AUIRFB4610
AUIRFS4610
V
DSS
100V
R
DS(on)
typ.
11m
max.
14m
I
D
73A
Absolute Maximum Ratings
Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress
ratings only; and functional operation of the device at these or any other condition beyond those indicated in the specifications is not
implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability. The thermal resistance
and power dissipation ratings are measured under board mounted and still air conditions. Ambient temperature (TA) is 25°C, unless
otherwise specified.
Features
Advanced Process Technology
Ultra Low On-Resistance
Enhanced dV/dT and dI/dT capability
175°C Operating Temperature
Fast
Switching
Repetitive Avalanche Allowed up to Tjmax
Lead-Free, RoHS Compliant
Automotive Qualified *
Description
Specifically designed for Automotive applications, this HEXFET
®
Power MOSFET utilizes the latest processing techniques to achieve
extremely low on-resistance per silicon area. Additional features of
this design are a 175°C junction operating temperature, fast
switching speed and improved repetitive avalanche rating . These
features combine to make this design an extremely efficient and
reliable device for use in Automotive applications and a wide variety
of other applications
1
2015-10-27
HEXFET® is a registered trademark of Infineon.
*Qualification standards can be found at
www.infineon.com
AUTOMOTIVE GRADE
Symbol Parameter
Max.
Units
I
D
@ T
C
= 25°C
Continuous Drain Current, V
GS
@ 10V
73
A
I
D
@ T
C
= 100°C
Continuous Drain Current, V
GS
@ 10V
52
I
DM
Pulsed Drain Current 290
P
D
@T
C
= 25°C
Maximum Power Dissipation
190
W
Linear Derating Factor
1.3
W/°C
V
GS
Gate-to-Source Voltage
± 20
V
E
AS
Single Pulse Avalanche Energy (Thermally Limited) 370
mJ
I
AR
Avalanche Current
See Fig.14,15, 22a, 22b
A
E
AR
Repetitive Avalanche Energy
mJ
dv/dt Peak
Diode
Recovery
7.6
V/ns
T
J
Operating Junction and
-55 to + 175
T
STG
Storage Temperature Range
°C
Soldering Temperature, for 10 seconds (1.6mm from case)
300
Mounting torque, 6-32 or M3 screw
10 lbf•in (1.1N•m)
Thermal Resistance
Symbol Parameter
Typ.
Max.
Units
R
JC
Junction-to-Case –––
0.77
°C/W
R
JA
Junction-to-Ambient ( PCB Mount, steady state)
40
R
JA
Junction-to-Ambient
–––
62
R
CS
Case-to-Sink, Flat, Greased Surface
0.50
–––
TO-220
AUIRFB4610
D
2
Pak
AUIRFS4610
S
D
G
Base part number
Package Type
Standard Pack
Form
Quantity
AUIRFB4610
TO-220
Tube
50
AUIRFB4610
AUIRFS4610
D
2
-Pak
Tube
50
AUIRFS4610
Tape and Reel Left
800
AUIRFS4610TRL
Orderable Part Number
G D S
Gate Drain
Source
HEXFET
®
Power MOSFET
S
D
G
D
AUIRFB/S4610
2
2015-10-27
Notes:
Repetitive rating; pulse width limited by max. junction temperature.
Limited by T
Jmax,
starting T
J
= 25°C, L = 0.39mH, R
G
= 25
, I
AS
= 44A, V
GS
=10V. Part not recommended for use above this value.
I
SD
44A, di/dt 660A/µs, V
DD
V
(BR)DSS
, T
J
175°C.
Pulse width
400µs; duty cycle 2%.
C
oss
eff. (TR) is a fixed capacitance that gives the same charging time as C
oss
while V
DS
is rising from 0 to 80% V
DSS
.
C
oss
eff. (ER) is a fixed capacitance that gives the same energy as C
oss
while V
DS
is rising from 0 to 80% V
DSS
.
When mounted on 1" square PCB (FR-4 or G-10 Material). For recommended footprint and soldering techniques refer to
application note #AN-994
R
is measured at T
J
approximately 90°C.
Static @ T
J
= 25°C (unless otherwise specified)
Parameter Min.
Typ.
Max.
Units
Conditions
V
(BR)DSS
Drain-to-Source Breakdown Voltage
100
––– –––
V V
GS
= 0V, I
D
= 250µA
V
(BR)DSS
/
T
J
Breakdown Voltage Temp. Coefficient
––– 0.085 ––– V/°C Reference to 25°C, I
D
= 1mA
R
DS(on)
Static Drain-to-Source On-Resistance
–––
11
14
m
V
GS
= 10V, I
D
= 44A
V
GS(th)
Gate Threshold Voltage
2.0
–––
4.0
V V
DS
= V
GS
, I
D
= 100µA
gfs
Forward Trans conductance
73
––– –––
S V
DS
= 50V, I
D
= 44A
R
G
Gate Resistance
–––
1.5
–––
ƒ = 1.0MHz, open drain
I
DSS
Drain-to-Source Leakage Current
––– ––– 20
µA
V
DS
= 100V, V
GS
= 0V
––– ––– 250
V
DS
= 100V,V
GS
= 0V,T
J
=125°C
I
GSS
Gate-to-Source Forward Leakage
–––
––– 200
nA
V
GS
= 20V
Gate-to-Source Reverse Leakage
–––
––– -200
V
GS
= -20V
Dynamic Electrical Characteristics @ T
J
= 25°C (unless otherwise specified)
Q
g
Total Gate Charge
–––
90
140
nC
I
D
= 44A
Q
gs
Gate-to-Source Charge
–––
20
–––
V
DS
= 80V
Q
gd
Gate-to-Drain Charge
–––
36
–––
V
GS
= 10V
t
d(on)
Turn-On Delay Time
–––
18
–––
ns
V
DD
= 65V
t
r
Rise Time
–––
87
–––
I
D
= 44A
t
d(off)
Turn-Off Delay Time
–––
53
–––
R
G
= 5.6
t
f
Fall Time
–––
70
–––
V
GS
= 10V
C
iss
Input Capacitance
––– 3550 –––
pF
V
GS
= 0V
C
oss
Output Capacitance
–––
260 –––
V
DS
= 50V
C
rss
Reverse Transfer Capacitance
–––
150 –––
ƒ = 1.0MHz, See Fig. 5
C
oss eff.(ER)
Effective Output Capacitance (Energy Related) –––
330 –––
V
GS
= 0V, V
DS
= 0V to 80V
C
oss eff.(TR)
Effective Output Capacitance (Time Related)
–––
380 –––
V
GS
= 0V, V
DS
= 0V to 80V
Diode Characteristics
Parameter
Min. Typ. Max. Units
Conditions
I
S
Continuous Source Current
––– ––– 73
A
MOSFET symbol
(Body Diode)
showing the
I
SM
Pulsed Source Current
––– ––– 290
integral reverse
(Body Diode)
p-n junction diode.
V
SD
Diode Forward Voltage
–––
–––
1.3
V T
J
= 25°C,I
S
= 44A,V
GS
= 0V
t
rr
Reverse Recovery Time
––– 35 53
ns
T
J
= 25°C V
DD
= 85V
––– 42 63
T
J
= 125°C I
F
= 44A,
Q
rr
Reverse Recovery Charge
––– 44 66
nC
T
J
= 25°C di/dt = 100A/µs
––– 65 98
T
J
= 125°C
I
RRM
Reverse Recovery Current
–––
2.1
–––
A T
J
= 25°C
t
on
Forward Turn-On Time
Intrinsic turn-on time is negligible (turn-on is dominated by L
S
+L
D
)
AUIRFB/S4610
3
2015-10-27
Fig. 2 Typical Output Characteristics
Fig. 3
Typical Transfer Characteristics
Fig. 1 Typical Output Characteristics
Fig 5. Typical Capacitance vs. Drain-to-Source Voltage
Fig 6. Typical Gate Charge vs. Gate-to-Source Voltage
Fig. 4
Normalized On-Resistance vs. Temperature
0.1
1
10
100
VDS, Drain-to-Source Voltage (V)
1
10
100
1000
I D
, D
ra
in
-t
o-
S
ou
rc
e
C
ur
re
nt
(
A
)
60µs PULSE WIDTH
Tj = 25°C
4.5V
VGS
TOP 15V
10V
8.0V
7.0V
6.0V
5.5V
5.0V
BOTTOM
4.5V
0.1
1
10
100
VDS, Drain-to-Source Voltage (V)
10
100
1000
I D
, D
ra
in
-t
o-
S
ou
rc
e
C
ur
re
nt
(
A
)
60µs PULSE WIDTH
Tj = 25°C
4.5V
VGS
TOP 15V
10V
8.0V
7.0V
6.0V
5.5V
5.0V
BOTTOM
4.5V
2.0
3.0
4.0
5.0
6.0
7.0
8.0
VGS, Gate-to-Source Voltage (V)
0.1
1.0
10.0
100.0
1000.0
I D
, D
ra
in
-t
o-
S
ou
rc
e
C
ur
re
nt
)
VDS = 25V
60µs PULSE WIDTH
TJ = 25°C
TJ = 175°C
-60 -40 -20 0
20 40 60 80 100 120 140 160 180
TJ , Junction Temperature (°C)
0.5
1.0
1.5
2.0
2.5
3.0
R
D
S
(o
n)
,
D
ra
in
-t
o-
S
ou
rc
e
O
n
R
es
is
ta
nc
e
(
N
or
m
al
iz
ed
)
ID = 73A
VGS = 10V
1
10
100
VDS, Drain-to-Source Voltage (V)
0
1000
2000
3000
4000
5000
6000
C
, C
ap
ac
ita
nc
e
(p
F
)
Coss
Crss
Ciss
VGS = 0V, f = 1 MHZ
Ciss = Cgs + Cgd, Cds SHORTED
Crss = Cgd
Coss = Cds + Cgd
0
20
40
60
80
100
120
140
QG Total Gate Charge (nC)
0
4
8
12
16
20
V
G
S
, G
at
e-
to
-S
ou
rc
e
V
ol
ta
ge
(
V
)
VDS= 80V
VDS= 50V
VDS= 20V
ID= 44A
AUIRFB/S4610
4
2015-10-27
Fig 8. Maximum Safe Operating Area
Fig 10. Drain-to-Source Breakdown Voltage
Fig 11. Typical C
OSS
Stored Energy
Fig 12. Maximum Avalanche Energy vs. Drain Current
Fg 9. Maximum Drain Current vs. Case Temperature
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6
1.8
2.0
VSD, Source-to-Drain Voltage (V)
0.1
1.0
10.0
100.0
1000.0
I S
D
,
R
ev
er
se
D
ra
in
C
ur
re
nt
(
A
)
TJ = 25°C
TJ = 175°C
VGS = 0V
1
10
100
1000
VDS , Drain-toSource Voltage (V)
0.1
1
10
100
1000
I D
,
D
ra
in
-t
o-
S
ou
rc
e
C
ur
re
nt
(
A
)
Tc = 25°C
Tj = 175°C
Single Pulse
1msec
10msec
OPERATION IN THIS AREA
LIMITED BY R DS(on)
100µsec
DC
25
50
75
100
125
150
175
TJ , Junction Temperature (°C)
0
20
40
60
80
I D
, D
ra
in
C
ur
re
nt
(
A
)
Fig. 7 Typical Source-to-Drain Diode
Forward Voltage
-60 -40 -20 0
20 40 60 80 100 120 140 160 180
TJ , Junction Temperature (°C)
100
105
110
115
120
125
V
(B
R
)D
S
S
,
D
ra
in
-t
o-
S
ou
rc
e
B
re
ak
do
w
n
V
ol
ta
ge
0
20
40
60
80
100
VDS, Drain-to-Source Voltage (V)
0.0
0.5
1.0
1.5
2.0
E
ne
rg
y
(µ
J)
25
50
75
100
125
150
175
Starting TJ, Junction Temperature (°C)
0
400
800
1200
1600
E
A
S
,
S
in
gl
e
P
ul
se
A
va
la
nc
he
E
ne
rg
y
(m
J)
ID
TOP
4.6A
6.3A
BOTTOM
44A
AUIRFB/S4610
5
2015-10-27
Fig 14. Avalanche Current vs. Pulse width
Fig 15. Maximum Avalanche Energy vs. Temperature
Notes on Repetitive Avalanche Curves , Figures 14, 15:
(For further info, see AN-1005 at www.infineon.com)
1. Avalanche failures assumption:
Purely a thermal phenomenon and failure occurs at a temperature far in
excess of T
jmax
. This is validated for every part type.
2. Safe operation in Avalanche is allowed as long as T
jmax
is not exceeded.
3. Equation below based on circuit and waveforms shown in Figures 18a, 18b.
4. P
D (ave)
= Average power dissipation per single avalanche pulse.
5. BV = Rated breakdown voltage (1.3 factor accounts for voltage increase
during
avalanche).
6. I
av
= Allowable avalanche current.
7.
T
=
Allowable rise in junction temperature, not to exceed
T
jmax
(assumed as
25°C in Figure 13, 14).
t
av =
Average time in avalanche.
D = Duty cycle in avalanche = t
av
·f
Z
thJC
(D, t
av
) = Transient thermal resistance, see Figures 13)
P
D (ave)
= 1/2 ( 1.3·BV·I
av
) =
T/ Z
thJC
I
av
= 2
T/ [1.3·BV·Z
th
]
E
AS (AR)
= P
D (ave)
·t
av
Fig 13. Maximum Effective Transient Thermal Impedance, Junction-to-Case
1E-006
1E-005
0.0001
0.001
0.01
0.1
t1 , Rectangular Pulse Duration (sec)
0.0001
0.001
0.01
0.1
1
T
he
rm
al
R
es
po
ns
e
(
Z
th
JC
)
0.20
0.10
D = 0.50
0.02
0.01
0.05
SINGLE PULSE
( THERMAL RESPONSE )
Notes:
1. Duty Factor D = t1/t2
2. Peak Tj = P dm x Zthjc + Tc
J
J
1
1
2
2
R
1
R
1
R
2
R
2
C
C
Ci=
iRi
Ci=
iRi
Ri (°C/W)
I (sec)
0.4367
0.001016
0.3337
0.009383
1.0E-06
1.0E-05
1.0E-04
1.0E-03
1.0E-02
1.0E-01
tav (sec)
0.1
1
10
100
A
va
la
nc
he
C
ur
re
nt
(
A
)
0.05
Duty Cycle = Single Pulse
0.10
Allowed avalanche Current vs avalanche
pulsewidth, tav, assuming j = 25°C and
Tstart = 150°C.
0.01
Allowed avalanche Current vs avalanche
pulsewidth, tav, assuming Tj = 150°C and
Tstart =25°C (Single Pulse)
25
50
75
100
125
150
175
Starting TJ , Junction Temperature (°C)
0
100
200
300
400
E
A
R
,
A
va
la
nc
he
E
ne
rg
y
(m
J)
TOP Single Pulse
BOTTOM 1% Duty Cycle
ID = 44A
AUIRFB/S4610
6
2015-10-27
Fig 16. Threshold Voltage vs. Temperature
Fig. 18 - Typical Recovery Current vs. di
f
/dt
Fig. 20 - Typical Stored Charge vs. di
f
/dt
Fig. 19 - Typical Stored Charge vs. di
f
/dt
-75 -50 -25
0
25
50
75 100 125 150 175
TJ , Temperature ( °C )
1.0
2.0
3.0
4.0
5.0
V
G
S
(t
h)
G
at
e
th
re
sh
ol
d
V
ol
ta
ge
(
V
)
ID = 1.0A
ID = 1.0mA
ID = 250µA
ID = 100µA
100 200 300 400 500 600 700 800 900 1000
dif / dt - (A / µs)
0
4
8
12
16
I R
R
M
-
(
A
)
IF = 29A
VR = 85V
TJ = 125°C
TJ = 25°C
Fig. 17 - Typical Recovery Current vs. di
f
/dt
100 200 300 400 500 600 700 800 900 1000
dif / dt - (A / µs)
0
4
8
12
16
I R
R
M
-
(
A
)
IF = 44A
VR = 85V
TJ = 125°C
TJ = 25°C
100 200 300 400 500 600 700 800 900 1000
dif / dt - (A / µs)
0
100
200
300
Q
R
R
-
(
nC
)
IF = 29A
VR = 85V
TJ = 125°C
TJ = 25°C
100 200 300 400 500 600 700 800 900 1000
dif / dt - (A / µs)
0
100
200
300
Q
R
R
-
(
nC
)
IF = 44A
VR = 85V
TJ = 125°C
TJ = 25°C
AUIRFB/S4610
7
2015-10-27
Fig 21. Peak Diode Recovery dv/dt Test Circuit for N-Channel HEXFET® Power MOSFETs
Fig 22a. Unclamped Inductive Test Circuit
Fig 22b. Unclamped Inductive Waveforms
Fig 23a. Switching Time Test Circuit
Fig 24a. Gate Charge Test Circuit
Fig 24b. Gate Charge Waveform
R G
IAS
0.01
tp
D.U.T
L
VDS
+
- VDD
DRIVER
A
15V
20V
tp
V
(BR)DSS
I
AS
Fig 23b. Switching Time Waveforms
Vds
Vgs
Id
Vgs(th)
Qgs1 Qgs2
Qgd
Qgodr
AUIRFB/S4610
8
2015-10-27
TO-220AB Package Outline (Dimensions are shown in millimeters (inches))
TO-220AB Part Marking Information
YWWA
XX
XX
Date Code
Y= Year
WW= Work Week
AUIRFB4610
Lot Code
Part Number
IR Logo
Note: For the most current drawing please refer to IR website at
http://www.irf.com/package/
AUIRFB/S4610
9
2015-10-27
Note: For the most current drawing please refer to IR website at
http://www.irf.com/package/
D
2
Pak (TO-263AB) Part Marking Information
YWWA
XX
XX
Date Code
Y= Year
WW= Work Week
AUIRFS4610
Lot Code
Part Number
IR Logo
D
2
Pak (TO-263AB) Package Outline (Dimensions are shown in millimeters (inches))
AUIRFB/S4610
10
2015-10-27
D
2
Pak (TO-263AB) Tape & Reel Information (Dimensions are shown in millimeters (inches))
Note: For the most current drawing please refer to IR website at
http://www.irf.com/package/
3
4
4
TRR
FEED DIRECTION
1.85 (.073)
1.65 (.065)
1.60 (.063)
1.50 (.059)
4.10 (.161)
3.90 (.153)
TRL
FEED DIRECTION
10.90 (.429)
10.70 (.421)
16.10 (.634)
15.90 (.626)
1.75 (.069)
1.25 (.049)
11.60 (.457)
11.40 (.449)
15.42 (.609)
15.22 (.601)
4.72 (.136)
4.52 (.178)
24.30 (.957)
23.90 (.941)
0.368 (.0145)
0.342 (.0135)
1.60 (.063)
1.50 (.059)
13.50 (.532)
12.80 (.504)
330.00
(14.173)
MAX.
27.40 (1.079)
23.90 (.941)
60.00 (2.362)
MIN.
30.40 (1.197)
MAX.
26.40 (1.039)
24.40 (.961)
NOTES :
1. COMFORMS TO EIA-418.
2. CONTROLLING DIMENSION: MILLIMETER.
3. DIMENSION MEASURED @ HUB.
4. INCLUDES FLANGE DISTORTION @ OUTER EDGE.