AUIRFP4568
V
DSS
150V
R
DS(on)
typ.
4.8m
max.
5.9m
I
D
171A
Features
Advanced Planar Technology
Ultra Low On-Resistance
Dynamic dv/dt Rating
175°C Operating Temperature
Fast
Switching
Repetitive Avalanche Allowed up to Tjmax
Lead-Free, RoHS Compliant
Automotive Qualified *
Description
Specifically designed for Automotive applications, this
HEXFET® Power MOSFET utilizes the latest processing
techniques to achieve extremely low on-resistance per silicon
area. Additional features of this design are a 175°C junction
operating temperature, fast switching speed and improved
repetitive avalanche rating . These features combine to make
this design an extremely efficient and reliable device for use in
Automotive applications and a wide variety of other
applications.
1
2015-10-21
HEXFET® is a registered trademark of Infineon.
*Qualification standards can be found at
www.infineon.com
AUTOMOTIVE GRADE
Symbol Parameter
Max.
Units
I
D
@ T
C
= 25°C
Continuous Drain Current, V
GS
@ 10V
171
A
I
D
@ T
C
= 100°C
Continuous Drain Current, V
GS
@ 10V
121
I
DM
Pulsed Drain Current 684
P
D
@T
C
= 25°C
Maximum Power Dissipation
517
W
Linear Derating Factor
3.45
W/°C
V
GS
Gate-to-Source Voltage
± 30
V
E
AS
Single Pulse Avalanche Energy (Thermally Limited) 763
mJ
I
AR
Avalanche Current
See Fig.14,15, 22a, 22b
A
E
AR
Repetitive Avalanche Energy
mJ
dv/dt
Peak Diode Recovery dv/dt 18.5
V/ns
T
J
Operating Junction and
-55 to + 175
T
STG
Storage Temperature Range
°C
Soldering Temperature, for 10 seconds (1.6mm from case)
300
Mounting torque, 6-32 or M3 screw
10 lbf•in (1.1N•m)
Absolute Maximum Ratings
Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress
ratings only; and functional operation of the device at these or any other condition beyond those indicated in the specifications is not
implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability. The thermal resistance
and power dissipation ratings are measured under board mounted and still air conditions. Ambient temperature (TA) is 25°C, unless
otherwise specified.
Thermal Resistance
Symbol Parameter
Typ.
Max.
Units
R
JC
Junction-to-Case –––
0.29
°C/W
R
CS
Case-to-Sink, Flat, Greased Surface
0.24
–––
R
JA
Junction-to-Ambient
–––
40
TO-247AC
AUIRFP4568
S
D
G
Base part number
Package Type
Standard Pack
Form
Quantity
AUIRFP4568
TO-247AC
Tube
25
AUIRFP4568
Orderable Part Number
G D S
Gate Drain Source
AUIRFP4568
2
2015-10-21
Notes:
Repetitive rating; pulse width limited by max. junction temperature.
Limited by T
Jmax
, starting T
J
= 25°C, L = 0.144mH, R
G
= 25
, I
AS
= 103A, V
GS
=10V. Part not recommended for use above this value.
I
SD
103A, di/dt 360A/µs, V
DD
V
(BR)DSS
, T
J
175°C.
Pulse width
400µs; duty cycle 2%.
C
oss
eff. (TR) is a fixed capacitance that gives the same charging time as C
oss
while VDS is rising from 0 to 80% V
DSS
.
C
oss
eff. (ER) is a fixed capacitance that gives the same energy as C
oss
while V
DS
is rising from 0 to 80% V
DSS
.
R
is measured at T
J
of approximately 90°C.
Static @ T
J
= 25°C (unless otherwise specified)
Parameter Min.
Typ.
Max.
Units
Conditions
V
(BR)DSS
Drain-to-Source Breakdown Voltage
150
––– –––
V V
GS
= 0V, I
D
= 250µA
V
(BR)DSS
/
T
J
Breakdown Voltage Temp. Coefficient
––– 0.17 ––– V/°C Reference to 25°C, I
D
= 5mA
R
DS(on)
Static Drain-to-Source On-Resistance
–––
4.8
5.9
m
V
GS
= 10V, I
D
= 103A
V
GS(th)
Gate Threshold Voltage
3.0
–––
5.0
V V
DS
= V
GS
, I
D
= 250µA
gfs
Forward Trans conductance
162
––– –––
S V
DS
= 50V, I
D
= 103A
R
G
Internal
Gate
Resistance
–––
1.0
–––
I
DSS
Drain-to-Source Leakage Current
––– ––– 20
µA
V
DS
=150 V, V
GS
= 0V
––– ––– 250
V
DS
=150V,V
GS
= 0V,T
J
=125°C
I
GSS
Gate-to-Source Forward Leakage
–––
––– 100
nA
V
GS
= 20V
Gate-to-Source Reverse Leakage
–––
––– -100
V
GS
= -20V
Dynamic Electrical Characteristics @ T
J
= 25°C (unless otherwise specified)
Q
g
Total Gate Charge
–––
151 227
nC
I
D
= 103A
Q
gs
Gate-to-Source Charge
–––
52
–––
V
DS
= 75V
Q
gd
Gate-to-Drain Charge
–––
55
–––
V
GS
= 10V
Q
sync
Total Gate Charge Sync. (Q
g
– Q
gd
) –––
96
–––
t
d(on)
Turn-On Delay Time
–––
27
–––
ns
V
DD
= 98V
t
r
Rise Time
–––
119 –––
I
D
= 103A
t
d(off)
Turn-Off Delay Time
–––
47
–––
R
G
= 1.0
t
f
Fall Time
–––
84
–––
V
GS
= 10V
C
iss
Input Capacitance
––– 10470 –––
pF
V
GS
= 0V
C
oss
Output Capacitance
–––
977 –––
V
DS
= 50V
C
rss
Reverse Transfer Capacitance
–––
203 –––
ƒ = 1.0MHz, See Fig. 5
C
oss eff.
(ER)
Effective Output Capacitance (Energy Related) ––– 897 –––
V
GS
=0V, V
DS
=0V to 120V
(see fig.11)
C
oss eff.
(TR)
Effective Output Capacitance (Time Related)
––– 1272 –––
V
GS
= 0V, V
DS
= 0V to 120V
Diode Characteristics
Parameter
Min. Typ. Max. Units
Conditions
I
S
Continuous Source Current
––– ––– 171
A
MOSFET symbol
(Body Diode)
showing the
I
SM
Pulsed Source Current
––– ––– 684
integral reverse
(Body Diode)
p-n junction diode.
V
SD
Diode Forward Voltage
–––
–––
1.3
V T
J
= 25°C,I
S
= 103A,V
GS
= 0V
t
rr
Reverse Recovery Time
––– 110 –––
ns
T
J
= 25°C
––– 133 –––
T
J
= 125°C
Q
rr
––– 515 –––
nC
T
J
= 25°C
––– 758 –––
T
J
= 125°C
I
RRM
Reverse Recovery Current
–––
8.8
–––
A T
J
= 25°C
t
on
Forward Turn-On Time
Intrinsic turn-on time is negligible (turn-on is dominated by L
S
+L
D
)
Reverse Recovery Charge
V
R
=100V
I
F
= 103A
di/dt = 100A/µs
AUIRFP4568
3
2015-10-21
Fig. 2 Typical Output Characteristics
Fig. 3
Typical Transfer Characteristics
Fig. 4
Normalized On-Resistance vs. Temperature
Fig. 1 Typical Output Characteristics
Fig 5. Typical Capacitance vs. Drain-to-Source Voltage
Fig 6. Typical Gate Charge vs. Gate-to-Source Voltage
0.1
1
10
100
VDS, Drain-to-Source Voltage (V)
0.01
0.1
1
10
100
1000
I D
, D
ra
in
-t
o
-S
ou
rc
e
C
u
rr
en
t (
A
)
VGS
TOP 15V
10V
8.0V
7.0V
6.0V
5.5V
5.0V
BOTTOM
4.5V
60µs PULSE WIDTH
Tj = 25°C
4.5V
0.1
1
10
100
VDS, Drain-to-Source Voltage (V)
1
10
100
1000
I D
, D
ra
in
-t
o
-S
ou
rc
e
C
u
rr
en
t (
A
)
VGS
TOP 15V
10V
8.0V
7.0V
6.0V
5.5V
5.0V
BOTTOM
4.5V
60µs PULSE WIDTH
Tj = 175°C
4.5V
3
4
5
6
7
8
9
VGS, Gate-to-Source Voltage (V)
0.1
1
10
100
1000
I D
, D
ra
in
-t
o-
S
ou
rc
e
C
ur
re
nt
(A
)
TJ = 25°C
TJ = 175°C
VDS = 50V
60µs PULSE WIDTH
-60 -40 -20 0 20 40 60 80 100120140160180
TJ , Junction Temperature (°C)
0.5
1.0
1.5
2.0
2.5
3.0
R
D
S
(o
n)
,
D
ra
in
-t
o-
S
ou
rc
e
O
n
R
es
is
ta
nc
e
(
N
or
m
al
iz
ed
)
ID = 103A
VGS = 10V
1
10
100
1000
VDS, Drain-to-Source Voltage (V)
10
100
1000
10000
100000
1000000
C
, C
ap
ac
ita
nc
e
(p
F
)
VGS = 0V, f = 1 MHZ
Ciss = Cgs + Cgd, C ds SHORTED
Crss = Cgd
Coss = Cds + Cgd
Coss
Crss
Ciss
0
50
100
150
200
QG, Total Gate Charge (nC)
0.0
2.0
4.0
6.0
8.0
10.0
12.0
14.0
V
G
S
, G
at
e-
to
-S
ou
rc
e
V
ol
ta
ge
(
V
)
VDS= 120V
VDS= 75V
VDS= 30V
ID= 103A
AUIRFP4568
4
2015-10-21
Fig 8. Maximum Safe Operating Area
Fig 10. Drain-to-Source Breakdown Voltage
Fig 11. Typical C
OSS
Stored Energy
Fig 12. Maximum Avalanche Energy vs. Drain Current
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6
1.8
VSD, Source-to-Drain Voltage (V)
1.0
10
100
1000
I S
D
, R
ev
er
se
D
ra
in
C
ur
re
nt
(
A
)
TJ = 25°C
TJ = 175°C
VGS = 0V
0.1
1
10
100
1000
VDS, Drain-to-Source Voltage (V)
0.1
1
10
100
1000
10000
I D
,
D
ra
in
-t
o-
S
ou
rc
e
C
ur
re
nt
(
A
)
OPERATION IN THIS AREA
LIMITED BY R DS(on)
Tc = 25°C
Tj = 175°C
Single Pulse
100µsec
1msec
10msec
DC
25
50
75
100
125
150
175
TC , Case Temperature (°C)
0
20
40
60
80
100
120
140
160
180
I D
,
D
ra
in
C
ur
re
nt
(
A
)
Fig. 7 Typical Source-to-Drain Diode
Forward Voltage
-60 -40 -20 0 20 40 60 80 100 120140160 180
TJ , Temperature ( °C )
140
145
150
155
160
165
170
175
180
185
190
V
(B
R
)D
S
S
, D
ra
in
-t
o-
S
ou
rc
e
B
re
ak
do
w
n
V
ol
ta
ge
(
V
)
Id = 5mA
0
20
40
60
80
100 120 140 160
VDS, Drain-to-Source Voltage (V)
0.0
2.0
4.0
6.0
8.0
10.0
12.0
E
ne
rg
y
(µ
J)
Fig 9. Maximum Drain Current vs. Case Temperature
25
50
75
100
125
150
175
Starting TJ , Junction Temperature (°C)
0
500
1000
1500
2000
2500
3000
3500
E
A
S
,
S
in
gl
e
P
ul
se
A
va
la
nc
he
E
ne
rg
y
(m
J)
ID
TOP 21.5A
29.3A
BOTTOM 103A
AUIRFP4568
5
2015-10-21
Fig 14. Avalanche Current vs. Pulse width
Notes on Repetitive Avalanche Curves , Figures 14, 15:
(For further info, see AN-1005 at www.infineon.com)
1. Avalanche failures assumption:
Purely a thermal phenomenon and failure occurs at a temperature far in
excess of T
jmax
. This is validated for every part type.
2. Safe operation in Avalanche is allowed as long as T
jmax
is not exceeded.
3. Equation below based on circuit and waveforms shown in Figures 22a, 22b.
4. P
D (ave)
= Average power dissipation per single avalanche pulse.
5. BV = Rated breakdown voltage (1.3 factor accounts for voltage increase
during
avalanche).
6. I
av
= Allowable avalanche current.
7.
T
=
Allowable rise in junction temperature, not to exceed
T
jmax
(assumed as
25°C in Figure 14, 15).
t
av =
Average time in avalanche.
D = Duty cycle in avalanche = t
av
·f
Z
thJC
(D, t
av
) = Transient thermal resistance, see Figures 13)
P
D (ave)
= 1/2 ( 1.3·BV·I
av
) =
T/ Z
thJC
I
av
= 2
T/ [1.3·BV·Z
th
]
E
AS (AR)
= P
D (ave)
·t
av
Fig 15. Maximum Avalanche Energy
vs. Temperature
1E-006
1E-005
0.0001
0.001
0.01
0.1
t1 , Rectangular Pulse Duration (sec)
0.0001
0.001
0.01
0.1
1
T
he
rm
al
R
es
po
ns
e
(
Z
th
JC
)
°
C
/W
0.20
0.10
D = 0.50
0.02
0.01
0.05
SINGLE PULSE
( THERMAL RESPONSE )
Notes:
1. Duty Factor D = t1/t2
2. Peak Tj = P dm x Zthjc + Tc
Ri (°C/W)
I (sec)
0.06336
0.000278
0.11088
0.005836
0.11484
0.053606
J
J
1
1
2
2
3
3
R
1
R
1
R
2
R
2
R
3
R
3
C
C
Ci=
iRi
Ci=
iRi
1.0E-06
1.0E-05
1.0E-04
1.0E-03
1.0E-02
1.0E-01
tav (sec)
0.1
1
10
100
1000
A
va
la
nc
he
C
ur
re
nt
(
A
)
0.05
Duty Cycle = Single Pulse
0.10
Allowed avalanche Current vs avalanche
pulsewidth, tav, assuming j = 25°C and
Tstart = 150°C.
0.01
Allowed avalanche Current vs avalanche
pulsewidth, tav, assuming Tj = 150°C and
Tstart =25°C (Single Pulse)
Fig 13. Maximum Effective Transient Thermal Impedance, Junction-to-Case
25
50
75
100
125
150
175
Starting TJ , Junction Temperature (°C)
0
100
200
300
400
500
600
700
800
900
E
A
R
,
A
va
la
nc
he
E
ne
rg
y
(m
J)
TOP Single Pulse
BOTTOM 1.0% Duty Cycle
ID = 103A
AUIRFP4568
6
2015-10-21
Fig 16. Threshold Voltage vs. Temperature
Fig. 18 - Typical Recovery Current vs. di
f
/dt
Fig. 19 - Typical Stored Charge vs. di
f
/dt
-75 -50 -25 0
25 50 75 100 125 150 175
TJ , Temperature ( °C )
1.0
1.5
2.0
2.5
3.0
3.5
4.0
4.5
5.0
5.5
6.0
V
G
S
(t
h)
, G
at
e
th
re
sh
ol
d
V
ol
ta
ge
(
V
)
ID = 250µA
ID = 1.0mA
ID = 1.0A
0
200
400
600
800
1000
diF /dt (A/µs)
0
10
20
30
40
50
60
I R
R
(
A
)
IF = 68A
VR = 100V
TJ = 25°C
TJ = 125°C
Fig. 17 - Typical Recovery Current vs. di
f
/dt
0
200
400
600
800
1000
diF /dt (A/µs)
0
10
20
30
40
50
60
70
I R
R
(
A
)
IF = 103A
VR = 100V
TJ = 25°C
TJ = 125°C
0
200
400
600
800
1000
diF /dt (A/µs)
400
800
1200
1600
2000
2400
2800
3200
3600
Q
R
R
(
A
)
IF = 68A
VR = 100V
TJ = 25°C
TJ = 125°C
0
200
400
600
800
1000
diF /dt (A/µs)
400
800
1200
1600
2000
2400
2800
3200
3600
4000
Q
R
R
(
A
)
IF = 103A
VR = 100V
TJ = 25°C
TJ = 125°C
Fig. 20 - Typical Stored Charge vs. di
f
/dt
Q
RR
(nC
)
Q
RR
(nC
)
AUIRFP4568
7
2015-10-21
Fig 21. Peak Diode Recovery dv/dt Test Circuit for N-Channel
HEXFET
®
Power MOSFETs
Fig 22a. Unclamped Inductive Test Circuit
R G
IAS
0.01
tp
D.U.T
L
VDS
+
- VDD
DRIVER
A
15V
20V
tp
V
(BR)DSS
I
AS
Fig 22b. Unclamped Inductive Waveforms
Fig 23a. Switching Time Test Circuit
Fig 23b. Switching Time Waveforms
Vds
Vgs
Id
Vgs(th)
Qgs1 Qgs2
Qgd
Qgodr
Fig 24b. Gate Charge Waveform
Fig 24a. Gate Charge Test Circuit
AUIRFP4568
8
2015-10-21
Note: For the most current drawing please refer to IR website at
http://www.irf.com/package/
TO-247AC Part Marking Information
YWWA
XX
XX
Date Code
Y= Year
WW= Work Week
AUIRFP4568
Lot Code
Part Number
IR Logo
TO-247AC Package Outline (Dimensions are
AUIRFP4568
9
2015-10-21
Qualification Information
Qualification Level
Automotive
(per AEC-Q101)
Comments: This part number(s) passed Automotive qualification. Infineon’s
Industrial and Consumer qualification level is granted by extension of the higher
Automotive level.
TO-247AC
N/A
ESD
Machine Model
Class M4 (+/- 800V)
†
AEC-Q101-002
Human Body Model
Class H3A (+/- 6000V)
†
AEC-Q101-001
Charged Device Model
Class C5 (+/- 2000V)
†
AEC-Q101-005
RoHS Compliant
Yes
Moisture Sensitivity Level
Published by
Infineon Technologies AG
81726 München, Germany
©
Infineon Technologies AG 2015
All Rights Reserved.
IMPORTANT NOTICE
The information given in this document shall in no event be regarded as a guarantee of conditions or characteristics
(“Beschaffenheitsgarantie”). With respect to any examples, hints or any typical values stated herein and/or any
information regarding the application of the product, Infineon Technologies hereby disclaims any and all warranties and
liabilities of any kind, including without limitation warranties of non-infringement of intellectual property rights of any third
party.
In addition, any information given in this document is subject to customer’s compliance with its obligations stated in this
document and any applicable legal requirements, norms and standards concerning customer’s products and any use of
the product of Infineon Technologies in customer’s applications.
The data contained in this document is exclusively intended for technically trained staff. It is the responsibility of
customer’s technical departments to evaluate the suitability of the product for the intended application and the
completeness of the product information given in this document with respect to such application.
For further information on the product, technology, delivery terms and conditions and prices please contact your nearest
Infineon Technologies office (
www.infineon.com
).
WARNINGS
Due to technical requirements products may contain dangerous substances. For information on the types in question
please contact your nearest Infineon Technologies office.
Except as otherwise explicitly approved by Infineon Technologies in a written document signed by authorized
representatives of Infineon Technologies, Infineon Technologies’ products may not be used in any applications where a
failure of the product or any consequences of the use thereof can reasonably be expected to result in personal injury.
Revision History
Date Comments
10/21/15
Updated datasheet with corporate template
Removed obsolete parts “AUIRFP4568E” on all pages
Corrected ordering table on page 1.
† Highest passing voltage.