AUIRFP2602 Product Datasheet

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/auirfp2602-html.html
background image

 

AUIRFP2602 

V

(BR)DSS 

24V 

R

DS(on)

   typ. 

1.25m

Ω 

              max. 

1.6m

Ω 

I

D  (Silicon Limited) 

380A  

I

D  (Package Limited) 

180A 

Features 
•  Advanced Process Technology 

• Low 

On-Resistance 

•  175°C Operating Temperature 

• Fast 

Switching 

•  Repetitive Avalanche Allowed up to Tjmax 

•  Lead-Free, RoHS Compliant 

•  Automotive Qualified *  

Description 
Specifically designed for Automotive applications, this 
HEXFET® Power MOSFET utilizes the latest processing 
techniques to achieve extremely low on-resistance per silicon 
area.  Additional features of this design  are a 175°C junction 
operating temperature, fast switching speed and improved 
repetitive avalanche rating . These features combine to make 
this design an extremely efficient and reliable device for use in 
Automotive applications and a wide variety of other 
applications. 

                          

2016-2-16 

HEXFET® is a registered trademark of Infineon. 

*Qualification standards can be found at 

www.infineon.com

 

 

AUTOMOTIVE GRADE 

Symbol Parameter 

Max. 

Units 

I

D

 @ T

C

 = 25°C 

Continuous Drain Current, V

GS

 @ 10V (Silicon Limited) 

380  

I

D

 @ T

C

 = 100°C 

Continuous Drain Current, V

GS

 @ 10V (Silicon Limited) 

270  

I

D

 @ T

C

 = 25°C 

Continuous Drain Current, V

GS

 @ 10V  (Package Limited) 

180 

I

DM 

Pulsed Drain Current   1580 

P

D

 @T

C

 = 25°C 

Maximum Power Dissipation   

380 

  

Linear Derating Factor 

2.5 

W/°C 

V

GS 

Gate-to-Source Voltage 

 ± 20 

E

AS  

Single Pulse Avalanche Energy (Thermally Limited)   400 

E

AS (Tested) 

Single Pulse Avalanche Energy  Tested Value   1011 

I

AR 

Avalanche Current   

See Fig.14,15, 17a, 17b   

E

AR 

Repetitive Avalanche Energy   

 

mJ 

T

J  

Operating Junction and 

-55  to + 175 

 

T

STG 

Storage Temperature Range 

  

°C

 

  

Soldering Temperature, for 10 seconds (1.6mm from case) 

300 

 

 

Mounting torque, 6-32 or M3 screw 

10 lbf•in (1.1N•m) 

   

mJ   

Absolute Maximum Ratings 

Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device.   These are stress 
ratings only; and functional operation of the device at these or any other condition beyond those indicated in the specifications is not 
implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability. The thermal resistance 
and power dissipation ratings are measured under board mounted and still air conditions. Ambient temperature (TA) is 25°C, unless 
otherwise specified. 

Thermal Resistance 

 

Symbol Parameter 

Typ. 

Max. 

Units 

R

θJC

  

Junction-to-Case   ––– 

0.40 

°C/W   

R

θCS

 

Case-to-Sink, Flat, Greased Surface  

0.24 

––– 

R

θJA

  

Junction-to-Ambient  

––– 

40 

TO-247AC 

AUIRFP2602 

Base part number 

Package Type 

Standard Pack 

Form 

Quantity 

AUIRFP2602 

TO-247AC 

Tube 

25 

AUIRFP2602 

Orderable Part Number   

G D S 

Gate Drain 

Source 

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/auirfp2602-html.html
background image

 

AUIRFP2602 

 

2016-2-16 

Notes:

 

 Repetitive rating;  pulse width limited by max. junction temperature. (See Fig. 11) 
  Limited by T

Jmax

, starting  T

J

 = 25°C, L = 0.025mH, R

G

 = 25

Ω, I

AS

 = 180A, V

GS

 =10V. Part not recommended for use above this value.  

 Pulse width 

≤ 1.0ms; duty cycle ≤ 2%. 

  C

oss

 eff.  is a fixed capacitance that gives the same charging time as C

oss

 while VDS is rising from 0 to 80% V

DSS

   Limited by TJmax , see Fig.12a, 12b, 15, 16 for typical repetitive avalanche performance.  
   This value determined from sample failure population. 100% tested to this value in production. 
   R

θ

  is measured at T

J

 of approximately 90°C. 

   Calculated continuous current based on maximum allowable junction temperature. Bond wire current limit is 180A. Note that  

      current limitations arising from heating of the device leads may occur with some lead mounting arrangements. 

Static @ T

J

 = 25°C (unless otherwise specified) 

  

Parameter Min. 

Typ. 

Max. 

Units 

Conditions 

V

(BR)DSS 

Drain-to-Source Breakdown Voltage 

24 

––– 

––– 

V  V

GS

 = 0V, I

D

 = 250µA 

∆V

(BR)DSS

/

∆T

J  

Breakdown Voltage Temp. Coefficient 

––– 

0.02 

–––  V/°C  Reference to 25°C, I

D

 = 1mA  

R

DS(on) 

  

Static Drain-to-Source On-Resistance   

––– 

1.25 

1.6 

m

Ω   V

GS

 = 10V, I

D

 = 180A   

V

GS(th) 

Gate Threshold Voltage 

2.0 

––– 

4.0 

V  V

DS

 = V

GS

, I

D

 = 250µA 

gfs 

Forward Trans conductance 

230 

––– 

––– 

S  V

DS

 = 10V, I

D

 = 180A 

I

DSS 

  

Drain-to-Source Leakage Current   

––– –––  20 

µA 

V

DS

 =24 V, V

GS

 = 0V 

––– ––– 250 

V

DS

 =24V,V

GS

 = 0V,T

J

 =125°C 

I

GSS 

  

Gate-to-Source Forward Leakage 

––– 

––– 

200 

nA 

V

GS

 = 20V 

Gate-to-Source Reverse Leakage 

––– 

–––  -200 

V

GS

 = -20V 

Dynamic  Electrical Characteristics @ T

J

 = 25°C (unless otherwise specified) 

Q

Total Gate Charge  

––– 

260 

390 

nC 

 

I

D

 = 180A 

Q

gs 

Gate-to-Source Charge 

––– 

72 

––– 

V

DS

 = 12V 

Q

gd 

Gate-to-Drain Charge 

––– 

100 

––– 

V

GS

 = 10V   

t

d(on) 

Turn-On Delay Time 

––– 

70 

––– 

ns 

V

DD

 = 12V 

t

Rise Time 

––– 

490 

––– 

I

D

 = 180A 

t

d(off) 

Turn-Off Delay Time 

––– 

150 

––– 

R

G

= 2.5

Ω 

t

Fall Time 

––– 

270 

––– 

V

GS

 = 10V   

L

D

 

Internal Drain Inductance 

––– 

5.0 

––– 

pF 

 

Between lead, 
6mm (0.25in.) 

L

S

 

Internal Source Inductance 

––– 

13 

––– 

from package 
and center of die contact 

C

iss 

Input Capacitance 

–––  11220  ––– 

V

GS

 = 0V 

C

oss 

Output Capacitance 

–––  4800  ––– 

V

DS

 = 19V 

C

rss 

Reverse Transfer Capacitance 

–––  2660  ––– 

ƒ = 1.0KHz 

C

oss  

Output Capacitance  

––– 13020 ––– 

V

GS

=0V, V

DS

=1.0V ,ƒ = 1.0KHz 

C

oss  

Output Capacitance  

 4800  

V

GS

=0V, V

DS

=19V ,ƒ = 1.0KHz 

C

oss eff.

 

Effective Output Capacitance   

–––  6710  ––– 

V

GS

 = 0V, V

DS

 = 0V to 19V   

Diode Characteristics 

 

  

        Parameter 

Min.  Typ.  Max.  Units 

Conditions 

I

  

Continuous Source Current  

––– ––– 

380  

MOSFET symbol 

(Body Diode) 

showing  the 

I

SM 

  

Pulsed Source Current 

––– ––– 1580 

integral reverse 

(Body Diode)

   

p-n junction diode. 

V

SD 

Diode Forward Voltage 

––– 

––– 

1.3 

V  T

J

 = 25°C,I

= 180A,V

GS

 = 0V 

 

t

rr   

Reverse Recovery Time   

––– 

55 

83 

ns    T

J

 = 25°C ,I

F

 = 180A, V

DD

 =12V 

Q

rr   

Reverse Recovery Charge   

––– 

56 

84 

nC   di/dt = 100A/µs   

t

on 

Forward Turn-On Time 

Intrinsic turn-on time is negligible (turn-on is dominated by L

S

+L

D

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/auirfp2602-html.html
background image

 

AUIRFP2602 

 

2016-2-16 

Fig. 2 Typical Output Characteristics 

Fig. 3 

Typical Transfer Characteristics

 

 

Fig. 4 Typical Forward Transconductance vs. Drain Current 

Fig. 1 Typical Output Characteristics 

Fig 5.  Typical Source-Drain Diode Forward Voltage

 

Fig 6.  Normalized On-Resistance vs. Temperature

 

0.1

1

10

VDS, Drain-to-Source Voltage (V)

1

10

100

1000

I D

D

ra

in

-t

o

-S

o

u

rc

e

 C

u

rr

e

n

(A

)

VGS

TOP           15V

10V

8.0V

7.0V

6.0V

5.5V

5.0V

BOTTOM

4.5V

≤60µs PULSE WIDTH

Tj = 25°C

4.5V

0.1

1

10

VDS, Drain-to-Source Voltage (V)

10

100

1000

I D

D

ra

in

-t

o

-S

o

u

rc

e

 C

u

rr

e

n

(A

)

4.5V

≤60µs PULSE WIDTH

Tj = 175°C

VGS

TOP           15V

10V

8.0V

7.0V

6.0V

5.5V

5.0V

BOTTOM

4.5V

2

3

4

5

6

7

8

9

VGS, Gate-to-Source Voltage (V)

1.0

10

100

1000

I D

, D

ra

in

-t

o-

S

ou

rc

C

ur

re

nt

 

(A

)

TJ = 25°C

TJ = 175°C

VDS = 10V
≤60µs PULSE WIDTH

0

40

80

120

160

200

ID, Drain-to-Source Current (A)

0

50

100

150

200

250

300

G

fs

F

or

w

ar

T

ra

ns

co

nd

uc

ta

nc

(S

)

TJ = 25°C

TJ = 175°C

VDS = 10V

380µs PULSE WIDTH

0.0

0.5

1.0

1.5

2.0

2.5

VSD, Source-to-Drain Voltage (V)

0.1

1

10

100

1000

I S

D

, R

ev

er

se

 D

ra

in

 C

ur

re

nt

 (

A

)

TJ = 25°C

TJ = 175°C

VGS = 0V

-60 -40 -20 0 20 40 60 80 100120140160180

TJ , Junction Temperature (°C)

0.6

0.8

1.0

1.2

1.4

1.6

1.8

R

D

S

(o

n)

 ,

 D

ra

in

-t

o-

S

ou

rc

O

R

es

is

ta

nc

   

   

   

   

   

   

   

 (

N

or

m

al

iz

ed

)

ID = 180A
VGS = 10V

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/auirfp2602-html.html
background image

 

AUIRFP2602 

 

2016-2-16 

 

Fig 11.  Maximum Effective Transient Thermal Impedance, Junction-to-Case 

Fig. 7  Typical Capacitance vs. Drain-to-Source Voltage 

1

10

100

VDS, Drain-to-Source Voltage (V)

1000

10000

100000

C

, C

ap

ac

ita

nc

(p

F

)

VGS   = 0V,       f = 1 MHZ

Ciss    = Cgs + Cgd,  Cds SHORTED
Crss    = Cgd 
Coss   = Cds + Cgd

Coss

Crss

Ciss

0

50

100

150

200

250

300

 QG,  Total Gate Charge (nC)

0.0

2.0

4.0

6.0

8.0

10.0

12.0

V

G

S

, G

at

e-

to

-S

ou

rc

V

ol

ta

ge

 (

V

)

VDS= 19V
VDS= 12V

ID= 180A

1

10

100

VDS, Drain-to-Source Voltage (V)

1

10

100

1000

10000

I D

,  

D

ra

in

-t

o-

S

ou

rc

C

ur

re

nt

 (

A

)

OPERATION IN THIS AREA 
LIMITED BY R DS(on)

Tc = 25°C
Tj = 175°C
Single Pulse

100µsec

1msec

10msec

DC

Fig 9.   Maximum Safe Operating Area 

25

50

75

100

125

150

175

 TC , Case Temperature (°C)

0

50

100

150

200

250

300

350

400

I D

,   

D

ra

in

 C

ur

re

nt

 (

A

)

Limited By Package

Fig 10.  Maximum Drain Current vs. Case Temperature 

Fig 8.  Typical Gate Charge vs. Gate-to-Source Voltage 

1E-006

1E-005

0.0001

0.001

0.01

0.1

t1 , Rectangular Pulse Duration (sec)

0.001

0.01

0.1

1

T

he

rm

al

 R

es

po

ns

Z

 th

JC

 )

 °

C

/W

0.20

0.10

D = 0.50

0.02

0.01

0.05

SINGLE PULSE
( THERMAL RESPONSE )

Notes:
1. Duty Factor D = t1/t2
2. Peak Tj = P dm x Zthjc + Tc

Ri (°C/W) 

τI (sec) 

0.0224 

0.00002 

0.1778 

0.00169 

0.1362 

0.013883 

0.0641 

0.000095 

τ

J

τ

J

τ

1

τ

1

τ

2

τ

2

τ

3

τ

3

R

1

R

1

R

2

R

2

R

3

R

3

Ci= 

τi/Ri

Ci= 

τi/Ri

τ

C

τ

C

τ

4

τ

4

R

4

R

4

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/auirfp2602-html.html
background image

 

AUIRFP2602 

 

2016-2-16 

Fig 12.  Maximum Avalanche Energy vs. Drain Current 

Fig 14.   Typical Avalanche Current vs. Pulse width  

Notes on Repetitive Avalanche Curves , Figures 14, 15: 
(For further info, see AN-1005 at www.infineon.com) 
 
1.  Avalanche failures assumption:  
 

Purely a thermal phenomenon and failure occurs at a temperature far in  

 

excess of T

jmax

. This is validated for every part type. 

2.  Safe operation in Avalanche is allowed as long as T

jmax

 is not exceeded. 

3.   Equation below based on circuit and waveforms shown in Figures 17a, 17b. 
4.   P

D (ave) 

= Average power dissipation per single avalanche pulse. 

5.   BV = Rated breakdown voltage (1.3 factor accounts for voltage increase  
 during 

avalanche). 

6.   I

av 

= Allowable avalanche current. 

7. 

∆T

 = 

Allowable rise in junction temperature, not to exceed

 

T

jmax 

(assumed as  

 

25°C in Figure 14, 15).  

 

t

av = 

Average time in avalanche. 

 

D = Duty cycle in avalanche =  t

av 

·f 

 

Z

thJC

(D, t

av

) = Transient thermal resistance, see Figures 13) 

 

P

D (ave)

 = 1/2 ( 1.3·BV·I

av

) = 

T/ Z

thJC

 

I

av

 = 2

T/ [1.3·BV·Z

th

E

AS (AR) 

= P

D (ave)

·t

av

 

Fig 15.  Maximum Avalanche Energy vs. Temperature 

Fig 13.  Threshold Voltage vs. Temperature 

25

50

75

100

125

150

175

Starting TJ , Junction Temperature (°C)

0

200

400

600

800

1000

1200

1400

1600

E

A

S

 , 

S

in

gl

P

ul

se

 A

va

la

nc

he

 E

ne

rg

(m

J)

ID

TOP         54A

95A

BOTTOM 180A

-75 -50 -25 0

25 50 75 100 125 150 175

TJ , Temperature ( °C )

1.0

2.0

3.0

4.0

5.0

V

G

S

(t

h)

, G

at

T

hr

es

ho

ld

 V

ol

ta

ge

 (

V

)

ID = 250µA
ID = 1.0mA
ID = 1.0A

1.0E-06

1.0E-05

1.0E-04

1.0E-03

1.0E-02

1.0E-01

tav (sec)

1

10

100

1000

A

va

la

nc

he

 C

ur

re

nt

 (

A

)

0.05

Duty Cycle = Single Pulse

0.10

Allowed avalanche Current vs avalanche 
pulsewidth, tav, assuming 

∆Τj = 25°C and 

Tstart = 150°C.

0.01

Allowed avalanche Current vs avalanche 
pulsewidth, tav, assuming 

∆Tj = 150°C and 

Tstart =25°C (Single Pulse)

25

50

75

100

125

150

175

Starting TJ , Junction Temperature (°C)

0

50

100

150

200

250

300

350

400

E

A

R

 , 

A

va

la

nc

he

 E

ne

rg

(m

J)

TOP          Single Pulse                
BOTTOM   1.0% Duty Cycle
ID = 180A

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/auirfp2602-html.html
background image

 

AUIRFP2602 

 

2016-2-16 

Fig 16. Peak Diode Recovery dv/dt Test Circuit for N-Channel 

 HEXFET

®

 

Power MOSFETs 

Fig 17a.  Unclamped Inductive Test Circuit 

R G

IAS

0.01

tp

D.U.T

L

VDS

+

-

VDD

DRIVER

A

15V

20V

tp

V

(BR)DSS

I

AS

Fig 17b.  Unclamped Inductive Waveforms 

Vds

Vgs

Id

Vgs(th)

Qgs1 Qgs2

Qgd

Qgodr

Fig 18b.   Gate Charge Waveform 

Fig 18a.  Gate Charge Test Circuit 

Fig 19a.  Switching Time Test Circuit 

Fig 19b.  Switching Time Waveforms 

1K

VCC

DUT

0

L

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/auirfp2602-html.html
background image

 

AUIRFP2602 

 

2016-2-16 

 

 

Note: For the most current drawing please refer to IR website at 

http://www.irf.com/package/

 

TO-247AC Part Marking Information 

YWWA 

XX    

    XX 

Date Code 

Y= Year 

WW= Work Week 

AUIRFP2602 

Lot Code 

Part Number 

IR Logo 

TO-247AC Package Outline (Dimensions are 

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/auirfp2602-html.html
background image

 

AUIRFP2602 

 

2016-2-16 

 

Qualification Information  

Qualification Level 

Automotive 

(per AEC-Q101)  

Comments: This part number(s) passed Automotive qualification. Infineon’s  
Industrial and Consumer qualification level is granted by extension of the higher 
Automotive level. 

TO-247AC 

N/A 

ESD 

Machine Model  

Class M4 (+/- 800V)

 

 

AEC-Q101-002 

Human Body Model 

 

Class H2 (+/- 4000V)

 

 

AEC-Q101-001 

Charged Device Model 

Class C5 (+/- 2000V)

 

 

AEC-Q101-005 

RoHS Compliant 

Yes 

 Moisture Sensitivity Level   

 

Published by 
Infineon Technologies AG 
81726 München, Germany 

© 

Infineon Technologies AG 2015 

All Rights Reserved. 
 
IMPORTANT NOTICE
 
The information given in this document shall in no event be regarded as a guarantee of conditions or characteristics 
(“Beschaffenheitsgarantie”). With respect to any examples, hints or any typical values stated herein and/or any 
information regarding the application of the product, Infineon Technologies hereby disclaims any and all warranties and 
liabilities of any kind, including without limitation warranties of non-infringement of intellectual property rights of any third 
party.  
In addition, any information given in this document is subject to customer’s compliance with its obligations stated in this 
document and any applicable legal requirements, norms and standards concerning customer’s products and any use of 
the product of Infineon Technologies in customer’s applications.  
The data contained in this document is exclusively intended for technically trained staff. It is the responsibility of 
customer’s technical departments to evaluate the suitability of the product for the intended application and the 
completeness of the product information given in this document with respect to such application.   
For further information on the product, technology, delivery terms and conditions and prices please contact your nearest 
Infineon Technologies office (

www.infineon.com

). 

WARNINGS 
Due to technical requirements products may contain dangerous substances. For information on the types in question 
please contact your nearest Infineon Technologies office. 
Except as otherwise explicitly approved by Infineon Technologies in a written document signed by authorized 
representatives of Infineon Technologies, Infineon Technologies’ products may not be used in any applications where a 
failure of the product or any consequences of the use thereof can reasonably be expected to result in personal injury.  

Revision History  

Date Comments 

2/16/2016 

• 

Updated datasheet with corporate template 

• 

Corrected typo, Capacitance test condition from VDS=25V to VDS=19V on page 2 

†  Highest passing voltage. 

Maker
Infineon Technologies