C

Ci= 

iRi

Ci= 

iRi

1.0E-06

1.0E-05

1.0E-04

1.0E-03

1.0E-02

1.0E-01

tav (sec)

0.1

1

10

100

1000

A

va

la

nc

he

 C

ur

re

nt

 (

A

)

0.05

Duty Cycle = Single Pulse

0.10

Allowed avalanche Current vs avalanche 
pulsewidth, tav, assuming   j = 25°C and 

Tstart = 150°C.

0.01

Allowed avalanche Current vs avalanche 
pulsewidth, tav, assuming Tj = 150°C and 

Tstart =25°C (Single Pulse)

Fig 13.  Maximum Effective Transient Thermal Impedance, Junction-to-Case  

25

50

75

100

125

150

175

Starting TJ , Junction Temperature (°C)

0

100

200

300

400

500

600

700

800

900

E

A

R

 , 

A

va

la

nc

he

 E

ne

rg

(m

J)

TOP          Single Pulse                
BOTTOM   1.0% Duty Cycle
ID = 103A

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/auirfp4568-html.html
background image

 

AUIRFP4568 

 

2015-10-21 

Fig 16.  Threshold Voltage vs. Temperature 

Fig. 18 - Typical Recovery Current vs. di

f

/dt  

Fig. 19 - Typical Stored Charge vs. di

f

/dt  

-75 -50 -25 0

25 50 75 100 125 150 175

TJ , Temperature ( °C )

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

5.5

6.0

V

G

S

(t

h)

,  G

at

th

re

sh

ol

V

ol

ta

ge

 (

V

)

ID = 250µA

ID = 1.0mA

ID = 1.0A

0

200

400

600

800

1000

diF /dt (A/µs)

0

10

20

30

40

50

60

I R

R

 (

A

)

IF = 68A
VR = 100V
TJ = 25°C
TJ = 125°C

Fig. 17 - Typical Recovery Current vs. di

f

/dt  

0

200

400

600

800

1000

diF /dt (A/µs)

0

10

20

30

40

50

60

70

I R

R

 (

A

)

IF = 103A
VR = 100V
TJ = 25°C
TJ = 125°C

0

200

400

600

800

1000

diF /dt (A/µs)

400

800

1200

1600

2000

2400

2800

3200

3600

Q

R

R

 (

A

)

IF = 68A
VR = 100V
TJ = 25°C
TJ = 125°C

0

200

400

600

800

1000

diF /dt (A/µs)

400

800

1200

1600

2000

2400

2800

3200

3600

4000

Q

R

R

 (

A

)

IF = 103A
VR = 100V
TJ = 25°C
TJ = 125°C

Fig. 20 - Typical Stored Charge vs. di

f

/dt  

 

Q

RR 

(nC

 

Q

RR 

(nC

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/auirfp4568-html.html
background image

 

AUIRFP4568 

 

2015-10-21 

Fig 21. Peak Diode Recovery dv/dt Test Circuit for N-Channel 

 HEXFET

®

 

Power MOSFETs 

Fig 22a.  Unclamped Inductive Test Circuit 

R G

IAS

0.01

tp

D.U.T

L

VDS

+

- VDD

DRIVER

A

15V

20V

tp

V

(BR)DSS

I

AS

Fig 22b.  Unclamped Inductive Waveforms 

Fig 23a.  Switching Time Test Circuit 

Fig 23b.  Switching Time Waveforms 

Vds

Vgs

Id

Vgs(th)

Qgs1 Qgs2

Qgd

Qgodr

Fig 24b.   Gate Charge Waveform 

Fig 24a.  Gate Charge Test Circuit 

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/auirfp4568-html.html
background image

 

AUIRFP4568 

 

2015-10-21 

 

 

Note: For the most current drawing please refer to IR website at 

http://www.irf.com/package/

 

TO-247AC Part Marking Information 

YWWA 

XX    

    XX 

Date Code 

Y= Year 

WW= Work Week 

AUIRFP4568 

Lot Code 

Part Number 

IR Logo 

TO-247AC Package Outline (Dimensions are 

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/auirfp4568-html.html
background image

 

AUIRFP4568 

 

2015-10-21 

 

Qualification Information  

Qualification Level 

Automotive 

(per AEC-Q101)  

Comments: This part number(s) passed Automotive qualification. Infineon’s  
Industrial and Consumer qualification level is granted by extension of the higher 
Automotive level. 

TO-247AC 

N/A 

ESD 

Machine Model  

Class M4 (+/- 800V)

 

 

AEC-Q101-002 

Human Body Model  

Class H3A (+/- 6000V)

 

 

AEC-Q101-001 

Charged Device Model 

Class C5 (+/- 2000V)

 

 

AEC-Q101-005 

RoHS Compliant 

Yes 

 Moisture Sensitivity Level    

Published by 
Infineon Technologies AG 
81726 München, Germany 

© 

Infineon Technologies AG 2015 

All Rights Reserved. 
 
IMPORTANT NOTICE
 
The information given in this document shall in no event be regarded as a guarantee of conditions or characteristics 
(“Beschaffenheitsgarantie”). With respect to any examples, hints or any typical values stated herein and/or any 
information regarding the application of the product, Infineon Technologies hereby disclaims any and all warranties and 
liabilities of any kind, including without limitation warranties of non-infringement of intellectual property rights of any third 
party.  
In addition, any information given in this document is subject to customer’s compliance with its obligations stated in this 
document and any applicable legal requirements, norms and standards concerning customer’s products and any use of 
the product of Infineon Technologies in customer’s applications.  
The data contained in this document is exclusively intended for technically trained staff. It is the responsibility of 
customer’s technical departments to evaluate the suitability of the product for the intended application and the 
completeness of the product information given in this document with respect to such application.   
For further information on the product, technology, delivery terms and conditions and prices please contact your nearest 
Infineon Technologies office (

www.infineon.com

). 

WARNINGS 
Due to technical requirements products may contain dangerous substances. For information on the types in question 
please contact your nearest Infineon Technologies office. 
Except as otherwise explicitly approved by Infineon Technologies in a written document signed by authorized 
representatives of Infineon Technologies, Infineon Technologies’ products may not be used in any applications where a 
failure of the product or any consequences of the use thereof can reasonably be expected to result in personal injury.  

Revision History  

Date Comments 

10/21/15 



Updated datasheet with corporate template 



Removed obsolete parts “AUIRFP4568E” on all pages 



Corrected ordering table on page 1. 

†  Highest passing voltage. 

Maker
Infineon Technologies